Fortgeschrittene Experimentalphysik für Lehramtsstudierende Teil II: Kern- und Teilchenphysik

Prof. Markus Schumacher Sommersemester 2013

Kapitel 8: Wechselwirkungen und Symmetrien

Differentielle Wirkungsquerschnitte der QED

Differentielle Wirkungsquerschnitte der QED

Totaler Wirkungsquerschnitt e+e- → Myonen

Test der Leptonuniversalität

Wirkungsquerschnitte für Bhabha-Streung

Differentielle Wirkungsquerschnitte

Wirkungsquerschnitte für e+e- -> 2 Photonen

Laufende QED-Kopplung

OPAL

Evidenz für Spin=1 des Gluons

Evidenz für Selbskkopplung des Gluons

Nachweis der Gluonselbstkopplung: Auswahl von 4-Jet Endzuständen $x_i = 2E_i / \sqrt{s}, x_1 > x_2 > x_3 > x_4$ (Energieordnung) χ_{BZ} ist Winkel zwischen Ebenen von p_1 mit p_ und p_3 mit p_4

Evidenz für 3 Farben

a) R-Verhältnis in e+e- -Kollisionen

$$\begin{split} R_{e^+e^-} &\equiv \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} \\ R_{e^+e^-} &\approx N_C \sum_{f=1}^{N_f} Q_f^2 = \begin{cases} \frac{2}{3}N_C = 2, & (N_f = 3 : u, d, s) \\ \frac{10}{9}N_C = \frac{10}{3}, & (N_f = 4 : u, d, s, c) \\ \frac{11}{9}N_C = \frac{11}{3}, & (N_f = 5 : u, d, s, c, b) \end{cases} \end{split}$$

b) Zerfallsbreite
$$\pi^0 \rightarrow \gamma\gamma$$
 Exp: $\Gamma = 7.7 \pm 0.6 \text{ eV}$

$$\Gamma(\pi^0 \to \gamma \gamma) = \left(\frac{N_C}{3}\right)^2 \frac{\alpha^2 m_\pi^3}{64\pi^3 f_\pi^2} = 7.73 \,\mathrm{eV},$$

i) $\tau \rightarrow \mu \nu \nu$: Exp: 18% Theorie: 1/(2+N_c) alle Zerfälle $\tau \rightarrow \mu \nu \nu, \tau \rightarrow e \nu \nu, \tau \rightarrow u d' \nu$

ii) W $\rightarrow \mu \nu$: Exp: 11% Theorie: 1/(3+2*N_c) alle Zerfälle W $\rightarrow e \nu$, W $\rightarrow \mu \nu$, W $\rightarrow \tau \nu$, W $\rightarrow ud'$, W $\rightarrow cs'$

γ, Ζ

Evidenz für R-Verhältnis in e+ e- Streuung

Evidenz für 3 Farben aus R-Verhältnis

 $R=rac{\sigma(e^+e^ightarrow qar q)}{\sigma(e^+e^ightarrow \mu^+\mu^-)}$

 $\sigma(e^+e^- o qar q) = N_C \cdot \sum e_i^2 \cdot \sigma(e^+e^- o \mu^+\mu^-)$

$$\begin{aligned} R_{dsu}(E < 3 \; GeV) &= 3 \cdot \left[2 \cdot \left(\frac{1}{3}\right)^2 + 1 \cdot \left(\frac{2}{3}\right)^2\right] = \frac{6}{3} \\ R_{dsuc}(E < 10 \; GeV) &= 3 \cdot \left[2 \cdot \left(\frac{1}{3}\right)^2 + 2 \cdot \left(\frac{2}{3}\right)^2\right] = \frac{10}{3} \\ R_{dsbuc}(E < 360 \; GeV) &= 3 \cdot \left[3 \cdot \left(\frac{1}{3}\right)^2 + 2 \cdot \left(\frac{2}{3}\right)^2\right] = \frac{11}{3} \\ R_{dsbuct}(E > 360 \; GeV) &= 3 \cdot \left[3 \cdot \left(\frac{1}{3}\right)^2 + 3 \cdot \left(\frac{2}{3}\right)^2\right] = \frac{15}{3} \end{aligned}$$

