Particle Physics II

Markus Schumacher, Anna Kopp, Stan Lai

Problem Set IX

13 January 2015

In-class exercises

Exercise 46 Drell-Yan Production in pp Collisions

Let's have a closer look at Drell-Yan production, which describes the scattering process $p p \rightarrow \ell^{+} \ell^{-}$, which is mediated by a virtual photon. Here, ℓ refers to a light lepton (e or μ). You know that the parton-level cross-section (where you consider the quarks as initial state particles) can be calculated from QED, and is given by:

$$
\sigma_{q \bar{q} \rightarrow \ell^{+} \ell^{-}}=\frac{1}{N_{C}} Q_{q}^{2} \frac{4 \pi \alpha^{2}}{3 \hat{s}} .
$$

Note this expression is shown in terms of $\hat{s}=x_{1} x_{2} s$, which varies for each $p p$ collision (while s of course stays constant). The factor $N_{C}=3$ averages over the 9 different colour configurations $c_{i}^{\dagger} c_{j}$ in the initial state.
(a) Since the variable \hat{s}, or alternatively x_{1}, x_{2} vary from collision to collision, find an expression for the differential cross-section

$$
\frac{d^{2} \sigma}{d x_{1} d x_{2}}
$$

in terms of the parton distribution functions for the incoming quarks. Don't forget to consider all possible quark flavours.
(b) Relate the variables x_{1} and x_{2} to the experimental observables $M_{\ell \ell}$ and $y_{\ell \ell}$ (the invariant mass and the rapidity of the combined $\ell^{+} \ell^{-}$system).
(c) Now make a change of variables to give an expression for the differential cross-section in terms of M and y (we omit the obvious subscripts now) instead of x_{1} and x_{2} :

$$
\frac{d^{2} \sigma}{d M d y} .
$$

Here you can use the Jacobian transformation:

$$
d M d y=J d x_{1} d x_{2}
$$

where the Jacobian can be calculated as a 2 x 2 determinant:

$$
J=\left|\begin{array}{ll}
\frac{\partial y}{\partial x_{1}} & \frac{\partial y}{\partial x_{2}} \\
\frac{\partial M}{\partial x_{1}} & \frac{\partial M}{\partial x_{2}}
\end{array}\right|
$$

(d) Remove any remaining dependence on the variable s in the expression and show that the differential cross-section $\frac{d \sigma}{d M}$ has a $\frac{1}{M^{3}}$ dependence.

Homework

Exercise 47 Hadron Collisions and Rapidity

12 Points
The rapidity y is a useful kinematic variable for particles produced in inelastic hadron-hadron collisions (such as $p p \rightarrow X$ at the LHC). It is usually expressed as:

$$
\begin{equation*}
y=\frac{1}{2} \ln \left(\frac{E+p_{L}}{E-p_{L}}\right) \tag{1}
\end{equation*}
$$

where $p_{L}=p_{z}$ is the longitudinal momentum along the z-axis (or scattering axis, parallel to the initial particle momentum axis) and E is the energy of the particle in the final state. Other kinematic variables for final state particles include the transverse momentum $p_{T}=\sqrt{p_{x}^{2}+p_{y}^{2}}$ and the mass of the particle m.
Mathematically, the rapidity can also describe Lorentz-transformations along the scattering z-axis with $\beta=p_{L} / E$:

$$
\begin{aligned}
E^{\prime} & =E \cosh y-p_{L} \sinh y \\
p_{L}^{\prime} & =p_{L} \cosh y-E \sinh y
\end{aligned}
$$

