Particle Physics II

Markus Schumacher, Anna Kopp, Stan Lai

Problem Set III

11 November 2014

In-class exercises

Exercise 17 Non-relativistic Limit of the Dirac Equation

(a) Show that the Dirac equation can also be written in this form:

$$
\left(\begin{array}{cc}
m & \vec{\sigma} \cdot \vec{P} \\
\vec{\sigma} \cdot \vec{P} & -m
\end{array}\right) \psi=i \partial_{t} \psi,
$$

where ψ_{A} and ψ_{B} are two-component spinors, and \vec{P} is the momentum operator.
Hint: Use the Dirac representation of the γ-matrices.
(b) In classical mechanics, it can be shown that a charged particle with charge e in the presence of a Lorentz force satisfies the following relations for the scalar and vector potentials $A^{0}=U(\vec{x}, t)$ and $\vec{A}(\vec{x}, t)$:

$$
\vec{p}=m \frac{d \vec{x}}{d t}+e \vec{A}(\vec{x}, t) \quad \text { and } \quad H=\frac{1}{2 m}[\vec{p}-e \vec{A}(\vec{x}, t)]^{2}+e U(\vec{x}, t)
$$

for the mechanical momentum and the Hamiltonian, respectively. In Einstein notation, The scalar and vector potentials are written as a 4 -component vector object: $A^{\mu}=(U, \vec{A})$. Thus, the dynamics of a spin- $1 / 2$ charged particle interacting with a classical vector field can be expressed by the Dirac equation in part (a), with the substitutions:

$$
\vec{P} \rightarrow \vec{P}+e \vec{A} \quad \text { and } \quad E \rightarrow E+e A^{0}
$$

Using the time evolution of the two-component spinors ($E_{\text {kin }}$ being the kinetic energy of the electron):

$$
\psi=\binom{\psi_{A}}{\psi_{B}}=e^{-i\left(E_{k i n}+m\right) t}\binom{\phi}{\chi},
$$

show that ψ_{B} can be written in terms of ψ_{A} as:

$$
\psi_{B} \simeq \frac{\vec{\sigma} \cdot(\vec{P}+e \vec{A})}{2 m} \psi_{A} .
$$

Note you can make use of the non-relativistic approximations that $\left|e A^{0}\right| \ll m$ and $E_{k i n} \ll m$.
(c) Substituting this expression for ψ_{B}, show that one arrives finally at the Pauli equation:

$$
\left(\frac{1}{2 m}(\vec{P}+e \vec{A})^{2}+\frac{e}{2 m} \vec{\sigma} \cdot \vec{B}-e A^{0}\right) \psi_{A}=E_{k i n} \psi_{A},
$$

where the four-vector potential satisfies $\vec{B}=\vec{\nabla} \times \vec{A}$ and $\vec{E}_{\text {electric }}=-\partial_{t} \vec{A}-\vec{\nabla} A^{0}$.
Hint: You can make use of the following:

- $(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b})=\vec{a} \cdot \vec{b}+i \vec{\sigma} \cdot(\vec{a} \times \vec{b})$, in the case that $[\vec{a}, \vec{\sigma}]=[\vec{b}, \vec{\sigma}]=0$
- $\vec{P}=-i \vec{\nabla}$
- $\vec{\nabla} \times(\vec{A} \psi)+\vec{A} \times(\vec{\nabla} \psi)=(\vec{\nabla} \times \vec{A}) \psi$.

Homework

Exercise 18 Target Scattering Energy Threshold

3 Points
If a particle A, with energy E hits a particle B at rest, and produces n particles $C_{1}, C_{2}, \ldots, C_{n}$ with masses $m_{1}, m_{2}, \ldots, m_{n}$, what is the energy threshold (minimum incident energy $E_{\text {min }}$) for this process to occur (in terms of $m_{A}, m_{B}, m_{1}, \ldots, m_{n}$)?

