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Abstract
This thesis investigates the determination of the anomalous magnetic moment of the
τ -lepton in PbPb collisions at the LHC using Symbolic Regression. The anomalous mag-
netic moment aℓ for electrons and muons is among the most precisely measured physical
quantities in the standard model (SM) of particle physics and could be sensitive to phe-
nomena that are not explained by the SM. For the τ -lepton, its short lifetime prevents the
measurement of the anomalous magnetic moment through the same methods as for the
electron and muon, thus a different measurement technique is needed. The γγ → ττ pro-
cess is observed in ultraperipheral PbPb collisions at the Large Hadron Collider (LHC),
where the anomalous magnetic moment of the τ -lepton aτ influences the production cross
section as well as kinematic observables. One interesting class of kinematic quantities
for this purpose is denoted as optimal observables. In this thesis, two versions of the
optimal observables for aτ are calculated. One depends on the helicities and parton level
observables, it is called fully polarized optimal observable OOfull.pol. The second averages
over incoming and outcoming particle helicities and is called the helicity averaged optimal
observable OOhel.avg.. The simulation used in this thesis was generated to match the integ-
rated luminosity of 2.0 nb−1 and centre of mass energy of 5.02 TeV from the data recorded
on PbPb-collisions by the ATLAS experiment in 2015 and 2018. Events are selected in
the signal region defined by one τ -lepton decaying leptonically (with a muon in the final
state) and one decaying hadronically. A machine-learning method called Symbolic Regres-
sion is applied to predict the above-mentioned optimal observables. This method, carried
out with the PySR tool, yields interpretable models in the form of analytic expressions
of given input variables. A hyperparameter optimization was performed on models for
OOhel.avg.. The best constraint on aτ yielding a confidence interval of [−0.026, 0.012] at
95% confidence level was achieved with a model, trained on OOfull.pol. and using final state
kinematic observables as input. This result was extracted using the maximum likelihood
method and outperforms the observable currently used in experiments, pµ

T , by 4.6% for
the simulated data.
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Zusammenfassung
Diese Arbeit untersucht die Bestimmung des anomalen magnetischen Moments des τ -
Leptons in PbPb-Kollisionen am LHC mit Hilfe von Symbolischer Regression. Das ano-
male magnetische Moment aℓ für Elektronen und Myonen gehört zu den am genauesten
gemessenen physikalischen Größen im Standardmodell (SM) der Teilchenphysik und kön-
nte empfindlich für Phänomene sein, die nicht durch das SM erklärt werden. Für das τ -
Lepton ist es aufgrund seiner kurzen Lebensdauer nicht möglich, das anomale magnetische
Moment mit denselben Methoden wie für das Elektron und das Myon zu messen, weshalb
eine andere Messtechnik erforderlich ist. Der γγ → ττ -Prozess wird in ultraperipheren
PbPb-Kollisionen am Large Hadron Collider (LHC) beobachtet, wo das anomale magnet-
ische Moment des τ -Leptons aτ sowohl den Produktionsquerschnitt als auch kinematische
Messgrößen beeinflusst. Eine für diesen Zweck interessante Klasse von kinematischen
Observablen wird als optimale Observablen bezeichnet. In dieser Arbeit werden zwei Ver-
sionen der optimalen Observablen für aτ berechnet. Eine davon verwendet die Helizitäten
und Partonlevel-Observablen, die als vollständig polarisierte (fully polarised) optimale
Observable OOfull.pol. bezeichnet wird. Die zweite Version mittelt über die Helizitäten
der ein- und austretenden Teilchen und wird als helizitätsgemittelte (helicity averaged)
optimale Observable OOhel.avg. bezeichnet. Die in dieser Arbeit verwendete Simulation
erstellt, um der integrierten Luminosität von 2, 0nb−1 und der Schwerpunktsenergie von
5, 02TeV aus den vom ATLAS-Experiment in den Jahren 2015 und 2018 aufgezeichneten
Daten zu entsprechen. Die Ereignisse werden in der Signalregion ausgewählt, die durch
ein leptonisch zerfallendes τ -Lepton (mit einem Myon im Endzustand) und ein hadronisch
zerfallendes definiert ist. Eine Methode des maschinellen Lernens namens Symbolische
Regression wird angewandt, um die oben genannten optimalen Observablen vorherzus-
agen. Diese Methode, die mit dem PySR-Tool durchgeführt wird, liefert interpretierbare
Modelle in Form von analytischen Ausdrücken für gegebene Eingangsvariablen. Eine
Hyperparameter-Optimierung wurde für Modelle für OOhel.avg. durchgeführt. Die be-
ste Einschränkung für aτ mit einem Konfidenzintervall von [−0, 026, 0, 012] bei einem
Konfidenzniveau von 95%, wurde mit einem Modell erreicht, das auf OOfull.pol. trainiert
wurde und kinematische Endzustandsobservablen als Eingabe verwendet. Dieses Ergebnis
wurde mit der Maximum-Likelihood-Methode extrahiert und führt zu einer verbesserung
gegenüber der derzeit in Experimenten verwendete Observable pµ

T von 4, 6% für die sim-
ulierten Daten.
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Introduction

Probing the microcosmos with modern technologies has been a quest in high-energy phys-
ics for decades. The standard model (SM) of particle physics [1, 2, 3] is currently the
best theory describing experimental observations on a subatomic level. It describes the
elementary particles that makeup matter and the four fundamental interactions. This
theory was completed with the discovery of the Higgs boson in 2012 by the ATLAS and
CMS experiments at the Large Hadron Collider [4, 5]. There are however phenomena ob-
served in experiments, that the standard model is not able to predict, such as dark energy
[6] or the baryon asymmetry of the universe [7]. Therefore modern particle physics aims
towards hints that indicate Beyond Standard Model physics.

The anomalous magnetic moment aℓ of charged leptons ℓ is a quantity with high sens-
itivity towards such effects [8]. For electrons and muons, it is under the most precisely
known physical properties [9, 10] the latter one reporting a record tension of 4.2σ with its
prediction [11]. This is a promising hint at new physics, that motivates further research
into the topic as a potential source of new concepts for theories beyond the SM. In theory,
the anomalous magnetic moment aτ of the τ -lepton should yield the highest sensitivity
for new physics [8]. However, the high mass and resulting short lifetime of the τ -lepton
prevents its direct measurement by methods used for the electron or muon, to a precision
that challenges its prediction of aτ = 0.00117721(5) by the Standard Model [12]. The
most precise current measurement of aτ was conducted by the DELPHI collaboration
[13] at the Large Electron Positron (LEP) collider to be −0.052 < aτ < 0.013 at 95%
confidence level. This measurement cannot compete with the precision of the available
prediction and therefore is not sufficient in testing the Standard Model.

In this thesis, a new method of extracting constraints on measurements of aτ is invest-
igated, using simulated data to match the measurements of the γγ → ττ process in
ultraperipheral PbPb collisions by the ATLAS experiment at the Large Hadron Collider
(LHC) [14]. The used data is simulated to match an integrated luminosity of 2.0 nb−1

and centre of mass energy of 5.02 TeV from the data taken at the ATLAS experiment in
2015 and 2018 [15]. This thesis uses the following decay mode combinations of the two
τ -leptons: one decays leptonically with a muon and two neutrinos in the final state while
the other decays into a charged pion, up to two neutral pions and one neutrino in the final
state. In heavy ion collisions, a high photon flux is observed from the electromagnetic fields
of the nuclei that pass each other with impact parameters larger than twice their radius.
This photon flux results in light-by-light scattering that includes ℓℓ production [16]. The
cross-section of these processes scales with the fourth power of the proton number Z = 82
of the lead nuclei. In the τ -lepton production, the twice present vertex γττ is sensitive
to the anomalous magnetic moment aτ due to its influence on the photon-lepton coupling.

Current methods to extract constraints on aτ use observables from final state particle
kinematics such as pµ

T of a detected final state muon from the τ -decay. Maximum like-
lihood fits are used on the observed distribution to estimate aτ . The concept of optimal
observable is a way of determining a parameter such as aτ with maximised sensitivity [17,
18, 19]. They depend on matrix element calculations which in turn depend on parton-
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level observables and helicities. Thus two optimal observables can be formalised: one
that assumes helicities are known and is calculated for each event, it is called the fully
polarised optimal observable OOfull.pol., and one that averages the possible helicity com-
binations, called the helicity averaged optimal observable OOhel.avg., which is valid for all
events equally [20]. The first is not usable in experiments, because helicities are difficult
to reconstruct from final state kinematics.

The goal of this thesis is to use Machine Learning to learn optimal observables from
particle kinematic observables. In contrast to many current trends to use non-interpretable
neural networks, that can achieve great precision in modelling a problem from data, an-
other method called Symbolic Regression is employed. This method learns models in the
form of analytical expressions, by using a genetic algorithm that evolves populations of
models over a number of generations via random mutations. The tool used for this study
is PySR [21] by Miles Cranmer [22]. The observable OOhel.avg. will be learned from its par-
ton observables as variables to conduct a small hyperparameter search over some options
of PySR to gather an understanding of its behaviour. The results from this optimisation
will be transferred to the regression of OOfull.pol. from final state kinematic observables
to obtain models applicable to experimental data. The sensitivity of different models will
be compared by performing maximum-likelihood analysis to obtain confidence intervals
on aτ .

The structure of this Investigation is as follows: chapter 1 introduces the theoretical
background that this study relies on, focusing on the calculation of the γγ → ττ process.
The representative experimental setup, consisting of the Large Hadron Collider and the
ATLAS experiment, for which data is simulated will be explained in chapter 2. Chapter
3 introduces the concept of optimal observables and how they are used for aτ in partic-
ular. The Symbolic regression tool PySR is presented in chapter 4 and its algorithm to
learn analytical expressions is explained in detail. Chapter 5 will describe the statistical
analysis method of maximum likelihood that is used for extracting constraints on aτ from
observables. The data simulation process and tools involved are explained in Chapter
6. The results from learning optimal observables are discussed in chapter 7. The entire
thesis will be summarised in chapter 8.
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1 Theoretical background

This chapter will concisely introduce the basic physical principles necessary for this thesis.
The first section 1.1 will give a brief overview of the general structure of the standard
model of particle physics (SM). Section 1.2 describes the phenomenon of anomalous mag-
netic moments in leptons that is being investigated. the last section 1.3 will focus on the
γγ → ττ process that this thesis studies, introducing the theory behind the photon-lepton
coupling and defining the signal region of τ -lepton decay products that are relevant.

1.1 The Standard Model of Particle Physics
The standard model of particle physics [1, 2, 3] is to this day the best theory to describe
the world at a subatomic level and since its inception, it was able to predict many dis-
coveries like the W/Z bosons [23, 24] or the top quark [25]. Its core components can
be seen in Figure 1.1, which are the fundamental particles we currently know to exist.
It is the culmination of decades of experimental and theoretical research work, to find
a universally applicable theory by describing particles as excitations of quantum fields
[26] and their interaction via the three forces electromagnetic, strong and weak interac-
tion, described by quantum-electrodynamics (QED), quantum-chromodynamics (QCD)
and quantum flavourdynamics (QFD)[27].

Figure 1.1: The standard model of particle physics with quarks, leptons and gauge-bosons
and the Higgs field [28].

The particles we know today are separated into two groups. The fermions, which make up
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the matter we encounter in our day-to-day life but also exotic matter that is only found in
the early universe or inside of colliders. The second group are the bosons, three of which
mediate the interaction between other particles and the fourth is the famous Higgs boson,
needed to explain massive particles in the SM. These groups and their basic properties
will be discussed in the following sections. Spin is an intrinsic property of elementary
particles described as quantized angular momentum. It has a direction and an associated
quantum number.

For this thesis the concept of helicity is important. Helicity is defined as the projection
of the spin vector onto the vector of three-dimensional momentum [26].

h = p⃗s⃗ (1.1)
A particle with spin 1

2 may have helicities of h = +1
2 or h = −1

2 . It is a conserved property
since momentum is also conserved. The helicities of incoming particles in any interaction
will therefore influence the helicities of the outgoing particles. By continuation, helicities
will influence the matrix elements and cross-sections of processes that are described by
quantum field theories.

