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In-class exercises

Exercise 31 Vertex Corrections and the Magnetic Moment

The interaction of an electron with an electromagnetic field Aµ has a vertex correction due to next-
to-leading order Feynman diagrams. In particular, for small momentum transfer q2, this is given by:
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where me is the mass of the electron and mγ is the mass of the virtual photon. The object σµν is just
a compact way to write i

2
[γµ, γν ].

Using the Gordon identity
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and equate the term proportional to iσµνq
ν to the magnetic moment ~µ of the electron. Show then that

the vertex correction yields the following relation for the gyromagnetic ratio of the electron:
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Homework

Exercise 32 Running Coupling Constants in QED 7 Points
The dependency on the electromagnetic coupling constant αEM on the squared momentum transfer q2

is given by:
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,

where µ2 is a scalar parameter, and ΠEM (q2, µ2 = 0) is given by:
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Here, Nc stands for the number of different colours for the different fermion species (Nc = 1 for
fermions while Nc = 3 for quarks). The index f runs over the different fermions with charge Qf , and
the summation occus for those fermions species with masses that satisfy the condition 2mf < |q| (for
which pair creation is possible at the given momentum transfer).

In addition, α is the electromagnetic coupling constant in the low energy limit:

α = αEM(q2 = 0, µ) ≃
1

137
.

(a) For momentum transfers that satisfy 2mb < |q| < 2mt, show that
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where R = Nc
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f and m0 = 0.30 GeV is the effective mean of all fermion masses in
question.

(b) Compare the value of αEM for momentum transfer q2 = M2
Z to the low energy limit α.

(c) What value does R take for momentum transfers that allow top quark pair production?

(d) At what momentum transfer does αEM diverge?
(Note for higher momentum transfers, m0 = 0.94 GeV.)

Exercise 33 Running Coupling Constants in QED II 6 Points
The OPAL Experiment at the Large Electron-Positron Collider measured the dependency of the cou-
pling constant αEM on the momentum transfer in Bhabha Scattering (e+e− → e+e−) for very small
scattering angles (scattering in the forward direction). The following momentum transfer ranges were
investigated:

1.81GeV2 ≤ −t ≤ 6.07GeV2.

Recall that the unpolarized squared scattering amplitude for this process is given by:
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(a) Show that the t-channel contribution dominates the scattering process for small angle scattering.

(b) Calculate the effective change of the electromagnetic coupling constant that was measured in the
momentum transfer ranges observed:

∆ΠEM = ΠEM(tmax) − ΠEM(tmin).

Recall the relation from the previous problem:
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Exercise 34 Kinematics of Deep Inelastic Electron-Proton Scattering 7 Points

Deep inelastic electron-proton-scattering can be considered as elastic scattering of an electron with a
parton (in the proton).

W
Quark

In the above diagram, the parton carries a fraction x of the proton momentum P . Let the momenta
of the incoming and outgoing electron be denoted by k and k′, respectively, so that the momentum
transfer can be written q = k − k′.

(a) Show that x satisfies the relation

xBjorken =
−q2

2P · q

when the transverse momentum of the parton, along with the masses of the partons, electron,
and proton in this event can be neglected.

(b) Show that the Lorentz invariant quantity ν = P ·q
Mproton

is equal to the energy transfer ν̃ = E − E′

of the electron in the rest-system of the proton.

(c) Figure 1 depicts a typical deep inelastic scattering event of an electron with a proton, recorded
with the ZEUS Detector at DESY. Here you see the positron coming in from the left with an
energy fo 27.5 GeV, and the proton from the right with an energy of 820 GeV. The polar angle
is measured with respect to the direction of the proton beam at ZEUS. In this particular event,
the electron is scattered at an angle of θe = 39.3 ◦, and deposits E′

e = 166GeV of energy in the
electromagnetic calorimeter.

The following Lorentz-invariant quantities are used to describe the kinematics of deep elastic
scattering events.

x =
−q2

2P · q
y =

P · q

P · k
s = (k + P )2 Q2 = −q2

Derive the relationship between the quantities Q2, x, y and s. Note that s should be fixed for the
collision, so that only two degrees of freedom remain. Neglect also all particle masses.

Calculate the values of x and Q2 for this particular event at ZEUS.



Figure 1: A ZEUS event display of a deep inelastic scattering event shown in an r-z-projection, an r-φ-
projection, as well as in the η-φ-plane. The polar angle is measured with respect to the direction
of the proton beam.


