Particle Physics II

Markus Schumacher, Anna Kopp, Stan Lai

Problem Set II

04 November 2014

In-class exercises

Exercise 8 Conservation of Total Angular Momentum

(a) The Hamiltonian in relativistic quantum mechanics is just $H \equiv p^{0}$. Write the Hamiltonian H in terms of 3 -momentum and mass operators, by rearranging the Dirac equation.
(Remember the quantum mechanical momentum operator for momentum is given by $p_{\mu}=i \partial_{\mu}$.)
(b) Show that the Hamiltonian $\left(H \equiv p^{0}\right)$ for the Dirac Equation does not commute with the orbital angular momentum operator:

$$
[H, \vec{L}]=-i \gamma^{0}(\vec{\gamma} \times \vec{p}) \neq 0 .
$$

(Since $\vec{L}=\vec{r} \times \vec{p}$, we can write $L^{i}=\epsilon^{i j k} r_{j} p_{k}$.)
(c) Show also that this Hamiltonian does not commute with the spin operator:

$$
[H, \vec{S}]=i \gamma^{0}(\vec{\gamma} \times \vec{p})
$$

(Recall that $\vec{S}=\vec{\Sigma} / 2$ whereby $\vec{\Sigma}$ are just the Pauli spin matrices $\sigma_{x}, \sigma_{y}, \sigma_{z}$.)
(d) However, show that as a consequence, the total angular momentum $\vec{J}=\vec{L}+\vec{S}$ is conserved.

Hint: recall that the commutation relation between position and momentum operators is: $\left[x_{k}, p_{l}\right]=i \partial_{k l}$.

Exercise 9 Completeness of Dirac Equation Solutions

Given these four solutions to the Dirac Equation:

$$
u^{(1)}=N\left(\begin{array}{c}
1 \\
0 \\
\frac{p_{z}}{E+m} \\
\frac{p_{x}+p_{y}}{E+m}
\end{array}\right), u^{(2)}=N\left(\begin{array}{c}
0 \\
1 \\
\frac{p_{x}-i p_{y}}{E+m} \\
\frac{-p_{z}}{E+m}
\end{array}\right), v^{(1)}=N\left(\begin{array}{c}
\frac{p_{x}-i p_{y}}{E+m} \\
\frac{-p_{z}}{E+m} \\
0 \\
1
\end{array}\right), v^{(2)}=-N\left(\begin{array}{c}
\frac{p_{z}}{E_{z}+m} \\
\frac{p_{x}+i p_{y}}{E+m} \\
1 \\
0
\end{array}\right),
$$

with $N=\sqrt{E+m}$, show that the completeness relation holds for these spinors, namely that:

$$
\sum_{s=1,2} u^{(s)} \bar{u}^{(s)}=\left(\gamma^{\mu} p_{\mu}+m\right), \sum_{s=1,2} v^{(s)} \bar{v}^{(s)}=\left(\gamma^{\mu} p_{\mu}-m\right) .
$$

Exercise 10 Adjunct Dirac Equation

Given the Dirac Equation

$$
i \gamma^{\mu} \partial_{\mu} \psi-m \psi=0,
$$

show that the adjunct spinor $\bar{\psi} \equiv \psi^{\dagger} \gamma^{0}$ satisfies the adjunct Dirac Equation

$$
i \partial_{\mu} \bar{\psi} \gamma^{\mu}+m \bar{\psi}=0 .
$$

Exercise 11 Target Scattering Energy Threshold

If a particle A, with energy E hits a particle B at rest, and produces n particles $C_{1}, C_{2}, \ldots, C_{n}$ with masses $m_{1}, m_{2}, \ldots, m_{n}$, what is the energy threshold (minimum incident energy $E_{\text {min }}$) for this process to occur (in terms of $m_{A}, m_{B}, m_{1}, \ldots, m_{n}$)?

Homework

Exercise 12 Dirac and Klein-Gordon Equations
4 Points

Show that a spinor ψ satisfying the Dirac equation $\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0$ also satisfies the Klein-Gordon equation $\left(\partial^{\mu} \partial_{\mu}+m^{2}\right) \psi=0$.
Hint: Operate on the left for both sides of the Dirac equation with the operator $\gamma^{\nu} \partial_{\nu}$.

Exercise 13 Dirac Matrix Properties

4 Points
Show the following are true, using the Dirac Representation of γ-Matrices:
(a) $\left(\gamma^{0}\right)^{2}=1$
(b) $\left(\gamma^{k}\right)^{2}=-1($ for $k=1,2,3)$
(c) $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}$

Show that (c) is also true for the Weyl representation.
What does γ^{5} look like in the Dirac representation and the Weyl representation?

Exercise 14 Orthogonality of Dirac Equation Solutions

4 Points
For the above solutions to the Dirac equation, show that $u^{(1)}$ and $u^{(2)}$ are orthogonal, as are $v^{(1)}$ and $v^{(2)}$. Show however, that $u^{(1)}$ and $v^{(1)}$ are not orthogonal.
Hint: Show for instance that $u^{(1) \dagger} u^{(2)}=0$.

Exercise 15 Helicity in the Dirac Equation
4 Points

The helicity operator is given by $\hat{h}=\frac{\vec{\sigma} \cdot \vec{p}}{2|\vec{p}|}$. Show that helicity is conserved in the Dirac equation.
Hint: Show that the helicity operator commutes with the Hamiltonian $H \equiv p^{0}$.

Exercise 16 Charge Conjugation and Time Reversal
4 Points
The charge conjugation operator C transforms spinors via: $\psi \rightarrow C(\psi)=\psi^{\prime}=i \gamma^{2} \psi^{*}$. What do the charge conjugates of the spinors $v^{(1)}$ and $v^{(2)}$ look like?
The time reversal operator T transforms spinors via: $\psi \rightarrow T(\psi)=\psi^{\prime}=i \gamma^{1} \gamma^{3} \psi^{*}$. What does the time reversed spinor of $u^{(1)} e^{-i p \cdot x}$ look like?