1.1.1 Fermions

Fermions are what make up matter in our universe as seen in figure 1.1. They have
antiparticle counterparts with inverted charges. Fermions have a spin of 1

2 and therefore
obey Fermi-Dirac statistics, which means they behave according to the Pauli-principle
and are indistinguishable [29]. They also have half-integer isospin IW enabling them
to interact via the weak force through the W ± bosons and weak charge QW for neutral
current interactions of the weak force via the Z boson. There are three families of fermions,
growing progressively heavier to the right of figure 1.1 [27]. Two of four species of fermions
make up the quarks that have charges −1

3 or 2
3 . They are also the only fermions with a

colour charge out of red, green or blue, enabling them to interact via the strong force,
described by quantum chromodynamics (QCD). The other two species are called the
leptons. There are the charged leptons, consisting of the electron, the muon and the
τ -lepton. The electron has a mass of

0, 51099895000(15) MeV, (1.2)
and is still stable. The muon has a mass of

mµ = 105, 6583755(23) MeV (1.3)
resulting in a lifetime of

τµ = 2, 1969811(22) × 10−6 s (1.4)
and decays via the weak force. The τ -lepton has a mass and lifetime of

mτ = 1776, 86(12) MeV (1.5)
ττ = 290, 3(5) × 10−15 s (1.6)

[30] and therefore decays very rapidly. Each of them has a corresponding neutrino, which
make up the second lepton species. Neutrinos are not charged, almost massless, and
interact only via the weak force [27]. Neutrinos are often produced in processes including
other leptons of the same family, where they ensure the conservation of lepton flavour.
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1.1.2 Bosons

There are 5 kinds of vector bosons that all have a spin of 1, they are called the gauge
bosons and mediate one of three fundamental forces [27]. Gluons couple to the quarks
via colour and anti-colour, acting as mediators for the strong force. They are electrically
neutral and have no mass. Photons are bosons that couple to all charged particles and
mediate for electromagnetic interaction via the electrical charge Q. They are electrically
neutral themselves and do not have a colour charge or mass. The W ±/Z- bosons act as
mediators for the weak force and couple to all fermions via weak charge QW and weak
isospin IW , they do not have colour charge. The W ± bosons have a charge of ±1, a
weak isospin of IW = ±1 and a mass of 80.377(12) GeV, while the Z boson is electrically
neutral, has a weak isospin of IW = 0 and a mass of 91.1876(21) GeV [30]. The only
scalar boson with a spin of 0 is the Higgs particle that was discovered in 2012 [4, 5], it
corresponds to the Higgs field, and through interaction with it, particles gain their masses.
The Higgs bosons mass is 125, 25(17) GeV, it is electrically neutral but interacts weakly.

Observations that are not described by the SM include dark energy [6], the neutrino
masses [31] or quantum gravity [32]. We can test the ability of the SM to describe reality
by measuring particle properties with precisions close to their predictions. The deviation
of an experimental result to the underlying theory can therefore be quantified, which if
significant, indicates new theories beyond the standard model (BSM).

1.2 Anomalous magnetic dipole moments of leptons
Every elementary particle that is electromagnetically charged and has a spin must have
a magnetic moment as an intrinsic property. This influences the behaviour of particles
inside electromagnetic fields as they will experience a force described by electrodynamics.
The magnetic moment of leptons µ⃗ is proportional to the spin and the gyromagnetic factor
g and is defined as follows:

µ⃗ = g
e

2m
s⃗ (1.7)

where e is the elementary charge and m the mass of the lepton. Using the Dirac- and
Pauli-equations together with the Gordon decomposition [29], the gyromagnetic factor
is predicted to be g = 2 at Leading orders of the perturbative extension of QED. The
anomalous magnetic moment of the lepton henceforth called aℓ, is defined as

aℓ = g − 2
2 . (1.8)

Higher order corrections yield non-vanishing values of aℓ. The QED correction is aℓ = 2,
while other contributions like QCD have a smaller influence.
Influences from beyond the Standard Model (BSM), also manifest as a term aℓ(BSM) in
aℓ. This term could couple (and therefore would be proportional) to the mass of a lepton
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for supersymmetric BSM theories (SUSY) [8].

aℓ(BSM) ∝ m2
ℓ

,
Λ2 (1.9)

where Λ denotes the energy scale at which the BSM effects contribute. Potential BSM
physics from SUSY theories will be most notable for the τ -lepton. Because it is the
heaviest lepton it has a high potential for sensitivity towards new physics.
Most recent experiments at the Fermilab National Accelerator Laboratory have shown a
discrepancy between the measurements of aµ for the muon [10] and the SM prediction of
4.2σ [11], which is by far the strongest hint for BSM contributions currently. But efforts
to measure aτ to a precision that challenges the SM prediction [12] of

aSM
τ = 0.00117721(5)

have so far been challenging due to the short lifetime of the τ -lepton. The best measure-
ment stems from the Large Electron Positron Collider (LEP) by the DELPHI Collabora-
tion in 2004[13]:

−0.052 < aτ < 0.013,

at 95% confidence level. The most recent measurements have been carried out by the AT-
LAS collaboration [33]. Results from the L3 and OPAL collaborations are also presented
[34, 35]:

−0.057 < aAT LAS
τ < 0.024,

−0.068 < aOP AL
τ < 0.065,

−0.052 < aOP AL
τ < 0.058

These are still an order of magnitude away from the SM prediction.

1.3 The γγ → ττ process
In this thesis, the light scattering process in which two τ -leptons are produced will be
investigated. This process occurs via electromagnetic interaction, where non vanishing
values of aτ will alter the cross-section and the kinematics of the τ -lepton in the final
state. The contributing Feynman diagrams for the process are shown in figure 1.2. The
(γγτ) vertex appearing in the γγ → ττ makes it sensitive to changes in aτ .

γ, p1

γ, p2

τ+, p3

τ−, p4

δaτ

δaτ

γ, p1

γ, p2

τ−, p3

τ+, p4

δaτ

δaτ

Figure 1.2: The Feynmann diagram for the γγ → ττ process at leading orgers of
QED(Quelle).
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1.3.1 Photon-Fermion coupling

The amplitude M for the γγ → ττ process can be calculated from the Feynman diagrams
for t- and u-channel process depicted in figure 1.2. With photon momenta p1, p2 and τ+

and τ− momenta p3 and p4 respectively [36, 37]. The helicities {λ1, λ2, λ3, λ4} matching
to the momenta as variables are also needed.

M = (−i)ϵ1µ(λ1)ϵ2ν(λ2)ū(p3, λ3)
iΓ(γττ)µ(p3, pt))

i(pt + mτ )
t − m2

τ + iϵ
iΓ(γττ)ν(pt, −p4)

+iΓ(γττ)ν(p3, pu)) i(pu + mτ )
u − m2

τ + iϵ
iΓ(γττ)ν(pu, −p4)

ν(p4, λ4) (1.10)

where the following relations are used: pt = p2 − p4 = p3 − p1 and pu = p1 − p4 = p3 − p2.
There are the polarization vectors for the photons ϵ1(λ1), ϵ2(λ2), the spinors of the anti-
τ -lepton and the τ -lepton ū(p3, λ3) and v(p4, λ4) and the mandelstamm variables u = p2

u

and t = p2
t . The term of i(pt+mτ )

t−m2
τ +iϵ

is identified as the τ -lepton propagator. The vertex
function iΓγττ

µ (p′, p) with p′ being the incoming and p being the outgoing lepton momenta
and q = p′ − p the momentum transfer, can be written as:

iΓγττ
µ (p′, p) = −ie

γµF1(q2) + i

2mτ

σµνqνF2(q2) + 1
2mτ

γ5σµνqνF3(q2)
 (1.11)

with the spin tensor σmuν = i
2 [γµ, γν ], where γµν refer to the Dirac-matrices. F1(q2) = 1 is

the Dirac Factor. The Pauli form factor of the lepton F2(q2), connects to the anomalous
magnetic moment as al = g−2

2 = F2(0). F3(q2) denotes the electric dipole form factor that
connects to the dipole moment dℓ via F3(q2) = dℓ

2mτ

e
.

1.3.2 Decay of the τ -lepton

The average lifetime of τ -leptons is ττ = 2.903 × 10−13s [30] resulting in a decay length
l = βγcττ = 87.03 × 10−6m [30], which is too short to reach current detectors in most
experimental setups. τ -leptons are therefore identified only by their decay products. The
τ -lepton decay occurs via the weak interaction and is categorised into two groups of
decay modes. Either the τ -lepton decays into lighter leptons and two neutrinos, which
is called leptonic decay or into hadrons - mainly pions or Kaons - and one neutrino,
which is denoted as hadronic decay. The presence of neutrinos in the decay ensures the
conservation of lepton number [27]. In table:1.1 the most common decay modes and their
branching ratio for the τ -lepton are listed. Hadronic decays make up around 65% of the
decays, whereas leptonic decays are only around 35%. Decays with one charged particle
(hadronic or leptonic), among the final state particles, account for the majority of decays
with 80%, also denoted as 1-prong decay, while decays with 3 charged particles amount
to 20%, also denoted as 3-prong decay [30].
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decay mode branching ratio (%)
π−π0ντ 25.494 ± 0.089
µ−ν̄µντ 17.394 ± 0.038
e−ν̄eντ 17.817 ± 0.040
π−ντ 10.817 ± 0.051
π−2π0ντ 9.260 ± 0.096
2π−π+ντ 8.987 ± 0.051

Table 1.1: Most dominant τ decay modes and their branching ratios [30].

This thesis focuses on the decay modes µ−ν̄µντ and π−nπ0ντ and n = 0, 1, 2. We also
allow for charge conjugated cases since there is one τ -lepton and one anti-τ -lepton in the
γγ → ττ process. In total, the signal region used in this thesis is µ±π±nπ0 also called
"one muon and one track" (1M1T) in the final state particles that are observed.
With this signal region a total branching ratio for µ−π+nπ0 and its charge conjugated
case of

BR1M1T = 2 · BRµ−(BRπ− + BRπ−π0 + BRπ−2π0) = 0.1549 (1.12)

is covered.
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2 The experimental setup

This thesis uses simulated data to investigate the potential use of observables from
machine learning. These simulations emulate events that might occur in studying the
γγ → ττ process inside a detector at the European Organisation for Nuclear Research
(CERN) [38]. The detector considered for measuring the collision products is the AT-
LAS detector [14], one of the four large detectors placed around the interaction points of
the Large Hadron Collider (LHC) [39]. This chapter introduces concepts needed for the
investigation of collider-simulated data. Section 2.1 presents the LHC and section 2.2 in-
troduces coordinate systems of the ATLAS detector. Ultraperipheral heavy ion collisions
are discussed in more detail in section 2.3.

2.1 High energy physics experiments at the LHC
The LHC [39, 40] uses electric fields alternating at high frequencies to accelerate charged
particles and magnetic fields to steer them along defined paths and create a beam consist-
ing of separated bunches of particles. These bunches are initialised by a linear accelerator
and then sent to several pre-accelerator rings before continuing to the largest one where
they reach their ultimate collision velocity within less than 1% of the speed of light c.
Superconducting magnets are used to guide the beam along the accelerator, for aligning
the beam for collision, and for focusing and controlling beam position. They operate at
temperatures near the absolute 0K and produce fields around 8T. Bunches are tightly
packed with particles and are guided to collide at specific points around the accelerator
where experiments are set up.

At the LHC there are four points where these beams are brought into collision, they
mark the places where the Experiments at the LHC are located: ATLAS, CMS, LHC-b
and ALICE [41, 42, 43, 44]. The LHC is currently running at centre-of-mass energies of√

s = 13.6 TeV for pp collissions with a peak luminosity of 22 × 10−33 cms−1 [45]. For
run 2 from 2015 to 2018. The pp collision data at amounts to an integrated luminosity
of 147.0fb−1. Ultraperipheral PbPb collisions are used to generate γγ events. PbPb data
was collected at

√
s = 5.0 TeV and to an integrated Luminosity of 1.76nb−1 for run 2

[46]. The data collected during run 1 and run 2 in 2015 and 2018 for PbPb collisions at
the LHC amounts to an integrated Luminosity of L = 2.0 nb−1 [15], which is considered
in this thesis.

2.2 Coordinate systems and kinematics
Detectors in high energy physics (HEP) are devices, capable of measuring almost all of the
collision products and their decay products, with a solid angle of 4π. They reconstruct
the paths particles take and their energies on small time scales.
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The ATLAS detector at the LHC has a cylindrical shape, with a diameter of 25m, 44m in
length and weighing almost 7000 tons [14]. It has an inner detector with a radius of 1.2 m
inside a 2 T solenoid magnetic field, it is dedicated to capturing tracking information.
The calorimeters that extend from around the inner detector to about 4 m, measure the
energy deposited by electrons, photons and hadrons. The muon system is the outermost
and largest part, immersed in an air-core toroidal magnetic field.
The Coordinate system of the ATLAS detector is a righthanded, cylindrical system. The
x-axis is pointed towards the centre of the LHC. The direction of the beam in a coun-
terclockwise motion defines the z-axis, with the azimuthal angle θ measured against this
beam axis. The x-y or transverse plane defines the radial coordinate r and the polar angle
ϕ is measured from the x-axis. In the following definitions for kinematics, natural units
have been used with ℏ = 1 and c = 1 for the reduced plank constant ℏ and the speed of
light c. The coordinate system is shown in figure 2.1.