(a) Show that the relationship $\tanh y=\beta$ holds, by comparing with the standard Lorentztransformation rules for boosts along the longitudinal z-axis.
(b) Using the results from part (a), confirm that equation (1) holds.
(c) How does the rapidity of a particle change under a Lorentz-boost in the z-direction (as a function of β)? Express your answer in an equation relating y^{\prime} and y. How does the rapidity difference change between two particles under such a Lorentz-boost?
(d) Which scattering angle and which rapidity correspond to a longitudinal momentum $p_{L}=0$? Show also that $y\left(-p_{L}\right)=-y\left(p_{L}\right)$.
(e) Show that the rapidity can also be written as

$$
y=\ln \left(\frac{E+p_{L}}{\sqrt{p_{T}^{2}+m^{2}}}\right) .
$$

(f) To determine the maximum and minimum values for the rapidity y in a collision of two particles at energy $E_{C M}=\sqrt{s}$ in the centre-of-mass system, each with mass m. What is the maximum longitudinal momentum that the final state particles can have (in the limit $m \ll \sqrt{s}$)? Show that the maximum and minimum values of the rapidity satisfy:

$$
y_{\max }=-y_{\min }=\frac{1}{2} \ln \frac{s}{m^{2}} .
$$

(g) The differential cross section for the production of hadrons for small values of p_{L} in the final state can be expressed as:

$$
d^{2} \sigma=\pi F_{p_{T}} d p_{T}^{2} V\left(d p_{L} / E\right)
$$

where V is a constant, $F_{p_{T}}$ varies slowly with p_{T} (and can be treated as a constant in integration). Find the expression for $\frac{d p_{L}}{d y}$. Integrate $d^{2} \sigma$ over p_{T}^{2} and show that the quantity $\frac{d \sigma}{d y}$ is a constant. Draw the distribution of $\frac{d \sigma}{d y}$ as a function of y between $y_{\text {min }}$ and $y_{\text {max }}$.
(h) The average particle multiplicity in the production of hadrons $\langle n\rangle$ can be obtained by integrating $\frac{d \sigma}{d y}$ over y. How does the average particle multiplicity $\langle n\rangle$ depend on the centre-of-mass energy \sqrt{s} ?
(i) Another used quantity in hadron-collider is the pseudorapidity defined as:

$$
\eta=-\ln \tan \left(\frac{\theta}{2}\right),
$$

where θ is the scattering angle from the longitudinal z-axis. Show that the pseudorapidity and the rapidity are identical for massless particles.

Exercise 48 Scaling of α_{s}

4 Points

(a) What is the value of α_{s} at momentum transfers of 10 GeV and 100 GeV , assuming $\Lambda_{Q C D}=300$ MeV . What happens when we consider $\Lambda_{Q C D}=100 \mathrm{MeV}$ and $\Lambda_{Q C D}=1 \mathrm{GeV}$?
(b) What terms describe the regimes $Q^{2} \rightarrow \infty$ and $Q^{2} \rightarrow \Lambda_{Q C D}^{2}$? What consequences do these regimes have for the calculation of cross-sections for QCD processes?

Exercise $49 t \bar{t}$ Production at the Tevatron and at the LHC
4 Points
The dominant production mechanism for top quark production at hadron colliders is through the production of top quark pairs ($t \bar{t}$). This occurs through quark-antiquark annihilation ($q \bar{q} \rightarrow t \bar{t}$) or through gluon fusion $(g g \rightarrow t \bar{t})$.
(a) Draw the leading order diagrams for the processes $q \bar{q} \rightarrow t \bar{t}$ and $g g \rightarrow t \bar{t}$.
(b) Assuming that the $t \bar{t}$ pair is produced at threshold (no kinetic energy for the final state particles in the centre-of-mass frame), how large must \hat{s} (the square of the parton-parton centre-of-mass energy) be?
(c) Compute the momentum fraction x for the partons needed to produce a top quark pair $t \bar{t}$ at threshold at the Tevatron ($p \bar{p} \rightarrow t \bar{t}$ at $\sqrt{s}=1.96 \mathrm{TeV}$) and at the LHC ($p p \rightarrow t \bar{t}$ at $\sqrt{s}=8 \mathrm{TeV}$). Assume that $x=x_{1}=x_{2}$ for this problem.
(d) Which of the two production channels dominate at the Tevatron? Which one at the LHC?

