Particle Physics II

Markus Schumacher, Anna Kopp, Stan Lai

Problem Set VI

2/5 December 2014

In-class exercises

Exercise 31 Vertex Corrections and the Magnetic Moment

The interaction of an electron with an electromagnetic field A_{μ} has a vertex correction due to next-to-leading order Feynman diagrams. In particular, for small momentum transfer q^{2}, this is given by:

$$
e \bar{u}_{f}\left\{\gamma_{\mu}\left[1+\frac{\alpha}{3 \pi} \frac{q^{2}}{m_{e}^{2}}\left(\ln \frac{m_{e}}{m_{\gamma}}-\frac{3}{8}\right)\right]-\frac{\alpha}{2 \pi} \frac{1}{2 m_{e}} i \sigma_{\mu \nu} q^{\nu}\right\} u_{i}
$$

where m_{e} is the mass of the electron and m_{γ} is the mass of the virtual photon. The object $\sigma_{\mu \nu}$ is just a compact way to write $\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]$.
Using the Gordon identity

$$
e \bar{u}_{f} \gamma^{\mu} u_{i}=\frac{e}{2 m_{e}} \bar{u}_{f}\left[\left(p_{f}^{\mu}+p_{i}^{\mu}\right)+i \sigma^{\mu \nu}\left(p_{\nu, f}-p_{\nu, i}\right)\right] u_{i}
$$

and equate the term proportional to $i \sigma_{\mu \nu} q^{\nu}$ to the magnetic moment $\vec{\mu}$ of the electron. Show then that the vertex correction yields the following relation for the gyromagnetic ratio of the electron:

$$
\frac{g-2}{2}=\frac{\alpha}{2 \pi}
$$

Homework

Exercise 32 Running Coupling Constants in QED
7 Points
The dependency on the electromagnetic coupling constant α_{EM} on the squared momentum transfer q^{2} is given by:

$$
\alpha_{\mathrm{EM}}\left(q^{2}\right)=\frac{\alpha_{\mathrm{EM}}\left(\mu^{2}\right)}{1-\Pi_{\mathrm{EM}}\left(q^{2}, \mu^{2}\right)},
$$

where μ^{2} is a scalar parameter, and $\Pi_{E M}\left(q^{2}, \mu^{2}=0\right)$ is given by:

$$
\Pi_{\mathrm{EM}}\left(q^{2}, \mu^{2}=0\right)=\sum_{2 m_{f}<|q|} N_{c} Q_{f}^{2} \frac{\alpha}{3 \pi}\left(\ln \frac{q^{2}}{m_{f}^{2}}-\frac{5}{3}\right) .
$$

Here, N_{c} stands for the number of different colours for the different fermion species $\left(N_{c}=1\right.$ for fermions while $N_{c}=3$ for quarks). The index f runs over the different fermions with charge Q_{f}, and the summation occus for those fermions species with masses that satisfy the condition $2 m_{f}<|q|$ (for which pair creation is possible at the given momentum transfer).
In addition, α is the electromagnetic coupling constant in the low energy limit:

$$
\alpha=\alpha_{\mathrm{EM}}\left(q^{2}=0, \mu\right) \simeq \frac{1}{137} .
$$

(a) For momentum transfers that satisfy $2 m_{b}<|q|<2 m_{t}$, show that

$$
\Pi_{\mathrm{EM}}\left(q^{2}, \mu^{2}=0\right)=\frac{\alpha}{3 \pi}(3+R) \ln \frac{q^{2}}{m_{0}^{2}},
$$

where $R=N_{c} \sum_{f=1}^{5} Q_{f}^{2}$ and $m_{0}=0.30 \mathrm{GeV}$ is the effective mean of all fermion masses in question.
(b) Compare the value of α_{EM} for momentum transfer $q^{2}=M_{Z}^{2}$ to the low energy limit α.
(c) What value does R take for momentum transfers that allow top quark pair production?
(d) At what momentum transfer does $\alpha_{\text {EM }}$ diverge?
(Note for higher momentum transfers, $m_{0}=0.94 \mathrm{GeV}$.)