Laufende Kopplungskonstante

Unterschiedliches Verhalten auf Einschleifenniveau:

$$\left(\alpha_s(q^2) \right)_{q\bar{q}} = \alpha_s(\mu^2) \left(1 + N_f \cdot \frac{\alpha_s(\mu^2)}{6\pi} \cdot \ln(\frac{q^2}{\mu^2}) \right)$$

$$\left(\alpha_s(q^2) \right)_{gg} = \alpha_s(\mu^2) \left(1 - 11 \cdot \frac{\alpha_s(\mu^2)}{4\pi} \cdot \ln(\frac{q^2}{\mu^2}) \right)$$

 N_f die Zahl der aktiven Quarkflavours mit $2m_f < \sqrt{q^2}$

Alle Schleifen aufaddiert:
$$\alpha_s(q^2) = \frac{\alpha_s(\mu^2)}{1 + (33 - 2N_f)\frac{\alpha_s(\mu^2)}{12\pi}\ln(\frac{q^2}{\mu^2})}$$

 $\alpha_s \rightarrow 0$ für $q^2 \rightarrow \infty$, falls 33 – 2N_f, also N_f < 16.5

- Für $q^2 \to \infty$ folgt $\alpha_s(q^2) \to 0$: asymptotische Freiheit
- Für q² → 0 folgt α_s(q²) → ∞: Confinement: Störungstheorie versagt, Quarks und Gluonen existieren nicht als ungebundene, freie Objekte.

Laufende Kopplungen im Vergleich

Abschirmung durch Quarkschleifen Antiabschirmung durch Gluonschleifen

Nur Abschirmung

Laufende Kopplungen im Vergleich

Unterschiedliches Verhalten auf Einschleifenniveau:

$$\left(\alpha_s(q^2) \right)_{q\bar{q}} = \alpha_s(\mu^2) \left(1 + N_f \cdot \frac{\alpha_s(\mu^2)}{6\pi} \cdot \ln(\frac{q^2}{\mu^2}) \right)$$

$$\left(\alpha_s(q^2) \right)_{gg} = \alpha_s(\mu^2) \left(1 - 11 \cdot \frac{\alpha_s(\mu^2)}{4\pi} \cdot \ln(\frac{q^2}{\mu^2}) \right)$$

 N_f die Zahl der aktiven Quarkflavours mit $2m_f < \sqrt{q^2}$

Alle Schleifen aufaddiert:
$$\alpha_s(q^2) = \frac{\alpha_s(\mu^2)}{1 + (33 - 2N_f)\frac{\alpha_s(\mu^2)}{12\pi}\ln(\frac{q^2}{\mu^2})}$$

 $\alpha_s \rightarrow 0$ für $q^2 \rightarrow \infty$, falls $33 - 2N_f$, also $N_f < 16.5$

- Für $q^2 \to \infty$ folgt $\alpha_s(q^2) \to 0$: asymptotische Freiheit
- Für q² → 0 folgt α_s(q²) → ∞: Confinement: Störungstheorie versagt, Quarks und Gluonen existieren nicht als ungebundene, freie Objekte.

Potential der QCD / "Confinement"

Ansatz: Coulombterm ~ 1/r und anwachsender Term ~ r

 $V_{qq} = -4/3 \alpha_s \hbar c/r + k r$

Coulombterm: Hinweis auf Analogie zu QED

Linearer Term: Hinweis auf "Confinement"

```
Aus Anpassung an 
c<u>c</u> und b<u>b</u>-Spektren:
```


$$\label{eq:asymp_s} \begin{split} \alpha_{_{\rm S}} &\approx 0,3; \, k \,\approx 1 ~GeV\!/\!fm \\ m_{_c} &\approx 1,5 ~GeV\!/\!c^2; \, m_{_b} \approx 4,5 ~GeV\!/\!c^2 \end{split}$$

Potential der QCD / "Confinement"

