Fortgeschrittene Experimentalphysik für Lehramtsstudierende Teil II: Kern- und Teilchenphysik

Prof. Markus Schumacher Sommersemester 2013

Kapitel 4: Zerfälle instabiler Kerne

Beispiel für radioaktive Zerfallsketten

Zerfallsschema für ThB(212Pb) mit Folgeprodukten, stark vereinfacht

Th. Mayer-Kuckuck, Kernphysik, Teubner Verlag

Halbwertszeit und mittlere Lebensdauer

<u>Aktivität in Zerfallsreihe K1–K2 \rightarrow K3</u>

Beobachtung:

I) Maximum von A_2 beim Schnittpunkt der Kurven von A_1 und A_2 .

2) Maximum bei t \approx kleineres T; hier: I.) t = 0.1 T₁, λ_1 t \approx 0.1; 2.) t= T₁, λ_1 t \approx 1

3) Abfall für große t wird vom größeren T bestimmt.

Beispiele für radioaktive Quellen

Name	Kern	Zerfallsart	freigesetzte Energie	Halbwertszeit	
			(MeV)	(Jahre)	
Tritium	$^3_1\mathrm{H}$	β^-	0.0186	12.3	
Kalium	$^{40}_{19}{ m K}$	β^{-}	1.31	$1.5 \cdot 10^9$	
Cäsium	$^{135}_{55}$ Cs	β^{-}	0.21	$3.0 \cdot 10^{6}$	
Radium	$^{226}_{88}$ Ra	lpha	4.77	1620	
Uran	$^{238}_{92}{ m U}$	lpha	4.20	$4.5 \cdot 10^{9}$	

Kalium-40 Zerfälle im Körper verursachen etwa 10% der natürlichen Strahlenbelastung.

Einheiten

 I. Aktivität: I Becquerel Bq = I Zerfall /Sekunde Alte Einheit: Curie Ci: I Bq = I/(3.7 x 10¹⁰) Ci (Curie) I Ci ist die Aktivität von I g Radium-226 = 3.7 · 10¹⁰ Bq. Die Aktivität des menschlichen Körpers ist etwa 3700 Bq (hauptsächlich von ⁴⁰K und ¹³C).

2. Absorbierte Dose: Gray Gy: $I Gy = I Joule/kg = 6.24 \cdot 10^{12} MeV/kg$ Alte Einheit: rad : $I Gy = I0^4 erg/g = I00$ rad

3. Ladungsdosis, Ionendosis: Erzeugte Ladungsdichte durch radioaktive Strahlung Einheit: I Coulomb/kg Alte Einheit Röntgen: I R = 2.58 x 10⁻⁴ C/kg

4. Equivalente Dosis: Berücksichtigt den Schaden in biologischem Gewebe Einheit Sievert Sv: $I Sv = I Gy \cdot w_R$ Alte Einheit: rem (Röntgen equivalent for man): I Sv = 100 rem

Relative biologische Wirkungsfaktoren W_R (RBW)

Radiation type	w_R von P	DG
Photons, electrons and muons	1	
Neutrons, $E_n < 1 \text{ MeV}$	$2.5 + 18.2 \times \exp[-(\ln E_n)^2/6]$	
$1 \text{ MeV} \le E_n \le 50 \text{ MeV}$	$5.0 + 17.0 \times \exp[-(\ln(2E_n))^2/6]$	
$E_n > 50 \text{ MeV}$	$2.5 + 3.25 \times \exp[-(\ln(0.04E_n))^2/6]$;]
Protons and charged pions	2	
Alpha particles, fission		
fragments, heavy ions	20	

Approximiert:	Neutrons < 10 keV	5
	10–100 keV	10
	> 100 keV to 2 MeV	20
	$220 \mathrm{MeV}$	10
	$> 20 { m ~MeV}$	5

Strahlungsbelastung und Strahlungsschäden

Natürliche Strahlenbelastung:

Die jährliche Ganzkörperstrahlenbelastung durch natürliche Quellen beträgt I-13 mSv mit einem Mittelwert von 2.4 mSv. Der größte Anteil kommt von Radongas (0.1-0.2 mSv Draußen, 2 mSv im Haus, 20 mSv in Minen).

Kosmische Strahlung: Hauptsächlich Myonen. Typische Werte: 0.1 μ Sv / h auf Meereshöhe (= 0.9 mSv / y) einige μ Sv / h im Flugzeug: bei 5 μ Sv / h und 100 h Flug/Jahr \rightarrow 0.5 mSv/y

Man unterscheidet zwei Arten von Gesundheitsschäden: deterministisch und stochastisch.

