Term Paper
Higgs boson: Spin + CP
Katharina Schleicher
31.07 .2013

Theory
Introduction
How to measure
Analysis $H \rightarrow \gamma \gamma$ with ATLAS
Introduction
Structure of Analysis
Results
Results of CMS
Analysis $H \rightarrow Z Z \rightarrow 4 \ell$ with CMS
Introduction
Structure of Analysis
Results
Results of ATLAS
Analysis $H \rightarrow W W \rightarrow e \nu_{e} \mu \nu_{\mu}$ with ATLAS Introduction

Combination

Discovery of new boson July 2012;
Coupling strength compatible with SM \rightarrow Investigation of spin- and CP-nature
Spin

- Higgs field is a scalar field \Rightarrow Higgs boson has to be scalar (SM), spin $=0$
- Spin-1 is ruled out because of the Landau Yang theorem ($H \rightarrow \gamma \gamma$)
- Spin-2 particle would not be compatible with a renormalizable theory
- No mixed spin states
- Analysis through longitudinal spin-correlations
- If CP-symmetric nothing should be changed if particle is replaced by its antiparticle and simultaneously all space coordinates are mirrored
- SM-Higgs boson has CP-eigenvalue +1 (CP-even)
- If it is CP-violating it would not be eigenstate but a mixture
- CP-violation already observed (K-mesons) but is not "large" enough to explain the huge dominance of matter against antimatter
- Analysis through transverse spin-correlations

The properties spin and CP manifest themselves in different angular distributions.

For example in the channel $H \rightarrow \gamma \gamma$ the distribution in $\cos \theta$

Same CP but different spin.

Or the distribution of Φ in the channel $H \rightarrow Z Z^{*} \rightarrow 4 \ell$

Same spin but different CP.

$$
\begin{aligned}
& \text { SM scalar Higgs Boson } \\
& \text { pseudo-scalar } \\
& \text { non-SM scalar with higher-dim. operators } \\
& \text { exotic pseudo-vector } \\
& \text { exotic vector } \\
& \text { graviton-like tensor with minim. couplings } \\
& \text { graviton-like tensor with SM in the bulk } \\
& \text { tensor with higher-dim. operators } \\
& \text { pseudo-tensor with higher-dim. operators } \\
& A\left(X_{J=0} \rightarrow V V\right)= \\
& v^{-1}\left(g_{1} m_{V}^{2} \epsilon_{1}^{*} \epsilon_{2}^{*}+g_{2} f_{\mu \nu}^{*(1)} f^{*(2), \mu \nu}+g_{3} f^{*(1), \mu \nu} f_{\mu \alpha}^{*(2)} \frac{q_{\nu} q^{\alpha}}{\Lambda^{2}}+g_{4} f_{\mu \nu}^{*(1)} \tilde{f}^{*(2), \mu \nu}\right)
\end{aligned}
$$

- $20.7 \mathrm{fb}^{-1}$ at $\sqrt{s}=8 \mathrm{TeV}$
- Channel with highest significance
- SM 0^{+}-hypothesis vs. graviton-like 2_{m}^{+}-hypothesis
\rightarrow Just spin-analysis since photons are stable
- No spin-1-hypothesis because of the Landau-Yang theorem

Signal and background

- Signal:
0^{+}mainly via ggF

- Main background (irreducible):

2^{+}via ggF or $q \bar{q}$ (different fractions of each will be analysed)

- Reducible backgrounds:

$$
\gamma+j e t, j e t+j e t, \ldots
$$

Information about the spin is extracted from the distribution of $\left|\cos \theta^{*}\right|$.

0^{+}Isotropic decay in rest frame
\Rightarrow Distribution expected to be uniform before any cuts
2^{+}Distribution follows
$1+6 \cos ^{2} \theta^{*}+\cos ^{4} \theta^{*}$ for production via gluon-fusion and $1-\cos ^{4} \theta^{*}$ for production via $q \bar{q}$-annihilation

- The Collins-Soper frame is defined in the Higgs-Boson rest frame
- θ^{*} is the polar angle of the photons with respect to the z-axis of the Collins-Soper frame

$$
\left|\cos \theta^{*}\right|=\frac{\left|\sinh \left(\Delta \eta^{\gamma \gamma}\right)\right|}{\sqrt{1+\left(p_{T}^{\gamma \gamma} / m_{\gamma \gamma}\right)^{2}}} \frac{2 p_{T}^{\gamma 1} p_{T}^{\gamma 2}}{m_{\gamma \gamma}^{2}}
$$

Advantage:
Less sensitive to initial state radiation of incoming quarks.