Figure 2.1: The coordinate system of the ATLAS detector [47], which will be used in this
thesis.

In this coordinate system, the incoming photons in the rest frame of the γγττ system will
have the four-momenta

p⃗γ1 = (E, 0, 0, E), (2.1)
p⃗γ2 = (E, 0, 0, −E), (2.2)

with a center of mass energy of
√

s =
√

(pγ1 + pγ2)2 = 2E. (2.3)

For the outgoing τ -leptons, Φτ = 0 can be chosen because the system is symmetrical
under rotation around the beam-axis. Because of energy conservation, the energy for
each τ -lepton is known to be Eτ = E. With the relation Eτ =

√
m2

τ + p2
τ , with the rest

mass of the leptons mτ and the 3-momentum pτ , their four-momenta are calculated to be

p⃗τ1 = (Eτ , pτ sin(θ), 0, pτ cos(θ)), (2.4)
p⃗τ2 = (Eτ , −pτ sin(θ), 0, −pτ cos(θ)), (2.5)

where θ = θτ1 = θτ2 because of momentum conservation. We define the pseudorapidity η
as

η = − ln(tan(θ/2)), (2.6)
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The transverse energy ET and the transverse momentum pT for the τ -leptons can be
defined as:

pT =
√

p2
x + p2

z = pτ sin(θ) (2.7)

ET =
√

E2
x + E2

y = Eτ sin(θ), (2.8)

The cartesian momentum components using pT , η and ϕ are given as:

px = pT cos(ϕ), (2.9)
py = pT sin(ϕ), (2.10)

pz = pT sinh(η). (2.11)

The centre-of-mass frame describes the collision process from a non-moving point of view.
The detector will measure coordinates that are boosted along the beam axis via a Lorentz
transformation since the particles move with relativistic velocities. Any variables in this
thesis are regarded to be in the centre-of-mass frame.

2.3 Ultraperipheral PbPb collisions
Ultraperipheral collisions are characterized by impact parameters twice as large, as the
radius of the colliding objects. At the LHC there are different kinds of particles used
in these collisions, mostly ions like Gold, Lead or Xenon. PbPb collisions are used to
generate high cross-sections of γγ interactions. The high impact parameters allow the
electromagnetic fields of the colliding nuclei to interact with each other, which can be
described as the emission and interaction of two quasi-real photons radiated of the original
particles [16]. The advantage is that if the nuclei do not actually collide, there will be
no additional background from QCD interactions. The EM fields of the nuclei will be
stronger, depending on the proton number Z, therefore the cross-section of lead collisions
will be larger compared to others, scaling with σ ∼ Z4. In the LHC, lead (Pb) is used due
to its high proton number Z = 84 and therefore high cross-section for light scattering.

Figure 2.2: Feynman diagram of the production of ττ from ultraperipheral PbPb collisions
[48].

Figure 2.2 shows the Feynman diagram of the production of ττ from ultraperipheral PbPb
collisions, including one leptonic and one hadronic decay of the τ -leptons.
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3 Optimal observables

Quantities such as aτ are determined by analyzing the distributions of observables recon-
structed from final state particle kinematics. Different observables will provide different
sensitivity for aτ and expected uncertainties ∆aτ . It has been proven, that there is a
single best observable for a given process and a desired parameter called the optimal
observable (OO). It has the smallest uncertainty per definition [17, 18, 19, 49]. Optimal
observables have been used before by the ATLAS collaboration in a test of CP-invariance
in vector-boson fusion production from the Higgs boson [50]. In this chapter, a general
definition of OO is given in section 3.1. In section 3.2 the concept of OO is applied to
determine aτ from the γγ → ττ process.

3.1 Definition of optimal observables
The concept of optimal observables can be applied to processes, in case the squared matrix
element can be written as a polynomial expansion in terms of the parameter of interest
[17, 18]. Suppose the squared matrix element |M |2 was in such a form for the parameter
of interest pi:

|M |2 = |M0|2 +
∑

i

pi|Mi|2. (3.1)

The observable

OOi = |Mi|2

|M0|2
(3.2)

is the most efficient estimator for measuring pi, denoted as optimal observable [19, 49].
For γγ → ττ production, the matrix element defined in section 1.3.1, can be written as
series in λi = aτ :

M = M0 + aτ M1 + a2
τ M2 (3.3)

resulting in a squared matrix element of

|M |2 = |M0|2 + aτ · 2Re{M∗
0 M1} + ..., (3.4)

where higher order terms have been neglected, assuming aτ ≪ 1. The Optimal observable
for the desired parameter aτ is given by

OO = 2Re{M∗
0 M1}

|M0|2
. (3.5)
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3.2 Formalising optimal observables for aτ

The evaluation of OO according to equation 3.5 requires that the matrix elements |M0|2
and 2Re{M∗

0 M1} can be recunstructed from the final state momenta. The matrix element
in equation 1.10 depends on the momenta and helicities of the photons and τ -leptons In
experiments, helicities are difficult to obtain since an entire setup is needed to measure
the spin of a particle [51]. In this section, the method of calculating the OO without
knowing any helicities is presented first, then in case all the helicities are known.

3.2.1 Helicity averaged optimal observable

The γγ → ττ process has 16 possible helicity combinations of the four parton helicities
{λ1, λ2, λ3, λ4} as seen for equation 1.10. However for the photons, helicities can not be
reconstructed. For the τ -leptons, it is difficult to reconstruct helicities from final state
particles. Hence the first method is to average all 16 possible matrix elements. This yields
an optimal observable, which is called "helicity averaged optimal observable" or OOhel.avg..
The helicities denoted as{λ1, λ2, λ3, λ4} for the four partons γ1, γ2, τ1, τ2 can have different
possible values based on particle spin. λ1,2 can have values of ±1 for the photons and λ3,4
are ±1

2 based on the τ -lepton spin.

OOhel.avg. =

∑
λ1,λ2,λ3,λ4 2Re


Mλ1,λ2,λ3,λ4

0

∗

Mλ1,λ2,λ3,λ4
1


Σλ1,λ2,λ3,λ4

∣∣∣∣∣∣Mλ1,λ2,λ3,λ4
0

∣∣∣∣∣∣
2 (3.6)

The above expression will be the same for all events and only depend on parton kinematic
observables. It has been recently calculated for the γγ → ττ process in [20], using the
method described in section 1.3.1 for calculating the amplitudes.

OOhel.avg. = 4(β2
τ cos2 θτ − 1)

β4
τ (1 + sin4θτ ) − 2β2

τ sin2 θτ − 1 , (3.7)

where θτ is the azimuthal angle of the τ -lepton in the centre of mass rest frame, it will
be the same for both τ -leptons due to momentum conservation. β is calculated via the
lorentz-factor to be β2

τ = 1 − 4m2
τ

s
with the rest mass of the τ -leptons mτ and the squared

invariant mass s which is the mandelstam variable s = (p1 + p2)2 = (p3 + p4)2. With
β being a value in the interval [0, 1] and θ being restricted to [0, π/2], one can calculate
that equation 3.7 in total is restricted to the interval [2, 4] This analytic expression will
be used as a target for machine learning that is applied to the problem.

3.2.2 Fully polarised optimal observable

For simulated data, the particle helicities are known for each event. Therefore the exact
Optimal observable can be calculated, which is different for each of the 16 helicity com-
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binations in the γγ → ττ process. The resulting optimal observable is called the "fully
polarized optimal observable" or OOfull.pol..

OOfull.pol. =
2Re


Mλ1,λ2,λ3,λ4

0

∗

Mλ1,λ2,λ3,λ4
1

∣∣∣∣∣∣Mλ1,λ2,λ3,λ4
0

∣∣∣∣∣∣
2 (3.8)

There is no compact general analytic expression for this observable since the helicities
influence the matrix elements from equation 1.10 directly. It can still be used for training
in ML, to investigate its dependency on final state particle variables. It would be desirable
if helicities influence of the final state in a way, that ML is able to learn the distribution
of OOfull.pol..
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4 Symbolic regression

Symbolic regression (SR) describes a method of machine learning, which is able to learn
analytic expressions via regression from (simulated) data [52]. This stands in contrast to
other methods from ML such as neural networks (NN) where instead of searching for the
best model, the goal is to optimize the parameters of a pre-defined model structure. How-
ever, deep learning in NNs has become the default numerical method in physics and many
other fields. Their data-driven learning can achieve great precision in modelling specific
problems as modern computing resources are enabling us to run these highly intensive
algorithms on big amounts of data that are available nowadays [53]. The drawback is that
NNs are not easily interpretable, as they can consist of millions of parameters like weights
and biases, which makes traceability of predictions by NNs by humans very difficult. The
latest developments in ML approach physics from the standpoint of algebraic formulae,
which are more interpretable and theory-related [54]. SR has thus been explored as a way
to re-discover known laws in physics from data [55, 56, 57, 58, 59], and is now establishing
itself as a new and exciting tool for the physics community for obtaining approximations
in form of analytical expressions for specific problems.
This chapter will give an introduction to SR in section 4.1 and then will explain the
structure and algorithm of the tool called PySR, which is used in this thesis, in section
4.2.

4.1 Genetic programming for learning analytic expres-
sions
The most common algorithm to achieve SR is via genetic programming, where the survival
of the fittest models is simulated over several generations [52, 60]. Where fitness is some
function that quantifies the prediction performance of a given model with respect to
the targeted data. Genetic programming is an umbrella term for ML methods, that
randomly change a set of models and evolve them towards a more effective version of
themselves. When model fitness dictates the probability of reproduction, expressions
with higher fitness pass their features on to the next generation. Over the course of many
generations, a population of analytic expressions is going to be increasingly effective at
solving the regression problem. The model fitness is typically measured by a loss function
like in other ML applications and is re-evaluated for each model after each generation. A
less complex solution is chosen at the cost of some fitness. This requires measuring and
penalising higher complexity in the expressions.
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4.2 Symbolic regression in python using PySR
PySR [61] is a SR tool for python [62], based on the Julia library SymbolicRegression [63].
It is open source, first published in 2020 and has already been successfully used in many
different fields [64, 65, 66, 67, 56] including particle physics at the LHC [68, 69]. PySR is
user-friendly and has many customisation options for a variety of problems. It is a genetic
algorithm that evolves a set of expressions by randomly mutating them and applying a
fitness function to measure performance compared to earlier versions of themselves.
In PySR and many other tools, expressions are internally represented as trees, with each
operator being a node and variables or constants being so-called leaves. Nodes can have
entire sub-trees, called branches attached to them whereas leaves signify the end of a
branch. Expressions can be evaluated iteratively and it is easy to manipulate them by
pruning or exchanging nodes and their branches. In figure 4.1 the expression tree for the
analytical form of OOhel.avg. from equation 3.7 is shown.

Figure 4.1: Example of an expression tree used by PySR for the analytic form of OOhel.avg..

This tree has a maximum depth of 8 and a complexity of 30. Depth is counted as
the maximal number of nodes between the topmost node, called the root and leave.
Complexity is the total number of nodes. The default ways to determine depth and
complexity is of assign all nodes the same value of 1 but this can change according
to custom definitions. There are the binary operators {+,-,*,/} as well as some unary
operators like {x2, sin(x), cos(x)}. The goal is to learn analytic expressions such as the
equation 3.7 from data given the 2 variables β and θ of the τ -leptons.

4.2.1 The outer and inner loops of PySR

The structure of PySR is organised in inner and outer process loops [70]. The outer loop
consists of generations that carry out the evolution process for each population thus leav-
ing them in a fitter state than before. The inner loop consists of applying a number of

22



changes to the current population by selecting an individual for ’breeding’ and replacing
a member of the population with its new form.

At the start of the algorithm, PySR will initialise a number of populations, which are a
set of individual models represented as expression trees. These individuals are initialised
randomly but all at a set complexity of 3, which at the time this study was concluded
was not tunable. The populations will evolve separately, going through several mutations.
PySR will keep track of the fittest models at each possible complexity across populations
by storing them inside a hall of fame (HOF) after each generation. After the HOF has
been updated, PySR will perform migrations between populations, where each individual
in each population has a certain probability to be exchanged with a random individual
from another population or the HOF. This is done in order to diversify populations such
that overfitting is avoided. The outer loop of PySR is represented in figure 4.2, where
populations are represented as islands of expressions, evolving over the course of many
generations.