Exercise 19 Adjoint Dirac Equation

3 Points

Given the Dirac Equation

$$
i \gamma^{\mu} \partial_{\mu} \psi-m \psi=0
$$

show that the adjoint spinor $\bar{\psi} \equiv \psi^{\dagger} \gamma^{0}$ satisfies the adjoint Dirac Equation

$$
i \partial_{\mu} \bar{\psi} \gamma^{\mu}+m \bar{\psi}=0
$$

Exercise 20 Transformations of Bilinear Covariants
6 Points

Recall from the lectures that the transformation matrix for spinors for a Lorentz-Boost in the z direction is represented by:

$$
S_{\mathrm{Lor}}=\mathbf{1}_{4} \cosh \frac{\omega}{2}-\gamma^{0} \gamma^{3} \sinh \frac{\omega}{2}
$$

and

$$
S_{\text {Lor }}^{-1}=\mathbf{1}_{4} \cosh \frac{\omega}{2}+\gamma^{0} \gamma^{3} \sinh \frac{\omega}{2},
$$

where $\cosh \omega=\gamma=\frac{E}{m}, \sinh \omega=\beta \gamma=\frac{|\vec{p}|}{m}$. The analagous transformation matrix for spinors for a rotation in space is represented by:

$$
S_{\text {Rot }}=\exp \left(-\frac{\theta}{2} \gamma^{1} \gamma^{2}\right)=\mathbf{1}_{4} \cos \frac{\theta}{2}-\gamma^{1} \gamma^{2} \sin \frac{\theta}{2}
$$

and

$$
S_{\text {Rot }}^{-1}=\exp \left(+\frac{\theta}{2} \gamma^{1} \gamma^{2}\right)=\mathbf{1}_{4} \cos \frac{\theta}{2}+\gamma^{1} \gamma^{2} \sin \frac{\theta}{2}
$$

(a) Show the invariance of the pseudoscalar bilinear $p=\bar{\psi} \gamma^{5} \psi$ under a Lorentz-Boost as well as under a rotation about an angle θ.
(b) Determine the transformation for the axialvector bilinear $k^{\mu}=\bar{\psi} \gamma^{5} \gamma^{\mu} \psi$ under a Lorentz-Boost as well as under a rotation about an angle θ.
The following identities might help:

- $\gamma^{0} S^{\dagger} \gamma^{0}=S^{-1}$
- $\Lambda^{\nu}{ }_{\mu} \gamma^{\mu}=S^{-1} \gamma^{\nu} S$ for the standard Lorentz transformation matrix Λ.

Using the results from Problem 17 (c), derive the gyromagnetic ratio g of the electron. Note that the magnetic moment of the electron is related to its spin through:

$$
\vec{\mu} \equiv-g \frac{e}{2 m} \vec{S}
$$

Hint: What is the potential energy produced by an external magnetic field \vec{B} in terms of the magnetic moment $\vec{\mu}$?

Exercise 22 Helicity and chirality

5 Points

(a) For the solution of the Dirac equation

$$
u(p)=\sqrt{E+m}\binom{\chi}{\frac{\vec{\sigma} \cdot \vec{p}}{E+m} \chi} \text { with } \chi=(1,0)
$$

show that for the case of a massless particle, applying the helicity operator

$$
\frac{1}{2} \vec{\Sigma} \cdot \hat{p}=\frac{1}{2}\left(\begin{array}{cc}
\vec{\sigma} \cdot \hat{p} & 0 \\
0 & \vec{\sigma} \cdot \hat{p}
\end{array}\right)
$$

is equal to applying the chirality operator

$$
\frac{1}{2} \gamma^{5}=\frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Note that this result is also a good approximation for a massive particle in the high-energy limit, $E \gg m \rightarrow E \simeq p$.
(b) The chirality projection operators $P_{L}=\frac{1}{2}\left(\mathbf{1}-\gamma^{5}\right)$ and $P_{R}=\frac{1}{2}\left(\mathbf{1}+\gamma^{5}\right)$ define the chiral states $u_{L, R}$ (called "left-handed" and "right-handed" states) as $u_{L} \equiv P_{L} u$ and $u_{R} \equiv P_{R} u$. Show that

$$
\begin{gathered}
P_{L} u_{L}=u_{L}, \\
P_{R} u_{R}=u_{R}, \\
P_{L} u_{R}=P_{R} u_{L}=0 .
\end{gathered}
$$

(c) Assume that a spinor u can be written as a sum of its left- and right-handed components, $u=u_{L}+u_{R}$. Then a similar relation holds for \bar{u}. Show that the following equation is valid:

$$
\bar{u} \gamma^{\mu} u=\bar{u}_{R} \gamma^{\mu} u_{R}+\bar{u}_{L} \gamma^{\mu} u_{L},
$$

This implies that chirality is conserved in each vertex; and thus also helicity for the case of massless particles.