- Diphoton trigger with

$$
E_{T, \gamma 1}>35 \mathrm{GeV} \text { and }
$$

$$
E_{T, \gamma 2}>25 \mathrm{GeV}
$$

- $0<|\eta|<1.37$ and

$$
1.56<|\eta|<2.37
$$

- $105 \mathrm{GeV}<m_{\gamma \gamma}<160 \mathrm{GeV}$
- $p_{T, \gamma 1} / m_{\gamma \gamma}>0.35$ and $p_{T, \gamma 2} / m_{\gamma \gamma}>0.25$

$$
\begin{aligned}
\leftarrow & \leftarrow\left|\cos \theta^{*}\right|= \\
& \frac{\left|\sinh \left(\Delta \eta^{\gamma \gamma}\right)\right|}{\sqrt{1+\left(p_{T}^{\gamma \gamma} / m_{\gamma \gamma}\right)^{2}}} \frac{2 p_{T}^{\gamma^{1}} p_{T}^{\gamma^{2}}}{m_{\gamma \gamma}^{2}}
\end{aligned}
$$

A mass signal region (SR) and side band regions (SBR) are defined for background estimation and separation between signal and bkg.

$$
\begin{aligned}
\text { SR: } & 122-130 \mathrm{GeV} \\
\text { SBR: } & 105 \mathrm{GeV}<m_{\gamma \gamma}<122 \mathrm{GeV} \text { and } \\
& 130 \mathrm{GeV}<m_{\gamma \gamma}<160 \mathrm{GeV}
\end{aligned}
$$

Distribution of sensitive observable

Sensitive observable in SR:

The expected background is very large compared to the expected signal.
\Rightarrow Good estimation of background is important
\rightarrow Shape $\left(f_{B}\right)$ and yield $\left(n_{B}\right)$ are needed

- Natural width of invariant mass distribution is smaller than experimental resolution
\Rightarrow The pdf $f_{S}\left(m_{\gamma \gamma}\right)$ is the same for the spin-0 and the spin-2 hypothesis
- $f_{S}\left(m_{\gamma \gamma}\right)$ is determined from a fit to the MC simulated distribution
- $f_{B}\left(m_{\gamma \gamma}\right)$ is determined from a fifth-degree polynomial fit to the data

- $f_{S}\left(\left|\cos \theta^{*}\right|\right)$ is determined from MC for both hypothesis
- $f_{B}\left(\left|\cos \theta^{*}\right|\right)$ is determined from the data distribution in $\left|\cos \theta^{*}\right|$ while just considering the events that are in the mass SBR (just possible because of de-correlation between $m_{\gamma \gamma}$ and $\left.\left|\cos \theta^{*}\right|\right)$

Results

Now everything is done to perform a likelihood-fit (for each hypothesis) and hence to obtain the signal and background estimations.

The likelihood function for this analysis (de-correlation of $m_{\gamma \gamma}$ and $\cos \theta^{*}$) is:

$$
-\left(n_{S}+n_{B}\right)+\sum_{\text {events }} \ln \left[n_{S} \cdot f_{S}\left(\left|\cos \theta^{*}\right|\right) \cdot f_{S}\left(m_{\gamma \gamma}\right)+n_{B} \cdot f_{B}\left(\left|\cos \theta^{*}\right|\right) \cdot f_{B}\left(m_{\gamma \gamma}\right)\right]
$$

The distributions of the background-subtracted data in the SR only.

Results

The value for the test-statistic $q=\ln \mathcal{L}_{0}\left(\hat{\theta}_{0}\right)-\ln \mathcal{L}_{2}\left(\hat{\theta}_{2}\right)$ of the data can be evaluated (black).