Termschemata ähnlich, aber $\Delta E_{cc}(1S-2S) \approx \Delta E_{bb}(1S-2S) \Rightarrow$ kein reines 1/r-Potential ($\Delta E \sim m_{a}$). Form des zusätzlichen Terms: anwachsend

Laufende Kopplungen im Vergleich

Messung der starken Kopplungskonstanten

a) R-Verhältnis in e+e- -Kollisionen

$$R = \frac{\sigma(e^+e^- \to \text{Hadronen})}{\sigma(e^+e^- \to \mu^+\mu^-)} = R^{theo.}_{\alpha_s=0} \cdot (1 + a_1\alpha_s(Q^2 + a_2\alpha_s^2(Q^2) + \ldots))$$

b) Verhältnisse von Jetraten in e+e-, ep-Streuungen

 $\frac{N((n+1) \text{ Jets})}{N(n \text{ Jets})} \propto \alpha_s(Q^2)$

c) R-Verhältnis in Tau-Leptonzerfällen

$$R_{\tau} = \frac{\Gamma(\tau^- \to \text{Hadronen})}{\Gamma(\tau^- \to \mu^- \bar{\nu}_{\mu} \nu_{\tau})} \propto \alpha_s(m_{\tau}^2)$$

d) Massenspektren von Charmonium und Bottonium

e) Verletzung der Bjorkenschen Skaleninvarianz in Tiefinelastischer Streuung

$$R_3 \equiv \frac{\sigma_{3-jet}}{\sigma_{tot}} \propto \alpha_s(E_{cm}) \propto \frac{1}{\ln E_{cm}}$$

Messung der starken Kopplungskonstanten

Verletzung des Skalenverhaltens

at higher Q^2 $\Rightarrow F_2(x) \text{ does also depend}$ on Q^2 , not on x only

small x => partons inside the proton with small momentum fractions

Verletzung des Skalenverhaltens

Test der QCD in Jetproduktion

subprocess	$ M ^2$
$qq' \to qq'$	$\frac{4}{9}\frac{s^2+u^2}{t^2}$
$qq \rightarrow qq$	$\frac{4}{9}\left(\frac{s^2+u^2}{t^2}+\frac{s^2+t^2}{u^2}\right)-\frac{8}{27}\frac{s^2}{ut}$
$q\bar{q} \rightarrow q' q\bar{q}'$	$\frac{4}{9}\frac{t^2+u^2}{s^2}$
$q \bar{q} \rightarrow q \bar{q}$	$\frac{4}{9}\left(\frac{s^2+u^2}{t^2}+\frac{t^2+u^2}{s^2}\right) - \frac{8}{27}\frac{u^2}{st}$
$q \bar{q} \rightarrow g g$	$\frac{32}{27}\frac{u^2+t^2}{ut} - \frac{8}{3}\frac{u^2+t^2}{s^2}$
$gg \longrightarrow q \bar{q}$	$\frac{1}{6}\frac{u^2+t^2}{ut} - \frac{3}{8}\frac{u^2+t^2}{x^2}$
$qg \rightarrow qg$	$-\frac{4}{9}\frac{u^2+s^2}{us}+\frac{u^2+s^2}{t^2}$
$gg \rightarrow gg$	$\frac{9}{2}\left(3-\frac{ut}{s^2}-\frac{us}{t^2}-\frac{st}{u^2}\right)$

Test der QCD in Jetproduktion

Test der QCD inW/Z-Produktion

Schwache Wechselwirkung: wann relevant?

- a) Bei Neutrinos im Anfangszustand z.B: Neutrino-Nukleon-Streung einzige Wechselwirkugn die beuträgt, da Neutrinos keine elektromagentscihe Ladung oder Farbladung tragen
- b) Bei Zerfällen in denen Symmetrie/Erhaltungszahl verletzt wird, die in elektromagentischer und starker Wechselwirjung erhalten sind.
 z.B: π- → Elektron Neutrino K⁰→πi+π-
- c) Bei hohen Energien ist Stärke von elektromagnetischer und schwacher Wechselwirkung gleich z.B: a) ep → eX ep→neutrino X (Photon und W Austausch nahezu gleich)

b) ee->ffbar Streung bei hohen Schwerpunktsenergien (Photon und Z Austausch) **Geladener und schwacher Strom**