Exercise 33 Running Coupling Constants in QED II
The OPAL Experiment at the Large Electron-Positron Collider measured the dependency of the coupling constant $\alpha_{E M}$ on the momentum transfer in Bhabha Scattering ($e^{+} e^{-} \rightarrow e^{+} e^{-}$) for very small scattering angles (scattering in the forward direction). The following momentum transfer ranges were investigated:

$$
1.81 \mathrm{GeV}^{2} \leq-t \leq 6.07 \mathrm{GeV}^{2}
$$

Recall that the unpolarized squared scattering amplitude for this process is given by:

$$
|\mathcal{M}|^{2}=2 e^{4}\left(\frac{u^{2}+t^{2}}{s^{2}}+\frac{2 u^{2}}{s t}+\frac{u^{2}+s^{2}}{t^{2}}\right) .
$$

(a) Show that the t-channel contribution dominates the scattering process for small angle scattering.
(b) Calculate the effective change of the electromagnetic coupling constant that was measured in the momentum transfer ranges observed:

$$
\Delta \Pi_{\mathrm{EM}}=\Pi_{\mathrm{EM}}\left(t_{\max }\right)-\Pi_{\mathrm{EM}}\left(t_{\min }\right) .
$$

Recall the relation from the previous problem:

$$
\Pi_{\mathrm{EM}}\left(q^{2}, \mu^{2}=0\right)=\sum_{2 m_{f}<|q|} N_{c} Q_{f}^{2} \frac{\alpha}{3 \pi}\left(\ln \frac{q^{2}}{m_{f}^{2}}-\frac{5}{3}\right) .
$$

Deep inelastic electron-proton-scattering can be considered as elastic scattering of an electron with a parton (in the proton).

In the above diagram, the parton carries a fraction x of the proton momentum P. Let the momenta of the incoming and outgoing electron be denoted by k and k^{\prime}, respectively, so that the momentum transfer can be written $q=k-k^{\prime}$.
(a) Show that x satisfies the relation

$$
x_{\mathrm{BJoRKEN}}=\frac{-q^{2}}{2 P \cdot q}
$$

when the transverse momentum of the parton, along with the masses of the partons, electron, and proton in this event can be neglected.
(b) Show that the Lorentz invariant quantity $\nu=\frac{P \cdot q}{M_{\text {proton }}}$ is equal to the energy transfer $\tilde{\nu}=E-E^{\prime}$ of the electron in the rest-system of the proton.
(c) Figure 1 depicts a typical deep inelastic scattering event of an electron with a proton, recorded with the ZEUS Detector at DESY. Here you see the positron coming in from the left with an energy fo 27.5 GeV , and the proton from the right with an energy of 820 GeV . The polar angle is measured with respect to the direction of the proton beam at ZEUS. In this particular event, the electron is scattered at an angle of $\theta_{e}=39.3^{\circ}$, and deposits $E_{e}^{\prime}=166 \mathrm{GeV}$ of energy in the electromagnetic calorimeter.
The following Lorentz-invariant quantities are used to describe the kinematics of deep elastic scattering events.

$$
x=\frac{-q^{2}}{2 P \cdot q} \quad y=\frac{P \cdot q}{P \cdot k} \quad s=(k+P)^{2} \quad Q^{2}=-q^{2}
$$

Derive the relationship between the quantities Q^{2}, x, y and s. Note that s should be fixed for the collision, so that only two degrees of freedom remain. Neglect also all particle masses.
Calculate the values of x and Q^{2} for this particular event at ZEUS.

Figure 1: A ZEUS event display of a deep inelastic scattering event shown in an r - z-projection, an $r-\phi-$ projection, as well as in the η - ϕ-plane. The polar angle is measured with respect to the direction of the proton beam.