Figure 4.2: Outer loop of PySR: populations evolve separately from each other except
when crossover events occur [70].

In the inner loop of PySR, displayed in figure 4.3, a given number of mutations will
be carried out within each generation. For each so-called cycle of the inner loop, the
population is randomly sampled to extract a subsample of the population and for each
subsample, the individual for "breeding" is selected [70]. Selecting this individual from
the subsample is done by a tournament function. The tournament will select the fittest
expression with a certain probability, if not, the expression is removed from the subsample
and this step is repeated. If only one individual is remaining, this will be selected. The
type of "breeding" operation will be chosen randomly, corresponding to either mutation,
crossover, simplification or optimisation of constants.
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Figure 4.3: The inner loop of PySR: a population is separated into a set of samples,
each undergoing the ’breeding’ process via a random choice from mutation,
crossover, simplification or optimisation [70].

Mutations are changes to an expression like adding, removing or altering nodes. An
example of mutation is visualised in figure 4.4a. Crossover refers to randomly exchanging
subtrees with another expression, selected by a second tournament on the same subsample
(where crossover with itself is possible). If crossover is chosen, the two oldest members of
the population get replaced by the two expressions. An example for crossover is displayed
in figure 4.4b. Simplification will remove unneccecary complexity by applying a set of
algebraic rules on the individual. For instance, the simplification operation might reduce
the expression x/x2 + 1.3 + 0.7 to x−1 + 2. The optimisation operation will run a classical
optimisation algorithm on the constants of the selected expression for a few iterations.
After this, the new expression will replace the oldest one from the population with a certain
probability. How many cycles of this inner loop are carried out for each generation is a
customisable option.

(a) Example of a mutation operation on an
expression tree, changing a node [70].

(b) Example of a crossover operation on an
expression tree, changing a branch [70].

Figure 4.4: Examples for the PySR operations mutation and crossover on expression trees.

By combining the inner and outer loops, PySR is a complex algorithm that tries to
simulate a "survival of the fittest" among semi-independent populations of models. As
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with evolution in nature, this process heavily relies on the randomness of mutation, initial
state and many other factors. The same training will almost never yield the same results
and can heavily fluctuate in its performance upon repetition. A number of parameters,
steering the PySR configuration - such as mutation probabilities, etc.- also denoted as
hyperparameters, can be set and be modified in addition .

4.2.2 Distinguishing features compared to other SR applications

There are several features of PySR, that distinguish it from other applications and enhance
the flexibility of the algorithm. Since pySR is an open-source project, it is continuously
developed further by the author and their contributors [21]. The ML community helps
to test and further aid the team in optimizing the algorithm and its features. The most
notable features are listed and shortly described here, roughly in order of importance to
the functioning of PySR [70].

Punishing complexity: PySR has two ways of calculating the loss L of a given equation
that defines fitness, where lower loss means better fitness. L will consist of the classical
mean-squared error

LMSE = 1
n

n∑
i=1

(y − ŷ)2, (4.1)

where nis the number of events in the sample, yis the prediction and ŷ denotes the true
values of the target. A custom loss function can be defined and used in stead of LMSE. L
has an additional term LC that consideres the complexity C of the given equation. LC can
be the product of C with a parsimony hyperparameter p, penalising higher complexities,
resulting in

L = LMSE + p · C. (4.2)

The other method is to penalise exponentially using the frequency f of complexity. The
frequency measures, how often the complexity of the given equation is already present in
the current population and will punish more common complexities. This gives the total
loss as

L = LMSE + exp{(f(C))}. (4.3)

Using frequency thus encourages searching a wide range of possibilities of the model space.
A hyperparameter called adaptive parsimony scaling is used, to scale the exponential con-
tribution of more complex models in addition to frequency.

Evolve-simplify-optimize: PySR performes simplification as well as optimisation reg-
ularly after all cycles of evolution from the inner loop have terminated. The reason to
simplify at the end of the evolution process is that some forms of equations are only ac-
cessible via redundant steps. For example, x · x − x · x would simplify to 0 but a mutation
could change it to x · x − x · y, which is a new form entirely. Optimisation only happens
after simplification, ensuring no optimisation on constants is performed that might be
combined in simplification.
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Simulated annealing: PySR can adjust the probability of accepting the new equation
after the evolution via simulated annealing. Given a annealing temperature T ∈ [0, 1],
the probability for rejection is

p = exp
(

Ln − Lo

αT

)
, (4.4)

where Ln and Lo are the losses of the new and original equation respectively, such that
all equations with higher loss than their original being rejected automatically with a
probability > 1. α is a hyperparameter that controls the scale of temperature, where
α → 0 corresponds to rejecting all new equations with lower loss than their original. The
annealing temperature T will change over the course of each generation according to

T = 1 − k

nc

, (4.5)

where k is the current cycle of the inner loop and nc denotes the total number of cycles
the inner loop will carry out. This enables PySR to alternate between high temperatures
at the start of each generation, which diversifies the population and lower temperatures
which specialise the population at the end of each generation. Simulated annealing is not
used by default.

Custom operators and constraints: A PySR model chooses from a pre-defined set
of operators, that will be selected when creating or modifying equations. One can pass
PySR custom operators as long as they are defined as either unary or binary functions of
real numbers. One can also pass constraints on both custom and pre-set operators that
control operator nesting. For instance, expressions like sin(sin(sin(x))) can be prevented
by setting the nesting constraint of sin and itself to 0. Other constraints can be selected
to control the entire form of expressions like maximum depth and complexity.

Custom complexities and weights: In PySR almost all probabilities and many other
hyperparameters can be customised. This includes that in the accounting for the com-
plexity of an equation, the complexity of specific operators, or variables, or constants can
be set to other values than the default of 1. Weights can be included in the training
process to specify the importance of different events from the training data.

Model selection: PySR knows three different methods of selecting the final model from
the HOF: ’accuracy’, ’score’ and ’best’. The method ’accuracy’ will select the model with
the lowest loss. The ’score’ method will select the model with the highest score, which is
defined as negated derivative of the log-lossfactoring in complexity. Smaller complexity is
preferred over a slightly higher loss but a much smaller loss will justify selecting a higher
complexity. ’best’ will select the model with the highest score but only among expressions
with a loss better than 1.5x the most accurate model.

Exporting models: Different representations of the final model can be extracted from
PySR such as sympy, jax or pytorch. Extra mappings for custom operators and variable
names need to be passed to PySR to access this feature. It is useful to visualise the
different models and their analytic forms.
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4.2.3 General overview of hyperparameters

The most important hyperparameters that are varied in this thesis for the results discussed
in chapter 7 are listed in table 4.1, together with their default values. These default values
are changed for particular studies, if specified explicitly.

name default value explanation
niterations 40 number of generations
ncyclesperiteration 550 number of mutations per generation
populations 15 number of parallel populations
population_size 33 number of expressions per population
model_selection ’best’ method to select final model
use_frequency True if True will use frequency

Table 4.1: Most important hyperparameters of PySR used in this thesis and their default
values.

In table 4.2 the less important parameters for this thesis are listed together with their
default values. Values that are modified from the default are listed in section 7.1 explicitly.

name default value explanation
maxsize 20 maximum nr. of nodes
maxdepth none maximum nr. of nodes from root to leave
adaptive_parsimony_scaling 20 punish higher complexity with frequency
weight_optimize 0 probability to optimize constants
parsimony 0.0032 factor to punish complexity

if frequency is not used
unary_operators [] operators that take one input
binary_operators [’+’,’-’, ’*’, ’/’] operators that take two inputs
annealing False if true, use annealing

Table 4.2: Hyperparameters, not used in the hyperparameter search, and their default.

A combination of these hyperparameters is used to define a PySR model [21] as follows:

1 from pysr import PySRRegressor
2

3 model = PySRRegressor(
4 populations = 15,
5 population_size = 33,
6 niterations = 40,
7 ncyclesperiteration = 550,
8 maxsize = 20,
9 maxdepth = None,

10 loss = 'L2DistLoss()',
11 weight_optimize = 0,
12 model_selection = 'best',
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13 parsimony = 0.0032,
14 binary_operators = ['+', '-', '*', '/'],
15 unary_operators = [],
16 adaptive_parsimony_scaling = 20,
17 use_frequency = frequency,
18 )

The default base loss function is ’L2DistLoss()’, which represents the mean squared error
on the prediction.
The PySR model is traine calling the fit function as follows:

1 model.fit(X, y, variable_names=None)

It requires a list of events X of shape (n_samples, n_features), where nsamples is the
number of events in the training set and nfeatures is the number of variables, given for
the training process. The target Y of shape (n_samples) needs to be given aswell [21].
This function will carry out the learning algorithm as described in section 4.2.1 and store
the final model locally. Variable names need to be passed for visualisation if the equations
need to be exported.
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5 The maximum likelihood method

The method of maximum likelihood is used to find an estimation of a parameter of
interest such as aτ and its uncertainties from a limited data set [71, 68, 33]. Assuming
a distribution f(x; p) of a random variable x and parameter p that is unknown. If x has
been measured repeatedly, resulting in a set {x1, x2, ..., xn}, the probability for the first
measurement to be inside the interval [x1, x1 + dx1] can be defined as f(x1, p)dx1. Since
the measurements of x are assumed to be independent, the probability that the values xi

are in [xi, xi + dx1] then given by
n∏

i=1
f(xi, p)dxi. (5.1)

Therefore a value p far away from the true value will result in a lower probability for the
measured data, while values near the true value yield a high probability. The Likelihood
function L is defined as

L(p) =
n∏

i=1
f(xi; p). (5.2)

By scanning the parameter space of p, the Likelihood function L(p) can be evaluated and
used to obtain an estimate of the true value p̂ by maximising L. Approximate confidence
intervals at confidence levels 68%(95%), corresponding to 1σ(1.96σ) around p̂, can be
obtained from the values of p, where ln L(p) decreased by 0.5(1.92) with respect to the
maximum [71].

The negative ln of L is commonly used because it converts the products into sums and
allows for minimising instead of maximising, which are both numerically easier to handle.
Since ln is a monotonously increasing function, the same value that maximise L(p) will
also minimises − ln L(p). This is called the negative-log-likelihood function.

− ln L(p) = −
n∑

i=1
ln(f(xi, p)) (5.3)

5.1 Binned log-likelihood
With large data sets, it is convenient to use histograms with N entries {n1, ..., nN} rather
than computing the log-likelihood function for every value xi. The expectation values
{µ1, ..., µN} in the histogram bins {1, ..., N} are defined as

µi(p) = ntot

∫ xmax
i

xmin
i

D(x; p)dx, (5.4)
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where xmax
i and xmin

i denote the upper and lower limits of bin i and ntot = ∑N
i=1 ni is

the total number of entries in the histogram. Assuming a Poisson distribution for each
histogram bin

D(ni; µi(p)) = µni
i (p)
ni!

exp(−µi(p)), (5.5)

the extended negative-log-likelihood function is found to be

− ln L(µ(p); p) = µtot −
N∑

i=1
ni ln(µi(p)), (5.6)

where µtot is the sum of all expected entries µi. The best estimate p̂ is defined by

− ln L(p̂) = − ln Lmin (5.7)

The maximum of the negative-log-likelihood can be subtracted from its distribution, res-
ulting in the difference in negative-log-likelihood ∆NLL which is used in this thesis. The
best estimation and the confidence intervals become

∆NLL(p̂) = 0 (5.8a)
∆NLL(p̂ ± 1σ) = 0.5 (5.8b)

∆NLL(p̂ ± 1.96σ) = 1.92 (5.8c)

5.2 Fit function and extracting confidence intervals
After scanning the values of the parameter p, interpolation between the points of the
∆NLL curve is needed. In this thesis, the curve is fitted using a polynomial of degree
12.The fit uses the data analysis framework ROOT [72] and its built-in fitting method
for graphs and histograms [73]. This fit algorithm applies the least-square (χ-square)
method for fitting data without weights. Values for the best estimate of the parameter p
can be extracted, by identifying the values defined by equations 5.8. The goodness of the
polynomial fit is tested by determining χ2/ndf where χ2 is defined as

χ2 =
∑

i

xi − yi

σi

(5.9)

where xi denote the observed ∆NLL values and yi the fit prediction, σi is the variance
of the value xi. Since no errors on the ∆NLL are extracted, the fitting tool [73] assumes
them to be given by

σi =
∑

i(xi − yi)2

ndf

(5.10)

The number of degrees of freedom ndf is given by ndf = N − m, where N denotes the
number of points used in the fit and m, is the number of parameters in the fit function,
in this case, they are N = 50 and m = 12. It is desired that χ2

ndf
be around 1, if it is much
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larger, then the fit is not optimal. If it is much less than 1 then the fit is better than
expected, given the estimated errors σ [71].
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Figure 5.1: NLL fit example for the OOhel.avg. with a polynomial fit and an example for
different histograms for calculating ∆NLL.