Geladener Strom: Differenz der elektromagentischen Ladung= 1 im Vertex → Emission/ Absorption eines geladenen W-Bosons

erste Beobachtung: Beta-Zerfall

Änderung des Quark-Flavour im Vertex q-q-W-Bosons Übergänge:

 $u \leftrightarrow d' (u \leftrightarrow d, u \leftrightarrow s, u \leftrightarrow b)$

 $c \leftrightarrow s' \ (c \leftrightarrow d, c \leftrightarrow s, c \leftrightarrow b)$

 $t \leftrightarrow b$ ($t \leftrightarrow d$, $t \leftrightarrow s$, $t \leftrightarrow b$)

W

Neutraler Strom: Differenz der elektromagnetischen Ladung = 0 im Vertex
 → Emission/Absortpion eines neutralen Z-Bosons

erste Beobachtung: Neutrino Nukleon → Neutrino Nukleon Streuung

keine Änderung der Quarkflavour im Vertex q-q-Z

i.e. nur Übergänge $u \leftarrow \rightarrow u, d \leftarrow \rightarrow d, s \leftarrow \rightarrow s, c \leftarrow \rightarrow c, b \leftarrow \rightarrow b, t \leftarrow \rightarrow t$

Die CKM-Matrix

Zustände der schwachen Wechselwirkung d',s',b' sind Mischungen Der Flavour und Masseneingenzustände d,s,b

Mischung beschrieben durch unitäre 3x3 Matrix U: Cabbibo-Kobayashi-Maskawa-Matrix

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} U_{ud} & U_{us} & U_{ub}\\U_{cd} & U_{cs} & U_{cb}\\U_{td} & U_{ts} & U_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

Übergänge nur in folgenden in Dubletts:

$\begin{pmatrix} u \end{pmatrix}$	$\begin{pmatrix} c \end{pmatrix}$	$\begin{pmatrix} t \end{pmatrix}$			
d'	(s'),	b'			

Freie Parameter in Matrix:

drei Winkel θ_i und

eine komplexe Phase δ

$$U = \begin{pmatrix} c_1 & s_1c_3 & s_1s_3 \\ -s_1c_2 & c_1c_2c_3 - s_2s_3 e^{i\delta} & c_1c_2s_3 + s_2c_3 e^{i\delta} \\ -s_1s_2 & c_1s_2c_3 + c_2s_3 e^{i\delta} & c_1s_2s_3 - c_2c_3 e^{i\delta} \end{pmatrix}$$

Entdeckung neutraler Ströme (1979)

Postuliert aus Symmetrieargumenten zur Vervollständigung der geladenen Ström

<u>Partitätsverletzung l</u>

1955: Theta-Tau Rätsel

Beobachtung von Strange-Mesonzerfällen durch schwache Wechselwirkung

 $\begin{array}{l} \theta^{+} \longrightarrow \pi^{+} + \pi^{0} & (P = +1) \\ \\ \tau^{+} \longrightarrow \begin{cases} \pi^{+} + \pi^{0} + \pi^{0} \\ \pi^{+} + \pi^{+} + \pi^{-} \end{cases} & (P = -1) \end{array}$

Massen von Tau und Theta gleich (gleich heutiger Masse des K+)

Annahme: Parität erhalten, dann zwei unterschiedliche Teilchen Theta und Tau Parität nicht erhalten, dann ein Teilchen K+ mit paritätsverletzenden Zerfall

1956: Lee-Yang: Vorschlag, dass Parität in schwacher Wechselwrikung verletzt ist

1956/57: erste Beobachtung von Paritätsverletzung im Wu-Experiment

Paritätsverletzugn II: Das Wu-Experimentl

Untersuchung der Winkelverteilung der Elektronen im Beta-Zerfall

preferentially opposite the direction of the spin of the ⁶⁰Co nucleus.