And hence a p-value as well as a Spin-2 exclusion limit $\left(1-\mathrm{CL}_{s}\left(2^{+}\right)\right.$) can be obtained.

$$
\begin{gathered}
p\left(0^{+}\right)=58.8 \% \text { and } p\left(2^{+}\right)=0.3 \% \\
p_{\exp }\left(0^{+}\right)=1.2 \% \text { and } p_{\exp }\left(2^{+}\right)=0.5 \% \\
1-\mathrm{CL}_{\mathrm{S}}\left(2^{+}\right)=1-\frac{p\left(2^{+}\right)}{1-p\left(0^{+}\right)}=99.3 \%
\end{gathered}
$$

Results

Different fractions of $q \bar{q}$.

$p\left(0^{+}\right)=90.2 \%$ and $1-C L_{\mathrm{S}}=66.3 \%$.

- $19.6 \mathrm{fb}^{-1}$ at $\sqrt{s}=8 \mathrm{TeV}$
- Used same sensitive variable $\left|\cos \theta^{*}\right|$

Production only via ggF

$1-\operatorname{CL}_{s}\left(2_{m}^{+}\right)=39.1 \%$

Production only via $q \bar{q}$

$1-\operatorname{CL}_{s}\left(2_{m}^{+}\right)=83.1 \%$

Introduction

- $5.1 \mathrm{fb}^{-1}$ at $\sqrt{s}=7 \mathrm{TeV}$ and $19.7 \mathrm{fb}^{-1}$ at $\sqrt{s}=8 \mathrm{TeV}$
- Branching fraction is very low, $\mathcal{O}\left(10^{-4}\right)$
- All decay products visible
- The SM 0^{+}-hypothesis (pure scalar) is compared to 8 alternative hypotheses

- Signal process $H \rightarrow Z Z^{*} \rightarrow 4 \ell$:

All decay products are visible!

- Main background (irreducible): Direct $Z Z$-production via $q \bar{q}$ annihilation and gluon fusion (estimated from MC)

- Subleading background (reducible):
$Z+j e t s, t \bar{t}$, and $W Z+j e t s$ (estimated from signal-free control regions in data)
- Two pairs of leptons
- The leptons in a pair must be opposite charged and of same flavour
- $p_{T}^{e}>7 \mathrm{GeV}$ and $|\eta|^{e}<2.5$
- $p_{T}^{\mu}>5 \mathrm{GeV}$ and $|\eta|^{\mu}<2.4$
- $40<m_{Z 1}<120 \mathrm{GeV}$
- $12<m_{Z 2}<120 \mathrm{GeV}$

For the following study just events in the mass range $106<m_{4 \ell}<141 \mathrm{GeV}$ are used.

- Decay of $H \rightarrow Z Z \rightarrow 4 \ell$ sensitive to spin and parity of H
- To distinguish between the different hypothesis five angles in the 4ℓ-rest frame are used
- Together with the two masses $m_{Z 1}$ and $m_{Z 2}$ these five angles fully describe the kinematic configuration of the 4ℓ-system in its rest frame

Distributions of sensitive variables

- Want to construct a discriminant for separation of signal and bkg, $\mathcal{D}_{\text {bkg }}$ and one for separation between different hypotheses, $\mathcal{D}_{J^{P}}$
- They shall base on matrix-elements
- Therefore pdfs $\mathcal{P}^{\text {kin }}\left(m_{Z 1}, m_{Z 2}, \vec{\Omega} \mid m_{4 \ell}\right)$ are used which are computed from LO matrix-elements squared
- The following \mathcal{D} are obtained:

$$
\begin{aligned}
& \mathcal{D}_{\mathrm{bkg}}=\left[1+\frac{\mathcal{P}_{\mathrm{bkg}}^{\mathrm{kin}}\left(m_{Z 1}, m_{Z 2}, \vec{\Omega} \mid m_{4 \ell}\right) \cdot \mathcal{P}_{\mathrm{bkg}}^{\text {mass }}\left(m_{4 \ell}\right)}{\mathcal{P}_{0^{+}}^{\mathrm{kin}}\left(m_{Z 1}, m_{Z 2}, \vec{\Omega} \mid m_{4 \ell}\right) \cdot \mathcal{P}_{0^{+}}^{\text {mass }}\left(m_{4 \ell} \mid m_{0^{+}}\right)}\right]^{-1} \\
& \mathcal{D}_{J^{P}}=\left[1+\frac{\mathcal{P}_{J^{P}}^{\mathrm{kin}}\left(m_{Z 1}, m_{Z 2}, \vec{\Omega} \mid m_{4 \ell}\right)}{\mathcal{P}_{0^{+}}^{\mathrm{kin}}\left(m_{Z 1}, m_{Z 2}, \vec{\Omega} \mid m_{4 \ell}\right)}\right]^{-1}
\end{aligned}
$$