Figure 5.1 shows an example of the NLL method extracting aτ from the helicity averaged
optimal observable from equation 3.7 and its distribution. The relevant values of aτ are
in a range of [−0.05, 0.05], where the step width was 0.001. The small χ2 value indicates
a better fit than expected. This would normally be a reason to verify that the errors σi

are not being overestimated but for the purpose of this thesis, it is not a decisive factor.
For the corresponding histograms, five values of aτ are shown exemplarily. Similar figures
for the particle level variable pµ

T and the fully polarized optimal observable are given in
appendix 8.1. The extracted confidence intervals and their length at 95% confidence level
are:

−0.03878 < âτ
hel.avg. < 0.01224, range = 0.051019, (5.11)

−0.00492 < âτ
full.pol. < 0.00409, range = 0.008987, (5.12)

−0.02797 < âτ
pµ

T < 0.01223, range = 0.040196. (5.13)
(5.14)

They are important comparison values for any learned observable. pµ
T is currently the

best experimental observable, since OOfull.pol. requires knowing the helicities. They all
agree with the SM prediction of aτ = 0.0.

The choice of histogram range and binning can influence the resulting confidence intervals.
Empty bins in the predicted distribution will result in an error for the maximum likelihood
fit when computing ∆NLL, since the logarithm of the expected bin contents is needed.
For any maximum likelihood fits involving OOhel.avg. and its models, the variable range
was constrained to [2,4], covered by 5 equidistant bins. In the case of the OOfull.pol. the
variable range was chosen to only reach OOfull.pol = 500 with logarithmic bin distribution
in order to avoid empty bins. It was observed, that the bin limit of OOfull.pol = 1000 can
lead to a ∼ 10% larger confidence interval. The distribution of pµ

T is consistent enough, to
set the bin maximum to the distribution maximum without generating empty bins while
using a logarithmic bin distribution.

31



6 Event simulation chain

The basic method of Simulating random events is the Monte Carlo principle [74]. In
physics, simulation is the common way of getting theoretical predictions for the experi-
mental processes [68]. In this chapter, an overview of the simulation chain to generate
the γ → ττ events is given. The used tools are described in section 6.1 while the method
of predicting kinematic distributions for specific aτ values will be discussed in section 6.2.

6.1 Tools used for Event Generation
5 tools are involved in creating the sample of simulated events used in this thesis: gamma-
UPC, Madgraph5, Pythia8, Photos and Rivet. Each of them has a different place and
function in the simulation chain. Their function and usage will be explained briefly.

gamma-UPC is a library for simulating the emission of photons from ultraperipheral
proton and nuclear collisions [75]. It calculates γγ processes using electric dipole or charge
form factors. It can therefore simulate the PbPb collisions used in this thesis.

Madgraph5 is a framework for many kinds of SM and BSM phenomenons. It is used
for the computations of cross-sections and the generation of scattering events at high
momentum transfer. It can calculate leading order accuracy for user-defined Lagrangians
and next to leading order in case of QCD corrections to SM processes [76]. Madgraph5
is used in this thesis for calculating the matrix elements and phase space of the γ → ττ
process using the four-momenta and helicities of the partons.

Pythia8 is a program for the generation of high-energy physics collision events. It can
calculate a number of aspects, such as hard and soft interactions, parton distribution
functions, initial- and final-state parton showers, multiparton interactions, fragmentation
and decay [77]. For this thesis, it simulates the decay of the tau leptons.

Photos is a C++ algorithm for calculating bremsstrahlung in the decay of particles and
resonances [78]. In this thesis, it was used to simulate the QED radiation of initial and
final state particles.

Rivet is a system for validating Monte Carlo event generators. It includes a large set of
experimental analyses for MC generator development, validation, and tuning [79]. Here
it defines the fiducial selection of signal regions at particle level. For selecting the signal
region, in addition to requiring one µ±, one π± and zero electrons, two conditions were
set. The first is on the combined transverse momentum of muon and charged pion to be
pµ±+π±

T > 1 GeV. The second condition is on the acoplanarity of muon and charged pion
to be Aµ±+π±

Φ > 0.1. These are the same conditions used for the analysis from the ATLAS
collaboration on aτ [80].
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6.2 Predicting kinematic distributions for specific aτ

values
For predicting the distribution of observables for different aτ values needed for the ∆NLL
fits, matrix element reweighting is used [81]. A weight for any event from the γγ → ττ
process is given by

w = f1(x1)f2(x2)|M |2ΩP S (6.1)

where fi(xi) are the parton distribution functions with the momentum fractions xi given
from the colliding photons to the τ -leptons. ΩP S denotes the phase-space volume asso-
ciated with the event. A weight relies on the squared matrix element |M |2 that changes
with the assumption of the value for aτ . Therefore changing the weight is done by adding
a ratio of matrix elements.

wnew = |Mnew|2

|Mold|2
wold. (6.2)

The matrix elements are calculated by Madgraph5 using the four-momenta and helicities
of the partons as described in section 1.3.1. The values of aτ for which weights will be
calculated are in the interval of [−0.1, 0.1]. for values in [−0.1, −0.05] and [0.05, 0.1] a
step width of 0.01 was chosen and for values in the interval [−0.05, 0.05] the step width
was set to 0.001 for better resolution from the likelihood method near the prediction of
aτ = 0.0.

6.3 Generated samples and their content
Two samples have been generated for this thesis. They include particle four-momenta
quantified by the columns px, py, pz, e corresponding to the cartesian momentum and en-
ergy of each particle. For charged particles, the charge prefix is given by +1 or −1 to
identify which particles came from the τ - and anti-τ -leptons. Since between 0 and 2
neutral pions are allowed in the signal region, the number of included π0 nπ0 is given and
their four-momentum in case they exist. Both samples also include the OOs that were
introduced in section 3.2 for each event. Where OOhel.avg. will only depend on parton
kinematics and OOfullpol will consider the helicity combinations for each event via the
Matrix elements needed.

The SM sample has been generated assuming aτ = 0.0. Since this is a dedicated sample,
each event has the same weight which is a constant. 45 million events were requested, out
of which ∼ 115 × 103 were selected by Rivet to be in the 1 muon 1 track signal region.
This sample will be used for training PySR. In all comparisons of aτ estimates, one would
expect ˆaτ = 0.0 to be the prediction.

The BSM sample has been generated for an aτ = +0.06. This sample has event weights
for other aτ values, which were obtained using the matrix element reweighting method
described in section 6.2. 35 million events were requested, out of which ∼ 114×103 are in
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the signal region. It contains the weights for all possible aτ values from the reweighting
method, and can therefore be used to acquire the corresponding observable distributions
to calculate the ∆NLL curve.

Both samples are compared in figure 6.1 using the pµ
T observable. For the BSM sample

the weights for aτ = 0.0 were used for comparability. Both distributions are virtually the
same except for statistical fluctuations at higher values of pµ

T . This shows, that the BSM
sample is fit for testing models trained on the SM sample.
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Figure 6.1: The kinematic particle property pµ
T is shown for both the SM and the BSM

sample by comparing with their ratio.

In this thesis, all distributions from events from either sample are normalized to the
expected events for the integrated luminosity L = 2.0 nb−1 from run 1 and run 2 data at
the ATLAS experiment. Dividing the integrated luminosity by the number of generated
events Nevents yields the corresponding cross-section σ(PbPb → PbPb + ττ) according to

L = Nevents

σ(PbPb → PbPb + ττ) . (6.3)

The weight w is normalised by the calculated cross section to obtain the new weight
corresponding to the expected events:

wnorm = w
L

Nevents

, (6.4)

where w is the weight calculated by the matrix element for the event according to equation
1.10. Nevents denotes the total amount of generated events. With this normalisation, it
can be calculated that for aτ = 0.0, the SM and BSM samples a total of 1463 and 1472
events respectively are expected in the signal region.
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7 Analysis

The PySR tool explained in chapter 4 can be used to learn observables from kinematic
variables of the γγ → ττ process and its final state products. As targets for the learn-
ing process the optimal observables introduced in section 3.2 are used. ∆NLL fits will
be performed on the model observables learned by symbolic regression for determining
confidence intervals for aτ as described in chapter 5. In section 7.1 the helicity averaged
optimal observable OOhel.avg. is learned from parton level quantities. A group of hyper-
parameters of the PySR tool will be investigated for their influence on performance. The
second section 7.2 will transfer the interim conclusion from the first section onto the learn-
ing of the fully polarised optimal observable OOfull.pol. from final state particle quantities.
In this thesis, the models are compared by their performance, first by ranking them by
smallest mean loss. Then a comparison is drawn to the correlation between the model
prediction and the true OO. Finally, the models are compared by sorting them by the
smallest 95% confidence interval for aτ obtained from the maximum likelihood fits.
A final comparison between Observables learned via symbolic regression will be presented
in 7.3.

7.1 Regression on the helicity averaged optimal ob-
servable
The helicity averaged optimal observable OOhel.avg. is a good target for ML because its
analytic form is known. The symbolic models for the OO can be compared to its true
analytic expression. From equation 3.7 one can see that OOhel.avg. depends on the two
parton level observables β = 1 − 4m2

τ

s
where s is the squared centre of mass energy and

θ, defined as the angle between the four vector of the τ -leptons and the z-axis. The
choice was made not to give PySR the unary operators sin and cos, but instead, give
cos(θ) as a model variable together with the default binary operators [′+′,′ −′,′ ∗′,′ /′] and
one unary operator sqr(x) = x2. Therefore PySR might learn the trigonometric identity
sin(θ) =

√
1 − cos2(θ) to model the dependency on sin(θ). The only operator constraint

set for PySR will be to not nest more than two squaring operators within themselves.
The influence of using different fractions of the full SM sample on training will also be
investigated. The corresponding hyperparameter will henceforth be called ’events_used’.

In figure 7.1a a distribution of OOhel.avg. is shown for different aτ values. The sensitivity
is represented as a ratio to the SM expectations for each aτ value. It is highest near the
upper limit of the distribution where not many events are present compared to the most
populated region. A 2-dimensional representation of the optimal observable OOhel.avg. can
be seen in figure 7.1b for both kinematic variables β and cos(θ). The values for OOhel.avg.

are highest for greater invariant di-τ masses near β = 1 and for values of cos(θ) around
0. Combining this with the event distribution from figure 7.1a, one can gather that most
events will lie in the middle and upper regions of figure 7.1b but not where the OOhel.avg.
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values are the highest. For smaller values of the observable, i.e. at higher values of cos(θ),
not many events are present.
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(a) OOhel.avg. for different aτ values with
the ratio to SM expectations.

(b) Distribution of OOhel.avg. depending on
β and cos(θ).

7.1.1 Hyperparameter search

For the hyperparameter search performed to construct models for OOhel.avg., the relevant
hyperparameters are defined in table 4.1. Their investigated values are presented in table
7.1. This combination results in a total of 486 different models. Their computing time
varied between 5 to 30 minutes depending on the combination.

option name searched values
events_used [5000, 10000, 20000]
model_selection [’best’, ’score’, ’accuracy’]
frequency_use [True, False]
iterations [10, 30, 50]
populations [5, 10, 15]
population_size [20, 30, 40]

Table 7.1: Parameters and their defined ranges for the hyperparameter search.

For the parameter ’events_used’, three values were chosen that might induce a noticeable
difference in performance. It was found no significant difference in performance between
using 20000 and anywhere up to 100000 events. Therefore this upper value is chosen to
avoid longer computation times. For ’model_selection’ and ’fequency_use’ all possible
values were checked. For the rest, similar ranges were chosen around the default values
to investigate their impact on the performance.