Paritätsverletzung: Das Wu-Experimentl

 $N(e^{-},p_{7}>0)+N(e^{-},p_{7}<0)$

=v(e⁻)/c

Paritätssymmetrie verletzt in geladenen schwachen Strom \rightarrow

Bemerkung: die angeregten Ni-Kerne senden symmetrische Photonstrahlung aus Auch hier keine Paritätsverletzng in elektromagnetischer Wechselwirkung

Paritätsverletzung: weitere experimentelle Befunde

In den nächsten Jahren weitere Messungen/Experimente zu Beta-Zerfällen und Neutrinostreuung über geladenen Strom

Zusammenfassung der Ergebnisse:

a) Neutrinos	haben immer negative Helizität
b) Antineutrnios	haben immer positive Helizität
c) Geladene Leptonen	haben mittlere Helizität = $-v/c$ (-1 für v \rightarrow c)
d) Geladene Antileptonen	haben mittlere Helizität = v/c (+1 für $v \rightarrow c$)

VgI: geladene Leptonen in der elektromagentische Wechselwirkung z.B. e+e- → μ+ μbesitzten kein bevorzute Helizität, d.h. mittlere Helizität = 0

dies bedeutet:

in der schwachen Wechselwirkung ist die Parität der Helizität maximal verletzt

Maximale Verletzung von Parität und Ladungskomjugation

Betrachte den Zerfall des geladen Pions in seinem Ruhesystem:

Impulsrichtung

Spinrichtung ———

Neutrinos (Antineutrinos) sind Linkshändig=Helizität - (rechtshändig=Helizität +) Drehimpulserhaltung und Spin=0 des Pions ergibt Helizitätdes geladene (Anti-)Leptons

Parität und Ladungskonjugation maximal verletzt in schwachen geladen Strom Kombination CP erhalten (hier, Verletzung auf Niveau 10⁻³ in K- und B-Meson-System)

Quantenzahlen

Linkshändige Fermionen sitzen in Dubletts bzgl SU(2) 13= -1/2 und +1/2 Rechthändige Fermionen sitzen in Singuletts bzgl SU(2) 13=0 Hyperladung Y für jede Lepton, Quarksorte und Chiralität unterschiedlich

	Leptonen					Quarks						
	Q	Y	I_W^3	3 Familien			Q	Y	I_W^3	3 Familien		
Dubletts	$ \begin{array}{c} 0 \\ -1 \end{array} $	$-1 \\ -1$	$\frac{1/2}{-1/2}$	$\binom{\nu_{\rm e}}{{\rm e}}_{\rm l}$	$\binom{\nu_{\mu}}{\mu}_{l}$	$\binom{\nu_{\tau}}{\tau}_{l}$	$2/3 \\ -1/3$	$\frac{1/3}{1/3}$	$\frac{1/2}{-1/2}$	$\binom{u}{d}_{l}$	$\binom{c}{s}_{l}$	$\binom{t}{b}_{l}$
Singulett	-	-	-	-	-	-	2/3	4/3	0	\mathbf{u}_{r}	$\mathbf{c}_{\mathbf{r}}$	t_{r}
Singulett	-1	-2	0	e_{r}	$\mu_{ m r}$	$ au_{ m r}$	-1/3	-2/3	0	$d_{\rm r}$	\mathbf{s}_{r}	$-b_r$

Maximale Verletzung von Parität und Ladungskomjugation

starke experimentelle Bestätigung der V-A-Struktur des geladenen schwachen Stromes

Mögliche Zerfälle: $\pi - \rightarrow \mu - n_{\mu}$ und $\pi - \rightarrow e - v_e$ Mit Verzweigungsverhältnissen99.99%0.01%

Goldene Regel liefert: $d\Gamma \sim |\text{Impuls des geladenen Leptons}| |\text{Matrixelement}|^2$ Impulsbetrag = $(m_{\pi}^2 - m_{I}^2)/2m_{\pi}$

Phasenraum bevorzugt Zerfall in Elektron → Matrixelement muss diesen unterdrücken

$$\overset{e}{\longleftarrow} \overset{\pi}{\longrightarrow} \overset{\overline{\nu}_{e}}{\longrightarrow} \rightarrow$$