- All sensitive observables are combined in one discriminant

Kinematic Discriminants

Two example-plots for the \mathcal{D}-discriminants are shown.

Distribution nearly independent of hypothesis

With these discriminants a 2-dim. likelihood-fct. is constructed for each hypothesis and fitted to the data.
$\mathcal{L}_{2 D}^{J^{P}}=\mathcal{L}_{2 D}^{J^{P}}\left(\mathcal{D}_{\mathrm{bkg}}, \mathcal{D}_{J^{P}}\right)$
And a test-statistic q is evaluated:
$\Rightarrow q=-2 \ln \left(\mathcal{L}_{J^{P}} / \mathcal{L}_{0^{+}}\right)$

The summary plot for the q-values of all tested hypotheses.

- Considered four alternative hypothesis $\left(J^{P}=0^{-}, 1^{+}, 1^{-}, 2^{+}\right)$
- Used same angles and the $Z_{1,2}$-masses as CMS
- Another mass-window: $115<m_{4 \ell}<130 \mathrm{GeV}$ (smaller)
- The five angles and two masses are combined by using a BDT

$$
\begin{aligned}
& 1-\operatorname{CL}_{S}\left(0^{-}\right)=97.8 \% \\
& 1-\operatorname{CL}_{S}\left(1^{+}\right)=99.8 \% \\
& 1-\operatorname{CL}_{S}\left(1^{-}\right)=94.0 \% \\
& 1-\operatorname{CL}_{S}\left(2^{+}\right)=96.4 \%
\end{aligned}
$$

- $20.7 \mathrm{fb}^{-1}$ at $\sqrt{s}=8 \mathrm{TeV}$
- Better separation from bkg if e and μ
- The SM 0^{+}-hypothesis is compared to the $1^{+}-, 1^{-}$- and 2_{m}^{+}-hypothesis
- Analysis very similar to $Z Z$-Analysis
- $E_{T}^{\text {miss }}$ in final state
\Rightarrow Not all the five angles can be reconstructed

Sensitive variables

For background discrimination.

Results

These three variables plus m_{T} are used in a BDT again. And a test-statistic q is evaluated.

$$
1-\mathrm{CL}_{\mathrm{s}}\left(2^{+}\right)=98.0 \%
$$

$1-\mathrm{CL}_{\mathrm{s}}\left(1^{-}\right)=98.3 \%$

$1-\operatorname{CL}_{s}\left(1^{+}\right)=92 \%$

Combination

For ATLAS the three channels are combined:

	$\gamma \gamma$	$Z Z^{*}$	$W W^{*}$
0^{-}		x	
$1^{+} / 1^{-}$		x	x
2^{+}	x	x	x

$$
\begin{aligned}
1-\operatorname{CL}_{s}\left(0^{-}\right) & =97.8 \% \\
1-\operatorname{CL}_{s}\left(1^{+}\right) & =99.97 \% \\
1-\operatorname{CL}_{s}\left(1^{-}\right) & =99.73 \% \\
1-\operatorname{CL}_{s}\left(2^{+}\right) & \geq 99.95 \%
\end{aligned}
$$

\Longrightarrow All tested alternative hypotheses can be rejected

Combination

$$
H \rightarrow Z Z^{*} \rightarrow 4 \ell
$$

σ

$$
H \rightarrow W W^{*} \rightarrow e \nu_{e} \mu \nu_{\mu}
$$

- All considered alternative hypotheses can be excluded
\Longrightarrow The standard model hypothesis 0^{+}is favoured
- Now important: Investigation of CP-mixture states