In table 7.2 the less important parameters that were changed from their default in table
4.2 are listed. These will not change for the remainder of this thesis. For ’maxsize’
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and ’maxdepth’, the values were chosen to be slightly higher than the expected values
of size = 30 and depth = 8, of the true form of OOhel.avg. as in figure 4.1. This is to
accommodate for exploration beyond the necessary complexity which helps with getting
closer to the final form [21]. It was chosen, to use constant optimisation at the mutation
stage, which manifests in the parameter ’weight_optimize’ being non-zero. This choice
was made because in the expression of OOhel.avg. only integer constants are present. PySR
should have the possibility to evolve in the direction of those constants before replacing the
oldest individual, if the overall form is correct. ’parsimony’ was set for a lower than default
value because in case the frequency is not used, PySR should not be discouraged much
from using higher complexities since the target is already a complex expression. Lower
parsimony should also prevent having too simple models with highly optimized constants
because constant optimization during mutation is allowed. ’adaptive_parsimony_scaling’
is used to achieve the same thing when using frequency but here a higher than default
value was chosen, because lower complexity models will most likely be more abundant
than ones with higher complexity.

option name set values
maxsize 40
maxdepth 9
weight_optimize 0.001
parsimony 0.0001
adaptive_parsimony_scaling 30

Table 7.2: Lesser parameters of PySR and their set values for the remainder of this thesis.

The models will be trained on the SM sample. This makes the use of weights in training
not necessary since they are the same for all events. Testing is carried out on the BSM
sample, reweighted to the SM sample of aτ = 0.0.

7.1.2 Comparing symbolic models

For comparing the 486 models from symbolic regression, three methods have been chosen.
For all three methods, the four best models are presented and compared by performance
with respect to the method. Their hyperparameter combination will be investigated
for any similarities or differences. The first method will compare models by mean loss.
The distribution of the normalised difference between prediction and true value will be
shown and models will be sorted by the mean of this distribution. The second method is
to consider the correlation between prediction and true expression for each event, which
results in a scatterplot for each model. Finally, the Confidence intervals will be considered
and compared by using the ∆NLL fits on model predictions.

7.1.2.1 Comparing by loss

The models have been sorted by the lowest mean of the normalised difference distribution.
The normalised difference is defined as T rue−prediction

T rue
for each event. The four models with

the lowest mean and their hyperparameter combination can be seen in table 7.3.
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option name 1st model 2nd model 3rd model 4th model
events_used 5000 5000 20000 20000
model_selection best best best best
frequency_use False False False True
iterations 30 30 50 30
populations 15 5 10 5
population_size 40 40 40 20
mean −4.091 × 10−7 2.125 × 10−6 3.590 × 10−6 −3.777 × 10−6

Table 7.3: The best 4 models sorted by lowest mean loss, and their hyperparameter com-
bination.

Figure 7.2 shows the loss distributions for the four best models. They are restricted to
a range of [−0.025, 0.05] and have small variations. Models 1 in 7.2a and 3 in 7.2c have
a double peak structure, such that the most probable values do not correspond to the
mean. For model 3 in 7.2c this is most pronounced, where almost 14% of all events lie in
the bin around −0.004, whereas its mean is within 10−7 of 0. In contrast to this, model
2 in 7.2b has a particularly small range of [−0.016, 0.1] which manifests in its standard
deviation of σ = 0.0028, and with a peak that represents the mean more accurately. The
same holds for model 4 in 7.2d, although its standard deviation is larger at σ = 0.0081.
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Figure 7.2: The four best models for OOhel.avg., sorted by lowest mean loss.

In equations 7.1, 7.2, 7.3, 7.4 the expressions for the four models are shown. All of
the expressions have higher complexity than 20, some higher than 30. The expressions
have high powers in β and/or cos θ. Two reasons for this are possible. Either when the
multiplication operator is chosen, there is a higher chance that both operands will be the
same variable since there are only two available or high powers bring a high fidelity to
small changes in both variables because they are always smaller than 1, resulting in better
performance. It is possible that both effects are simultaneously influencing the outcome.

model1 =
1.36023516005649

(
β2 − 0.8574188 cos2 θ

β

)2
(β4 + 0.20372193)2 + 1 + β+0.019046964

β2

β
(7.1)
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model2 = 0.6032367
0.0670197060177826β4(−0.22943472194416β8 − 0.89388067β4 ...

...+2.30722435196801 cos2 θ) + 0.22556765 (7.2)

model3 = −β2(−2.856837β + 2.60865610534389 cos2 θ) + β

+1.26383926247537(−0.20558754145143β8 + cos2 θ

β2 ) (7.3)

model4 = 4
(

β − 0.37210544 cos2 θ + 0.0959514315788578 cos4 θ

β4 − 0.034527775
β6(β2 + 0.48134148)2

)2

(7.4)

Most models, that have a good mean loss also share some similarity in their hyperpara-
meter combination. All four models with the lowest mean loss use the model selection
method "best" and three of them did not use frequency. For both ’iterations’ and ’popula-
tion_size’ higher numbers seem to contribute to a better performance. For ’populations’
and the number of events that characterise these models, values are more scattered over
the full range. Both models 2 and 4 used 5 populations, they were the ones with the 1
defined peak in their distribution but this is most likely coincidence because the shape
of this distribution only depends on the form of the expressions. It is possible that this
distribution form emerges from an expression type that is generally good at the problem
at hand and therefore more abundant but this can not be determined.

7.1.2.2 Comparing by correlation

For all models obtained from symbolic regression the correlation between prediction and
true value of OOhel.avg. has been determined. In table 7.4 the four chosen models with
the highest correlation are presented with their hyperparameter combination. The values
are all within 0.01% of perfect correlation of 1.

option name 1st model 2nd model 3rd model 4th model
events_used 5000 5000 20000 10000
model_selection score accuracy accuracy best
frequency_use False False False False
iterations 30 30 30 50
populations 15 15 15 15
population_size 20 20 40 30
correlation 0.99999 0.99999 0.99998 0.99997

Table 7.4: The best 4 models sorted by highest correlation, and their hyperparameter
combination.

The scatterplots for all four models can be seen in figure 7.3 with their calculated correl-
ation. They are mostly indistinguishable by bare eye except for model 3 in 7.3c having a
slight asymmetry. The reason these are not the same models found in 7.1.2.1 is assumed
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to be due to small losses being tolerant to a few large outliers. The correlation is not
affected much by a slight shift as long as the variance is very small.

(a) 1st model (b) 2nd model

(c) 3rd model (d) 4th model

Figure 7.3: The four best models for OOhel.avg., sorted by the highest correlation to the
true values.

The expression for the models shown in equations 7.5, 7.6, 7.7, 7.8 all show high powers
in one or both variables. They seem similar in shape and complexity to the expressions
gained from comparing the loss.

model1 = β(β12(β + 0.25473875) + 2.7468102)
β7 cos2 θ + β

(7.5)

model2 = β5 + 2.6223605β

β(0.11678035β8(−2.0130465β4 + 7.82168436844201 cos2 θ
β4 ) + 1.138608)

(7.6)

model3 = (β8 + 1)2

0.998705329663195β10 cos2 θ + β
(7.7)
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model4 = β2 − 0.41321951059433 cos4 θ + (1.5996275 − cos2 θ)(β5 − 0.835632417757799β cos2 θ)2

+1.3900903
β2

(7.8)

The comparison by correlation reinforces the notion that using frequency does not cor-
relate to performance, as all four models do not use the frequency option. It also shares
the higher ’iteration’ values with the previous comparison. For ’populations’ all models
use the highest possible value of 15, in contrast to the comparison from before. Again for
events_used’, a similar random choice can be seen. This time for ’population_size’ there
does not seem to be the same influence on performance as before.

7.1.2.3 Comparing by confidence intervals

For each of the 486 models obtained from symbolic regression, the best-fit value for aτ

and its confidence intervals at 68% and 95% have been determined using the maximum
likelihood method. In table 7.5 the four models with the smallest length of the interval on
their 95% confidence level are listed with their hyperparameter combination. The lengths
of their confidence intervals agree within 2%.

option name 1st model 2nd model 3rd model 4th model
events_used 5000 5000 20000 5000
model_selection score score score score
frequency_use False True False False
iterations 50 50 10 10
populations 10 5 5 15
population_size 20 30 30 40
95% range 0.0434 0.0438 0.0438 0.0443

Table 7.5: The best 4 models sorted by smallest 95% confidence interval, and their hy-
perparameter combination.

The ∆NLL fits for all four models can be seen In figure 7.4. They all have the same
general shape and share similar estimates for aτ as well as similar confidence intervals.
The fits all have χ2 > 10−6, which is a sufficient description of the given ∆NLL points.
The confidence intervals are better than for the analytic form of the targeted OOhel.avg.

as seen in equations 5.11. Corresponding example histograms can be seen in figure 7.5.
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Figure 7.4: ∆NLL curves for the four best models for OOhel.avg., sorted by smallest 95%
confidence interval.
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(c) 3rd model
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Figure 7.5: distributions at various aτ values for the four best models for OOhel.avg., sorted
by smallest length of the confidence interval at 95% confidence level.

The expressions for the models are presented in equations 7.9, 7.10, 7.11, 7.12. Three out
of four models only use β with lower power than before and only one or two constants.
Their shape and complexity are simple compared to the earlier models.

model1 = β2 + 2.0243666 (7.9)

model2 = 3.1997702β (7.10)

model3 = β + 1.7256507 (7.11)

model4 = −1.5127169 cos2 θ + (β4 + 0.94814818118951)2 (7.12)
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The comparison of the hyperparameters for these models yields a slightly different outcome
than the previous ones. The models with the best confidence intervals at 95% confidence
level indicate the use of ’score’ as the model selection method. Three of them were trained
on 5000 events which is the smallest possible value. For ’iterations’ the two best models
used the highest value of 50 whereas the 3rd and 4th model used the smallest value of 10.
The other hyperparameters also seem contradictive to what was observed earlier, where
no real pattern can be seen.

7.1.3 Interim conclusion

PySR can achieve great precision in approximating a function via an evolved analytic
expression as was presented in this chapter. It uses the variables to get general depend-
encies and finds an evolved model that maximises performance by combining operators
and optimised constants. The hyperparameters that were included in the grid search
showed different magnitudes of influence on performance. Most notably, frequency was
used in 2/12 cases in contrast to the 50% average that would be expected, if the two
possible values did not matter. The expectation of larger values corresponding to better
performance for the options like events used, iterations, populations and population size,
can be confirmed in many cases. However, ’events_used’ did not seem to have a strict
influence on performance, since often models that were trained on only 5000 events have
better performance than models with higher values.

For the selection method of the final model, a discrepancy can be seen between the per-
formance quantified by loss or correlation and the performance by confidence intervals.
While the first two exclusively featured the method ’best’ or were random, the latter
exclusively featured models selected using ’score’. On one hand, the first two comparison
methods yielded models with higher complexity and bigger powers in the given variables.
On the other hand, the ’confidence interval’ method yields simpler models, with lower
powers and in 3 of 4 cases not using cos θ at all.

This can be understood, by inspecting the cross-check of the two performance types
correlation and confidence intervals. The correlation scatterplot for the model with the
smallest 95% confidence interval can be seen in figure 7.6a. This model describes the true
values of OOhel.avg. poorly with a correlation of −0.1442. The ∆NLL fit for the model
with the highest correlation, seen in figure 7.6b, shows that its confidence intervals are
worse than the ones presented in table 7.5. The length of its confidence interval is 0.0509
which is more similar to the confidence from the analytic form of OOhel.avg. in equation
5.11.
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(a) Correlation for the model with the best
confidence interval.

0.04− 0.03− 0.02− 0.01− 0 0.01 0.02

τa

0

0.5

1

1.5

2

2.5

 N
LL

∆

 NLL∆

 = -3.34e-05τpoly12 fit: a

68% = [-0.0139,0.0069]

95% = [-0.0387,0.0122]

 = 5.2216e-042χ

(b) ∆NLL fit for the model with the best
correlation, the histogram is seen in the
appendix 8.2.

Figure 7.6: Cross-checking the performances by correlation and confidence intervals.

It can be concluded, that PySR accidentally learned observables with higher sensitivity
than the original optimal observables. The most likely scenario for this is, that the model
selection ’score’, which is prevalent in the models with the best confidence intervals, leads
to relatively simple equations being chosen if all the models in the HOF of PySR have
similar accuracy. These expressions had better confidence intervals by chance.
In figure 7.7 the confidence intervals of the best models from all three comparison meth-
ods are shown together with the known optimal observables and the current experimental
benchmark of pµ

T . It can be observed, that models 1 and 2, corresponding to rating by
loss and correlation have very similar confidence intervals to OOhel.avg. which is desirable
because they describe its distribution relatively well. Model 3 from comparing by confid-
ence intervals, shows an interval length more similar to pµ

T but since this behaviour was
declared a random effect via the selection method ’score’, it is not of further interest.
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Figure 7.7: Comparing the confidence intervals of the best models from the three compar-
ison methods loss (model 1), correlation (model 2) and confidence intervals
(model 3) with the reference intervals from OOhel.avg., OOfull.pol and pµ

T .

