Particle Physics II

Markus Schumacher, Anna Kopp, Stan Lai

Problem Set III

11 November 2014

In-class exercises

Exercise 17 Non-relativistic Limit of the Dirac Equation

(a) Show that the Dirac equation can also be written in this form:

$$\begin{pmatrix} m & \vec{\sigma} \cdot \vec{P} \\ \vec{\sigma} \cdot \vec{P} & -m \end{pmatrix} \psi = i \partial_t \psi,$$

where ψ_A and ψ_B are two-component spinors, and \vec{P} is the momentum operator.

 $\mathit{Hint}:$ Use the Dirac representation of the $\gamma\text{-matrices}.$

(b) In classical mechanics, it can be shown that a charged particle with charge e in the presence of a Lorentz force satisfies the following relations for the scalar and vector potentials $A^0 = U(\vec{x}, t)$ and $\vec{A}(\vec{x}, t)$:

$$\vec{p} = m \frac{d\vec{x}}{dt} + e\vec{A}(\vec{x},t) \quad \text{ and } \quad H = \frac{1}{2m} \left[\vec{p} - e\vec{A}(\vec{x},t) \right]^2 + eU(\vec{x},t)$$

for the mechanical momentum and the Hamiltonian, respectively. In Einstein notation, The scalar and vector potentials are written as a 4-component vector object: $A^{\mu} = (U, \vec{A})$. Thus, the dynamics of a spin-1/2 charged particle interacting with a classical vector field can be expressed by the Dirac equation in part (a), with the substitutions:

$$\vec{P} \to \vec{P} + e\vec{A}$$
 and $E \to E + eA^0$.

Using the time evolution of the two-component spinors (E_{kin} being the kinetic energy of the electron):

$$\psi = \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix} = e^{-i(E_{kin}+m)t} \begin{pmatrix} \phi \\ \chi \end{pmatrix},$$

show that ψ_B can be written in terms of ψ_A as:

$$\psi_B \simeq \frac{\vec{\sigma} \cdot (\vec{P} + e\vec{A})}{2m} \psi_A.$$

Note you can make use of the non-relativistic approximations that $|eA^0| \ll m$ and $E_{kin} \ll m$. (c) Substituting this expression for ψ_B , show that one arrives finally at the Pauli equation:

$$\left(\frac{1}{2m}(\vec{P}+e\vec{A})^2 + \frac{e}{2m}\vec{\sigma}\cdot\vec{B} - eA^0\right)\psi_A = E_{kin}\psi_A$$

where the four-vector potential satisfies $\vec{B} = \vec{\nabla} \times \vec{A}$ and $\vec{E}_{electric} = -\partial_t \vec{A} - \vec{\nabla} A^0$. Hint: You can make use of the following:

- $(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b}) = \vec{a} \cdot \vec{b} + i\vec{\sigma} \cdot (\vec{a} \times \vec{b})$, in the case that $[\vec{a}, \vec{\sigma}] = [\vec{b}, \vec{\sigma}] = 0$
- $\vec{P} = -i\vec{\nabla}$
- $\vec{\nabla} \times (\vec{A}\psi) + \vec{A} \times (\vec{\nabla}\psi) = (\vec{\nabla} \times \vec{A})\psi.$

Homework

Exercise 18 Target Scattering Energy Threshold

If a particle A, with energy E hits a particle B at rest, and produces n particles $C_1, C_2, ..., C_n$ with masses $m_1, m_2, ..., m_n$, what is the energy threshold (minimum incident energy E_{min}) for this process to occur (in terms of $m_A, m_B, m_1, ..., m_n$)?