Zerfall im Pionruhesystem: Spin des Pions = 0

Masseloses rechtshändiges Antineutrino → Helizität = + Drehimpulserhaltung verlangt: Elektron muss ebenfalls Helizität = + besitzten

Elektron aus schwacher Wechselwirkung \rightarrow Chiralität = -1, linkshändig Anteil von Helizität + an "ungeliebten" linkshändigen Zustand: (1-v/c)

$$\frac{\Gamma(\pi^- \to e^- \bar{\nu}_e)}{\Gamma(\pi^- \to \mu^- \bar{\nu}_\mu)} = \left(\frac{m_e}{m_\mu}\right)^2 \left(\frac{m_\pi^2 - m_e^2}{m_\pi^2 - m_\mu^2}\right)^2 = 1.2 \times 10^{-4}$$

Bestimmung der Z-Kopplungen in Neutrino-Lepton-StreUung

 $\sigma = \frac{G_F^2 s}{3\pi} (g_A^{e^2} + g_A^e g_V^e + g_V^{e^2})$ $\Rightarrow (g_A^e, g_V^e)$ -Ellipse um (0, 0)• $\bar{\nu}_{\mu}e^- \rightarrow \bar{\nu}_{\mu}e^-$ (reiner Z⁰-Austauch) $\sigma = \frac{G_F^2 s}{2\pi} (g_A^{e^2} - g_A^e g_V^e + g_V^{e^2})$ \Rightarrow Ellipse um (0,0)• $\nu_e e^- \rightarrow \nu_e e^-$ (Z⁰- und W⁻-Austausch) $\sigma = \frac{G_F^2 s}{2\pi} \Big((1 + g_A^e)^2 + (1 + g_A^e)(1 + g_V^e) + (1 + g_V^e)^2 \Big)$ \Rightarrow Ellipse um (-1, -1)• $\bar{\nu}_e e^- \rightarrow \bar{\nu}_e e^-$ (Z⁰- und W⁻-Austausch) $\sigma = \frac{G_F^2 s}{2\pi} \Big((1 + g_A^e)^2 - (1 + g_A^e)(1 + g_V^e) + (1 + g_V^e)^2 \Big)$

 \Rightarrow Ellipse um (-1, -1)

Bestimmung der Z-Kopplungen an PETRA e+e- → f fbar

Bestimmung des Weinbergwinkels

 θ_W Aus Weinbergwinkel können Masse von W udn Z vorhergesagt werde

Energieabhängigkeit des Wirkungsquerschnitts

Kleine Energien: Photonaustuasch dominant ~ 1/s Energie*2= M_{Z:} Z-Austausch dominant / Breit-Wigner-Resonanzüberhöhung Hohe Energien: Phtoton und Z-Bososn-Beiträge etwa gleich gross

Anzahl leichter Neutrinos aus der Z-Resonanz

Es gibt nur drei leichte Neutrinos die an das Z-Boson koppeln

Evidenz für Eichbosonselbstkopplung

Vorwärts-Rückwärts-Asymmetrie bei LEP

Kleine Energien: Photonaustuasch dominant \rightarrow kein Assymetrien Energie*2= M_{Z:} Z-Austausch dominant (cv <> ca) Andre Energie: Photon-Z-Inteferenz

Messungen der Z-Boson-Kopplungen

Vorhersage der Masse des Top-Quarks

Das Problem der Teilchenmassen

Kräfte beschrieben durch Eichsymmetrien Eichgruppe des SM verbietet Massen für -Eichbosonen: W und Z

-Fermionen (I= Dublett, r = Singlett)

Experiment: alle Teilchen massiv bis auf Gluon und Photon (und 1 Neutrino?)