The values corresponding to the above intervals are listed in table 7.6. The best estimates
âτ are all constructed with the SM value of aτ = 0.0 as expectation, with which they
agree. The ranges of the confidence interval length vary. Model 1 has a slightly better
performance than model 2 and model 3, but the benchmark of pµ

T is still not reached.

model 95% CI range
OOhel.avg. 0.0510
OOfull.pol. 0.009
pµ

T 0.0402
model 3 (CI) 0.0434
model 2 (corr) 0.0509
model 1 (loss) 0.0502

Table 7.6: Best estimates and ranges on the 95% confidence interval for the observables
shown in figure 7.7

When counting the model that was selected by loss as the best approximation for OOhel.avg.,
the result for estimating aτ with a learned model from parton variables is:

−0.0380 < âτ < 0.0122 (7.13)

at 95% confidence level. From this hyperparameter optimisation, a general trend for the
hyperparameters can be gathered from the methods of comparing by loss and correla-
tion, which indicated good prediction performance. The selection method ’best’ is a good
compromise between accuracy and simplicity as it selects the models similar to the most
accurate but with respect to complexity. For the numerical options ’iterations’, ’popula-
tions’ and ’population_size’ there is a small tendency towards higher values corresponding
to better performance when compared to the true expression. This was expected since
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these options increase the algorithm’s resources to approximate the targeted expression.
Frequency is an option that is not used much. Two possibilities are most convincing.
The first possibility is that the ’adaptive_parsimony_scaling’ hyperparameter was set
too high such that complex enough expressions did not arise to achieve the same per-
formance as without frequency. The second possibility is that the ’parsimony’ parameter
was set low enough to mostly evolve high complexity models. The latter possibility could
be interpreted as overfitting, even though the example expressions shown for the first
two comparison methods are not at the limit of allowed complexity. More complicated
interactions between the parameters of the algorithm could likely cause such behaviour,
but they are not determinable due to the randomness of this process.

In this part of the analysis, the analytical form of OOhel.avg. was not found as a model, this
is not surprising, since the number of possible equations from PySR is infinite. However,
it was observed that the best models had some semblance of the true expression, often
combining β and cos θ in divisions of sums albeit with high powers. The fourth model
from comparing by correlation in equation 7.8 showed a term (1.5996275 − cos2 θ) similar
to the trigonometric relation sin2 θ = 1 − cos2 θ which is present in the analytical form.

7.2 Regressing the fully polarised optimal observable
Learning the fully polarised optimal observable OOfull.pol. is an important test for the
symbolic regression method. A general analytic expression is not known for OOfull.pol.

but an approximation by PySR could be worthwhile if it achieves similar precision as the
best models on OOhel.avg.. The advantage of such an observable would be its simplicity
compared to calculating the matrix elements. By training on the kinematics of final state
particles, it is ensured that this is applicable in experiments.

7.2.1 Special phase-space and helicity groups of OOfull.pol.

The fully polarised optimal observable OOfull.pol. can be calculated on an event-by-event
basis by equation 3.8, using the parton helicities and momenta and the corresponding
matrix elements from equation 1.10. There is no analytic expression that generalises this
OO. It can nonetheless be used for training ML algorithms, especially symbolic regres-
sion could yield an interpretable approximation. However the distribution of OOfull.pol.

is complex. The helicity combinations can be sorted into groups of identical matrix ele-
ments, which appear in different forms in the distribution of the OO. These groups, whose
contribution to the total distribution at aτ = 0.0 can be seen in figure 7.8, and their con-
tributions to the distribution are listed in table 7.7. The groups are filled with helicity
combinations {λ1; λ2; λ3; λ4} for the partons {γ1, γ2, τ1, τ2}, where only the sign is of in-
terest. For the missing combinations {+ + −+; + + +−; − − +−; − − −+} the matrix
elements are calculated to be 0, therefore they do not contribute to the γγ → ττ process
at all.
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Group index associated helicity combinations event portion [%]
0 + − +−; − + −+; + − −+; − + +− 90
1 + − ++; − + ++; + − −−; − + −− 2.69
2 + + −−; − − ++ 0.0028
3 + + ++; − − −− 8.5

Table 7.7: Helicity groups defined by identical matrix elements and their probability.

It can be gathered, that groups 0 and 3 dominate the events by orders of magnitudes.
Groups 1 and 2 only make up a small fraction of all events. Figure 7.8 shows a small
gap in the phase space of OOfull.pol. between values of 2 and 10. For group 0 the optimal
observable becomes exactly 2 because of the matrix elements M1 = M2. Therefore the
OO displaies a constant in this region manifesting as a single bin peak in the distribution,
yielding little to no information. This phenomenon is explained in detail in [20]. The
important distribution part, where sensitivity is high, only consists of groups 1 and 2.
For the SM value at aτ = 0.0 as seen in table 7.7 2.7% fall in this category. This fraction
changes depending on aτ for example at aτ = 0.06 it is 18%.
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Figure 7.8: Distribution of OOfull.pol., separated into the helicity groups 0-3.

The shape of this distribution will most likely influence the ML process. In the first part
of section 7.2.4 it will be investigated if regression on the entire distribution of OOfull.pol is
viable and if the gap structure will be approximated by PySR. In the second part, PySR
is trained only on the events that fall into the helicity groups 1 and 2 for approximating
the important distribution fraction for estimating aτ .

7.2.2 Selection of observables for regression

The observables constructed from final state particles that are selected for training should
have some connection to the parton kinematics, the OO itself or the helicities that in-
fluence it. 11 different observables from final state particle kinematics were investigated
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towards their correlation to the significant distribution part of the helicity groups 1 and
2 in OOfull.pol.. For calculating them, the four-momenta of the final state particles in the
laboratory frame were used. The final state particles are the muon and all existing pions
for each event. The combined four-momentum of all pions is used as the ’visible had-
ronic vector’ abbreviated by ’vishad’. As observables mostly the transverse momentum
pT and the pseudorapidity η are used as well as the polar and azimuth angles Φ and θ.
The missing transverse energy has been calculated from the four-momenta of the three
outgoing neutrinos. The full set is listed in table 8.1. An example of the scatterplots used
to calculate the correlations can be seen in figure 7.9.
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Figure 7.9: Correlation to OOfull.pol. for the two variables M2
vishad+µ and pµ

T .

The six observables with the highest correlation have been chosen for training. The higher
dimensionality of this observable space in comparison to the training on OOhel.avg. has
been chosen to grant PySR a wider diversity in possible equations. The chosen variables
can be seen in table 7.8 together with their correlation to OOfull.pol..

variable correlation
M2

vishad+µ 0.301
pvishad

T 0.165
ηvishad -0.020
pµ

T 0.263
ηµ -0.022
MET 0.186

Table 7.8: Choosen observables for learning OOfull.pol. and their correlation to the distri-
bution restricted to helicity groups 1 and 2.

7.2.3 Choosing hyperparameters from earlier experience

The hyperparameters for learning OOfull.pol. are shown in table 7.9. They have been
chosen, based on the results from learning OOhel.avg..
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name values chosen
events_used [3000, 100000]
model_selection [’best’]
frequency_use [False]
iterations [50]
populations [15]
population_size [40]

Table 7.9: Hyperparameters and their chosen values for learning OOfull.pol..

The range of ’events_used’ corresponds to training once with applying a condition of
OOfull.pol. > 3 on the events, which ensures training will only be carried out on the im-
portant groups 1 and 2. The second value corresponds to training with all the events,
where groups 1 and 2 only account for ∼ 2.7% in the training sample. The model selection
method ’best’ has been chosen, because a good approximation for OOfull.pol. is preferred
over simpler expressions. In this case, simpler expressions are not likely to yield a bet-
ter performance in confidence intervals than the OO, because it was precisely calculated.
Frequency is not used for reasons explained earlier. For the rest, the highest values have
been chosen.

For the less important hyperparameters, it was chosen not to change them, because of
comparability. The properties of maximum depth and maximum number of nodes are not
known for OOfull.pol. since it is not a single analytic expression for all events. Potential
approximations may look very different based on the observables chosen such that room
for potential exploration should be given to the algorithm.

7.2.4 Comparing symbolic models

For examining the performance of the two models trained on OOfull.pol., the same methods
will be applied as before. This time, the model that was trained without applying a
condition on the phase space of the observable will be presented first. The model trained
on the subsample defined by the helicity groups 1 and 2 will be discussed afterwards.
Finally, the possibility of application to experimental data is discussed.

7.2.4.1 Predicting OOfull.pol. from the entire distribution

The expression of the model that was trained on the entire distribution of OOfull.pol. is
shown in figure 7.14. It consists of 3 of the 6 given variables and shows large powers in
pµ

T up to a power of 12. There is also a small constant in the range of 10−18, which was
not observed before.

modelfull distribution = 3.01339931077764 × 10−18pµ
T

8(pµ
T + pvishad

T )4

(0.733440992691847ηvishad − 1)4 + 3.1669834 (7.14)
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The loss distribution and Correlation to OOfull.pol. of the prediction from this model can
be seen in figure 7.10. The loss distribution is mainly populated around -1 and 1, where
there is only one event between -0.6 and 0.7. From this distribution, a few extreme outliers
up to -160 have been removed for better discernibility of the main distribution. This is
most likely from the prediction not correctly assigning any of the events associated with
the helicity groups 1 and 2, that populate the higher ranges of OOfull.pol., leading to
large negative values corresponding to the definition of this loss. For the correlation, a
similar effect is seen. Almost all events are predicted to lie around 3, especially the ones
corresponding to the higher values in OOfull.pol. only one of which was predicted near
correctly. The predictions at large values stem from the original part of OOfull.pol where
the value 2 was dominant.

Figure 7.10: Loss distribution and correlation for the model on the full distribution of
OOfull.pol..

In figure 7.11 the ∆NLL fit for the model is shown as well as an exemplary distribution
at various aτ values. The ∆NLL curve shows two local minima. Due to this double-peak
structure, the confidence intervals extracted from this model are significantly lower than
any observable considered so far.
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Figure 7.11: ∆NLL fit and distribution at different aτ values for the model on the full
distribution of OOfull.pol..

The final estimation of this model at 95% confidence level comes to

−0.046043 < âfull distribution
τ < 0.012473. (7.15)

As expected, the helicity groups 0 and 3 dominate the training of PySR and the model is
not able to discern the gap in the phase space as important due to the event ratio of the
smaller parts. This yields poor overall performance compared to the models on OOhel.avg.,
making this method not viable for further investigation, even though it is transferable to
experiment i.e. can be applied to momenta of final state particles.

7.2.4.2 Predicting OOfull.pol. from helicity groups 1 and 2

For training the PySR model only helicity groups 1 and 2, a condition on the full sample
is applied of OOfull.pol. > 3. This yields a small sample of ∼ 3000 events on which training
can be carried out to predict OOfull.pol. where it is most sensitive to aτ .

The expression of this model can be seen in figure 7.16. This formula makes use of the
most correlated observables MET, pµ

T , M2vishad+µ, pvishad
T , combining them in a mostly

linear way apart from the fraction. All variables are not raised to a higher power in
contrast to the models on OOhel.avg., where only 2 variables were available.

modelhel. groups 1+2 = METpµ
T + 0.22548035M2

vishad+µ+
1.7784543MET − 1.5180968085157pµ

T − 0.338300443942897
pvishad

T − 0.54388505 (7.16)

The loss distribution and the correlation of the model can be seen in figure 7.12. The
peak of the loss distribution is strongly pronounced, although there are some outliers in
extreme ranges. This leads to a mean loss in the order of 10−2 which is not comparable
to the values for OOhel.avg. that were in the order of 10−6. The correlation of this model
to the true OO shows two separated concentrations that can be identified as the helicity
groups 1 and 2 when comparing with figure 7.8. This is due to the testing sample having
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significantly more events in both helicity groups than the training sample. The correlation
for the prediction on the training sample can be seen in figure 7.13 which is within 6%
of perfect correlation and shows almost no events for helicity group 2 starting at higher
values of OOfull.pol.. The comparably low performance of this model is expected, since the
OO still depends on helicities and the variables chosen for this model do not represent
the actual form that was calculated from matrix elements. The model yields a higher
correlation than the individual observables on their own, which displays the capability
of PySR to combine features into a viable model. The ∆NLL fit and corresponding
distributions at various aτ values for this model are shown in figure 7.14. It displays
a small confidence interval compared to the previous model when tested on the same
subsample of helicity groups 1 and 2 of

−0.0099 < ahel. groups 1+2
τ < 0.0050 (7.17)

at 95% confidence level. This result is almost comparable to the true OOfull.pol.
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Figure 7.12: Loss distribution and correlation for the model trained on helicity groups 1
and 2.
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Figure 7.13: Scatterplot for the model trained on helicity groups 1 and 2 only predicting
helicity group 1.
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Figure 7.14: ∆NLL fit and corresponding distributions at various aτ values for the model
trained on helicity groups 1 and 2.