Exercise 19 Adjoint Dirac Equation

Given the Dirac Equation

$$i\gamma^{\mu}\partial_{\mu}\psi - m\psi = 0$$

show that the adjoint spinor $\bar{\psi} \equiv \psi^{\dagger} \gamma^0$ satisfies the adjoint Dirac Equation

$$i\partial_{\mu}\bar{\psi}\gamma^{\mu} + m\bar{\psi} = 0.$$

Exercise 20 Transformations of Bilinear Covariants

Recall from the lectures that the transformation matrix for spinors for a Lorentz-Boost in the z-direction is represented by:

$$S_{\text{Lor}} = \mathbf{1}_4 \cosh \frac{\omega}{2} - \gamma^0 \gamma^3 \sinh \frac{\omega}{2}$$
$$S_{\text{Lor}}^{-1} = \mathbf{1}_4 \cosh \frac{\omega}{2} + \gamma^0 \gamma^3 \sinh \frac{\omega}{2},$$

and

where
$$\cosh \omega = \gamma = \frac{E}{m}$$
, $\sinh \omega = \beta \gamma = \frac{|\vec{p}|}{m}$. The analogous transformation matrix for spinors for a rotation in space is represented by:

$$S_{\rm Rot} = \exp\left(-\frac{\theta}{2}\gamma^1\gamma^2\right) = \mathbf{1}_4\cos\frac{\theta}{2} - \gamma^1\gamma^2\sin\frac{\theta}{2}$$

and

$$S_{\text{Rot}}^{-1} = \exp\left(+\frac{\theta}{2}\gamma^{1}\gamma^{2}\right) = \mathbf{1}_{4}\cos\frac{\theta}{2} + \gamma^{1}\gamma^{2}\sin\frac{\theta}{2}.$$

- (a) Show the invariance of the pseudoscalar bilinear $p = \bar{\psi}\gamma^5\psi$ under a Lorentz-Boost as well as under a rotation about an angle θ .
- (b) Determine the transformation for the axialvector bilinear $k^{\mu} = \bar{\psi}\gamma^5\gamma^{\mu}\psi$ under a Lorentz-Boost as well as under a rotation about an angle θ .

The following identities might help:

- $\gamma^0 S^{\dagger} \gamma^0 = S^{-1}$
- $\Lambda^{\nu}_{\ \mu}\gamma^{\mu} = S^{-1}\gamma^{\nu}S$ for the standard Lorentz transformation matrix Λ .

6 Points

3 Points

3 Points

Using the results from Problem 17(c), derive the gyromagnetic ratio g of the electron. Note that the magnetic moment of the electron is related to its spin through:

$$\vec{\mu} \equiv -g \frac{e}{2m} \vec{S}.$$

Hint: What is the potential energy produced by an external magnetic field \vec{B} in terms of the magnetic moment $\vec{\mu}$?

Exercise 22 Helicity and chirality

(a) For the solution of the Dirac equation

$$u(p) = \sqrt{E+m} \begin{pmatrix} \chi \\ \frac{\vec{\sigma} \cdot \vec{p}}{E+m} \chi \end{pmatrix} \text{ with } \chi = (1,0),$$

show that for the case of a massless particle, applying the helicity operator

$$\frac{1}{2}\vec{\Sigma}\cdot\hat{p} = \frac{1}{2} \begin{pmatrix} \vec{\sigma}\cdot\hat{p} & 0\\ 0 & \vec{\sigma}\cdot\hat{p} \end{pmatrix}$$

is equal to applying the chirality operator

$$\frac{1}{2}\gamma^5 = \frac{1}{2} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}.$$

Note that this result is also a good approximation for a massive particle in the high-energy limit, $E \gg m \rightarrow E \simeq p$.

(b) The chirality projection operators $P_L = \frac{1}{2}(1 - \gamma^5)$ and $P_R = \frac{1}{2}(1 + \gamma^5)$ define the chiral states $u_{L,R}$ (called "left-handed" and "right-handed" states) as $u_L \equiv P_L u$ and $u_R \equiv P_R u$. Show that

$$P_L u_L = u_L,$$
$$P_R u_R = u_R,$$
$$P_L u_R = P_R u_L = 0.$$

(c) Assume that a spinor u can be written as a sum of its left- and right-handed components, $u = u_L + u_R$. Then a similar relation holds for \bar{u} . Show that the following equation is valid:

$$\bar{u}\gamma^{\mu}u = \bar{u}_R\gamma^{\mu}u_R + \bar{u}_L\gamma^{\mu}u_L,$$

This implies that chirality is conserved in each vertex; and thus also helicity for the case of massless particles.

5 Points