"ad hoc"-Massenterme zerstören:

- Renormierbarkeit \rightarrow keine Präzisionsvorhersagen
- Wahrscheinlichkeitsinterpretation von Wirkungsquerschnitten z.B. Unitaritätsverletzung in der W₁W₁-Streuung

Unitaritätsverletzung in WW-Streung

massiv: 1 longitudinaler Freiheitsgrad (FG)

2 transversale FG

masselos: nur 2 transversale FG

Skalares Teilchen H restauriert Unitarität, wenn $g_{HWW} \sim M_W$ und M_H nicht zu groß

Masse durch Wechselwirkung mit Kondensat/Äther

effektive Masse durch Wechselwirkung mit omnipräsenten, homogenen Kondensat eines skalaren Feldes skalar/ Spin=0: sonst bricht Kondensat die Isotropie des Raumes

Stärke des Kondensats (Vakuumerwartungswert vev) bekannt aus Fermikonstante G_F

Zwei äquivalente Sichtweisen:

"masselose" Teilchen wechselwirken mit "sichtbarem" Higgs-Äther

Teilchenmasse = Kopplung x vev

massive Teilchen und unsichtbarer Higgs-Äther

Vor fast 50 Jahren ...

F.Englert and R.Brout; G.S.Guralnik, C.R.Hagen and T.W.B.Kibble;

P.W.Higgs

F.Englert and R.Brout Phys. Rev. Lett. 13-[9], 321-323 (1964) Broken Symmetry and the Mass of Gauge Vector Mesons

P.W.Higgs Phys. Rev. Lett. 13-[16], 508-509 (1964) Broken Symmetries and the Masses of Gauge Bosons

G.S.Guralnik, C.R.Hagen and T.W.B.Kibble Phys. Rev. Lett. 13-[20], 585-587 (1964) Global Conservation Laws and Massless Particles

Der E.B.Higgs.G.H.K.-Mechanismus

Minimum von V nicht bei φ=0
3 masselose Anregungen entlang Mulde
1 massive Anregung senrecht zur Mulde

Higgs-Feld hat zwei "Komponenten"
1) homogenes Kondensat v= 247 GeV
2) Higgs-Boson H mit unbekannter M_H

4 skalare Freiheitsgrade (FG) (3 für long. FG von W[±],Z; 1 für Unitarität)

mit allgemeinstem Potential:

$$\mathbf{V} = -\mu^2 \left[\phi^+ \phi \right] + \lambda \left[\phi^+ \phi \right]^2 \quad \mu^2, \lambda > 0$$

 $v = \mu / \sqrt{\lambda}$

- → Spontane Symmetriebrechung
 → 3 longitudinale FG für W⁺⁻ und Z
- → physikalisches Higgs-Boson

→ nicht direkt nachweisbar
→ Suche an Beschleunigern

<u>Massenerzeugung und Higgs-Kopplungen: $\Phi = v + H$ </u>

Wechselwirkung mit dem Kondensat

M _v ~ g v	Eichopplung
$m_f \sim g_f v$	Yukawa-Kopplung

Wechselwirkung mit dem Higgs boson H

Fermion: $g_f \sim m_f / v$ W/Z_boson: $g_v \sim g M_v / v = g^2 v$

1 freier unbekannter Parameter in SM:

$$M_{\rm H} = v \sqrt{2\lambda} = \sqrt{2\mu}$$

Kopplungen und Zerfälle

Higgs-Zerfälle: Verzweigungsverhältnisse (BR)

Teilchenmasse = Kopplung x Vakuumerwartungswert Massen bekannt \rightarrow Kopplungen bekannt u. proportional zur Masse des Teilchen Higgs-Boson zerfällt quasi sofort (für M_H=125 GeV, Lebensdauer 10⁻²² s)

Kenntnis über die Masse des Higgs-Bosons vor LHC

das Standardmodell bevorzugt ein leichtes Higgs-Boson

Design des LHC und der ATLAS- und CMS-Experimente so, dass der ganze Bereich zwischen LEP- und Unitaritätsgrenze abgedeckt ist

Vorhersage der Massse aus Präzisionsmessungen

Entdeckung eines Teilchens July 2012

Neutrales Boson mit Masse von 125.5 GeV

Mittlerweile: Wkt. fürFehlinterpretation 10-24 Spin = 0 stark bevorzugt Eigenschaften vertäglich mit SM