The problem with this evaluation is, that it is not repeatable in experiments, because one
cannot select only helicity groups 1 and 2 in data. The comparison of confidence intervals
in different evaluations of the model trained on helicity groups 1 and 2 can be seen in
figure 7.17. This model has been trained on a fraction of the entire sample as explained
above. It has been evaluated for confidence intervals from the entire BSM sample, being
the equivalent of using this observable on experimental data, which is represented as
model 1 in the comparison. The performance from above, where a condition was applied
to the testing sample is included as model 2. Then to represent a hybrid method, model
3 displays the performance, where a condition was applied to the prediction itself, before
computing the ∆NLL fit. ∆NLL curves and corresponding distributions for the PySR
model for OOfull.pol., trained on the helicity groups 1 and 2. The model predicting the
entire testing sample can be seen in 7.15a and 7.15c. The model where a condition of
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OOpred
full.pol. > 3 was applied is shown in 7.15b and 7.15d.
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Figure 7.15: ∆NLL curves and corresponding distributions for the PySR model for
OOfull.pol., trained on the helicity groups 1 and 2. The model predicting
the entire testing sample can be seen in 7.15a and 7.15c. The model where
a condition of OOpred

full.pol. > 3 was applied is shown in 7.15b and 7.15d.

A correlation scatterplot can be seen in figure 7.16. It shows that knowing the prediction
does not yield further information. All predicted values are larger than 2, because as was
the regressed distribution. However one can see good separation of the helicity groups 1
and 2 as seen before. The behaviour that events are not separated in the distribution of
the prediction is expected because the events not contained in the training sample, i.e.
helicity groups 0 and 3 could not be predicted correctly.
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Figure 7.16: The correlation scatterplot for the model trained on helicity groups 1 and 2,
predicting the entire testing set.
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Figure 7.17: Comparing confidence intervals for the viable models for OOfull.pol..

The values corresponding to the comparison of the different evaluation methods are listed
in table 7.10. Models 1 and 3 show similar performance. This was expected because the
prediction cannot separate the phase space but predict the shape of the helicity groups 1
and 2 for all events. Therefore the condition on the prediction itself will remove an equal
portion of events that do not lie in the desired part and events that do. Model 2 is not yet
experimentally achievable, because it requires selecting helicity groups 1 and 2 in data,
however, it has the most similar performance to the true optimal observable.
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model âτ 95% CI range
OOhel.avg. −2.74 × 10−5 0.051019
OOfull.pol. −3.93 × 10−4 0.008987
pµ

T −3.96 × 10−5 0.040196
model 1 (no cond.) −3.9 × 10−5 0.038328
model 2 (cond) −1.57 × 10−4 0.017427
model 3 (self cond.) −4.0 × 10−5 0.038416

Table 7.10: Best estimates and ranges on the 95% confidence interval for the observables
shown in figure 7.17

Models 1 and 3 are experimentally repeatable and are almost identical in their best
estimate âτ and their range on the confidence interval. They gain 4.6% and 4.4% in
sensitivity respectively compared to using the simple observable pµ

T . The final result for
estimating aτ with an observable obtained from symbolic regression on experimentally
available data is from applying model 1 to all events is

−0.026065 < âsmall sample
τ < 0.012263 (7.18)

at a 95% confidence level.

7.3 Final comparison of observables considering exper-
imental viability
There are 3 models that are useful for the final comparison and for the viability of PySR
as a tool. In the following model 1 will describe the observable that was learned from the
entire distribution of OOfull.pol.. Model 2 will denote the observable obtained from only
the helicity groups 1 and 2 and evaluated using the entire testing sample for experimental
applicability. Model 3 describes the observable learned from OOhel.avg. that was selected
via the ’loss’ method. Their confidence intervals are presented in figure 7.18 together
with the confidence intervals of the two target observables OOhel.avg.andOOfull.pol. and
the observable pµ

T currently used in experiments.

58



0.05− 0.04− 0.03− 0.02− 0.01− 0 0.01
τa_

full.pol.OO

hel.avg.OO

T

µp
model 1
model 2
model 3
68%
95%

Figure 7.18: Comparing confidence intervals for the known observables OOhel.avg.,
OOfull.pol. and pµ

T to the 3 models (see text for explanation) learned by PySR.

OOfull.pol. itself is experimentally not viable, because of the dependency on helicity. Model
3 is mostly a proof of concept for using symbolic regression as a tool for extracting
observables. The confidence intervals from model 3 and OOhel.avg. are identical within
1.8%. Model 1 was chosen for its low loss in predicting the values of OOhel.avg. and even
though it is not the same expression, its approximation is satisfying. Model 1 has the
highest range of all if tested on the entire testing sample. Its regression process was
dominated by the helicity groups 0 and 3 and therefore has not acquired much of the
sensitivity of the helicity groups 1 and 2. Model 2 describes the helicity group 1 and 2
relatively well but if this is projected onto the entire testing sample it yields only a 4.6%
improvement in sensitivity compared to pµ

T .

model 95% CI range
OOhel.avg. 0.051019
OOfull.pol. 0.008987
pµ

T 0.040196
model 1 (OOfull.pol.) 0.058516
model 2 (OOfull.pol.) 0.038328
model 3 (OOhel.avg.) 0.050928

Table 7.11: Best estimates and ranges on the 95% confidence interval for the observables
shown in figure 7.18

An effect of the chosen histogram limit when calculating the ∆NLl values as discussed
in section 5.2 on the confidence intervals was observed. Model 1 resulted in a larger con-
fidence interval than pµ

T when using a lower histogram limit. This is explainable by the
fact that the helicity groups 1 and 2 which hold most of the sensitivity lie at the larger
ranges of the distribution. Model 1 predicted them well but also blended some predictions
from the other helicity groups into this distribution. Therefore when a smaller histogram
limit is chosen the sensitivity from the additional bins is lost. It is also to note, that the

59



distribution of OOfull.pol. in the training sample had a smaller range than the distribution
in the training sample because of the discussed ratios of the helicity groups in dependence
of aτ for which the samples have been created. Therefore model 1 will also not predict
the sensitivity of the outer ranges of the testing sample because the training was done on
the more limited distribution.

In the end, PySR gave model 1 which is not the optimal observable, but it is a "semi-
optimal" observable that is usable experimentally and fulfils its purpose of yielding an
improvement in sensitivity. This "semi-optimal" observable is a relatively simple function
of variables that can be computed using reconstructed final state particle kinematics.
Symbolic regression was, therefore, able to yield an analytic function with similar sensit-
ivity than the currently used observable pµ

T .

7.4 Recommendations for further studies of aτ using
symbolic regression
It has been shown, that for increasing the sensitivity to determine aτ , modelling the spe-
cific distribution of OOfull.pol. is crucial for the performance of any observable obtained
from symbolic regression. In this thesis, learning this distribution was not possible due to
the statistical difference in events from more probable helicity groups. As seen in section
7.2.1 the helicity groups 0 and 3 make up more than 90% of all events, dominating the
symbolic regression in section 7.2.4.1. Whereas the helicity groups 1 and 2 hold the most
sensitivity. Rather than trying to regress the two parts in the distribution of OOfull.pol.

separately, it should be considered manually normalising the event numbers in both re-
gions to the same number. In this way, the symbolic regression by PySR could treat both
equally and learn the gap in the phase space of the observable.

In the future, studies should consider comparing observables from symbolic regression
with predictions from other ML methods such as regression neural networks. If symbolic
regression methods yield similar results to these other methods, they would be preferable
for their interpretability. Concerning PySR in particular, a more in-depth hyperparameter
optimisation needs to be carried out on more than the basic options used in this thesis, to
effectively chose them for serious learning. Simulated annealing is an option not used in
this thesis but could have an interesting influence on model evolution. Other investigations
could include searching for optimal parsimony or dynamic parsimony scaling, varying
the possibilities for different events within the algorithm and increasing the number of
operators to include common functions that characterise many physical theories like sin,
cos or exp. In this thesis, not many constraints were put on the learning process in
terms of the combination of operators or constants. Since constants are an infinite space
of mutation possibility for the algorithm, constraining them to a sensible set or even
allowing PySR to use physical constants could be an interesting method.
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8 Conclusion

The goal of this thesis was to study whether observables constructed with symbolic regres-
sion can increase the sensitivity to measure aτ in ultraperipheral PbPb collisions at the
LHC. The sensitivities were estimated assuming an integrated luminosity of L = 2.0nb−1

corresponding to the 2015 and 2018 data sets collected by the ATLAS detector. The ob-
jective was to learn expressions that approximate the optimal observables from particle-
level variables via this method.

Optimal observables, which are able to maximise sensitivity for aτ , were calculated us-
ing matrix elements of the γγ → ττ process. The distinction was made between the
true OO, which needs helicities of the particles to compute the matrix elements for each
event, called the fully polarised optimal observable OOfull.pol, and the OO where the
average matrix elements from the possible helicity combinations were used to calculate
the helicity averaged optimal observable OOhel.avg.. An analytic form was calculated for
this observable, which is valid for all events and depends on only two parton kinematic
observables θτ and βcm.

The symbolic regression tool PySR was used to train models based on simulated data,
to learn the two optimal observables mentioned above. A hyperparameter optimisation
was carried out on OOhel.avg.. The parameters considered are generations of the genetic
algorithm, populations and population size to simulate evolution, the use of frequency to
punish the complexity of models, measured by the number of nodes in the expression tree
and the method by which PySR selects the final model. 486 different models were com-
pared via three figures of merit, the normalised loss distribution, correlation of prediction
to true OO and the length of resulting confidence intervals on aτ . It was found, that
PySR was able to model OOhel.avg. effectively, with a correlation of 0.99999 and yields a
constraint on aτ of [−0.037977, 0.012235] at 95% confidence level, which is within 1.8% of
the confidence extracted from the true OOhel.avg.. A random effect was encountered for
the method of selecting the final model ’score’, where some of these models were represen-
ted by a small function, not describing OOhel.avg. but getting a better confidence interval
than the OO itself. This was discarded as a fluctuation in the learning process due to the
selection method and the randomness of the algorithm.

For learning OOfull.pol, the optimised hyperparameters previously studied were adapted.
As variables for the training process, the correlations of 11 final state observables to
OOfull.pol were investigated, of which 6 were chosen. OOfull.pol showed two benches of
values stemming from different helicity groups, where 98% of the testing sample were
located in an interval of [0, 2], consisting of a single sharp peak, and 2% of the events
sowed sensitive distribution contributions in the range of [10, ∞]. This effect was due
to different helicity combinations in the γγ → ττ process contributing at different prob-
abilities to the events and manifesting at different ranges in the OOfull.pol distribution.
One model was trained on the entire sample. It was not able to reconstruct the shape of
the distribution of OOfull.pol., as the learning process was dominated by events from the
helicity groups 0 and 3, treating most other events as outliers. This yielded a constraint
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on aτ of [−0.046, 0.013] with 95% confidence level.

The second model for OOfull.pol was only trained on the subsample from the helicity
groups 1 and 2. Testing it on the same distribution part yielded a good fit for OOfull.pol

in this range with a correlation of 0.95 and a constraint on aτ of [−0.0099, 0.0050] at
95% confidence level. The extraction of this constraint from the helicity groups 1 and 2
was not experimentally applicable, therefore the model was tested on the entire testing
sample. This yielded a correlation of 0.033 and a constraint on aτ of [−0.026, 0.012].
This represents an improvement of 4.6% compared to using the observable pµ

T which is
currently used in experimental analysis. It was concluded, that symbolic regression is an
interesting tool and could yield significant improvements to current methods with further
investigation. Future studies should account for the unequal distribution of helicity groups
in OOfull.pol. and consider larger hyperparameter investigations.
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Figure 8.1: ∆NLL curves and distributions for the observables pµ
T and OOfull.pol..
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Figure 8.2: Distribution of the model with the highest correlation for various aτ values.

variable correlation
pµ

T 0.262936
ηµ -0.022407
pπ±

T 0.093358
ηπ± -0.019768
∆η(π±, µ) 0.058850
∆Φ(π±, µ) -0.032330
MET 0.186475
M2

vishad+µ 0.300660
pvishad

T 0.165181
ηvishad -0.020017
∆θ(vishad, µ) -0.002869

Table 8.1: Investigated particle level variables and their correlation to the fully polarised
optima observable restricted to helicity groups 1 and 2.
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