I. Deterministisch

Schädigungen von Zellen tritt nur auf, wenn eine bestimmte Dosis überschritten wird. Die Stärke der Schädigungen ist proportional zur absorbierten Dosis (Gray).

2. Stochastisch

DNA Schäden (Vererbungs, Krebs) können bei jeder Dosis entstehen. Die Wahrscheinlichkeit des Eintreffens (aber nicht die Stärke der Schädigung) ist proportional zur Dosis ohne untere Schwelle.

3. Tödliche Dosis Bei 2.5-4.5 Gy Ganzkörperdosis beträgt die Sterblichkeitsrate 50% in 30 Tagen.

4. Krebswahrscheinlichkeit Die Wahrscheinlichkeit Krebs zu bekommen beträgt 5% pro Sv.

5. Empfohlene Grenzwerte (Ganzkörperdosis): ICRP Empfehlung, Richtwerte in EU und CH: Equivalente Dosis < 20 mSv / y gemittelt über 5 Jahre, in keinem Jahr mehr als 50 mSv.

Alpha-Teilchen in Nebelkammer

Fig. 13. K. PHILERY, Naturwiss, 14, 1203 (1926).

Reichweite von α-Teilchen in Gas, gemessen mit einer Nebelkammer, Philips 1926

Alpha-Spektrum im Americium-Zerfall

Geiger-Nuttal-Regel

Zur Berechnung des Gamov-Faktors

Transmissionskoeffizient:

$$T = T_0 \exp[-\frac{2}{\hbar}\sqrt{2m(V_0 - E)} d] \qquad T = T_0 \exp[-\frac{2}{\hbar}\int_0^D \sqrt{2m(V(r) - E)} dr]$$

Zerfallsreihen

Bei Zerfällen sehr schwerer Kerne, z.B. Uran, beobachtet man eine Sequenz von Zerfällen, die schließlich in einem stabilen Kern (Blei) endet.

Die Zerfallsreihen werden nach den Hauptelementen benannt, die in den Zerfällen vorkommen.

Wichtig sind die Uran-Radium-Reihe, Uran-Actinium-Reihe, Thorium-Reihe, Neptunium-Reihe.

Natürliche Zerfallsreihen. Die Zerfallsreihe, die beim Neptunium beginnt, kommt in der Natur wegen der vergleichsweise kurzen Halbwertszeit nicht mehr vor. Diese Elemente sind jedoch zur Zeit der Entstehung der Erde ebenfalls vorhanden gewesen

Nomenklatur	Mutternuklid	Halbwertszeit	Endprodukt	Zerfälle
4n	²³² Th	$1.405 \cdot 10^{10}$ a	$^{208}\mathrm{Pb}$	$6\alpha, 4\beta^-$
4n+1	^{237}Np	$2.14\cdot 10^6$ a	209 Bi	$7\alpha, 4\beta^-$
4n+2	$^{238}\mathrm{U}$	$4.468\cdot 10^9$ a	²⁰⁶ Pb	$\begin{cases} 8\alpha, 6\beta^- \\ 10\alpha, 8\beta^- \end{cases}$
4n+3	^{235}U	$7.038\cdot 10^8$ a	$^{207}\mathrm{Pb}$	$7\alpha, 4\beta^-$

Zur Potentialbarriere bei der Kernspaltung

Zur Potentialbarriere bei der Kernspaltung

Anschauung zur induzierten Spaltung

Schema einer Kernspaltung. Die Absorption eines Neutrons durch 235U (a) führt zu einem angeregten Zustand von ²³⁶U (b). Dieser angeregte Kern Schwingungen durch wird verformt (c), der schwingende Kern wird instabil (d) und zerfällt in zwei Bruchstücke (e) mittlerer Massenzahl unter Emission mehrerer Neutronen, ihrerseits die Spaltung die weiterer Kerne auslösen können.

Wirkungsquerschnitt für induzierte Spaltung

Elektronspektrum im Beta-Zerfall

Electron momentum p

Elektronspektrum im Beta-Zerfall: Kurie-Darstellung

Kurie-Darstellung in der Nähe des Endpunktes

Bestimmung der Neutrinomasse

58

Messung des β -Spektrums mit Magnetspektrometern.

Die Fermi-Darstellung eignet sich gut zur Messung der Neutrinomasse. Am besten geeignet ist Tritium (E₀=18 keV)

Messung: Elektron-Neutrino Masse: $m_v < 2 \text{ eV}$

