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Abstract

In this thesis, the performance of an interactive analysis in High Energy Physics (HEP) is
measured on multiple systems, ranging from a notebook to the local computing clusters.
The basis are Jupyter Notebooks, where a PyROOT based analysis is picked as the refer-
ence. Its algorithm is changed from an event-loop to a vectorized (column based) one. The
modification enables the analysis of larger datasets and decreases the computing time on
datasets compared to the previous algorithm. This is made possible by using the scientific
Python software stack, with Uproot, Awkward and NumPy being the most important ones.
While the initial modifications yield some improvements, the introductions of Dask enables
better utilization of the available resources. The single-threaded analysis is parallelized to
take advantage of all available CPU cores. With Dask collections, it is possible to work
with larger-than-memory datasets with only minor modifications to the algorithm. When
compared to the previous algorithm, the Dask-based algorithm supports a dataset size that
is eight times larger, containing 400 million events, while reducing the computing time by
a factor of 2 on the largest dataset both algorithms can handle. With minimal changes,
the Dask-based analysis can be scaled from the notebook to the local computing clusters.
Running on the HTC cluster ATLAS-BFG and the HPC cluster NEMO, the upper limit
on dataset sizes usable in an interactive analysis can be increased by an additional factor
of 2.5. While the described setup enables the analysis of datasets larger than 170 GB, their
structure matters. Most datasets in this thesis are monolithic, where one file contains all
events. HEP datasets are generally distributed over multiple files, with sizes ranging from
tens of kB to approximately 5 GB. The performance of the algorithm presented in the thesis
is negatively impacted when running on multiple files, increasing the computing time sixfold
on a representative dataset.
The information gained in this thesis can be used for planning future particle physics anal-
yses for bachelor and master students. With the software stack presented in this thesis, the
students can analyze large HEP datasets in short time in a familiar environment.

Zusammenfassung

In dieser Arbeit wird die Effizienz einer interaktiven Analyse in der Hochenergiephysik
(HEP) auf mehreren Systemen gemessen, die von einem Notebook bis hin zu lokalen Rechen-
clustern reichen. Sie basiert auf Jupyter-Notebooks, wobei eine PyROOT-basierte Anal-
yse als Referenz verwendet wird. Der Algorithmus wurde von einer ,,event-loop” auf eine
vektorisierte (spaltenbasierte) Analyse umgestellt. Dies ermöglicht die Analyse größerer
Datensätze und verringert die Rechenzeit für Datensätze, die mit dem vorherigen Al-
gorithmus analysiert werden können. Ermöglicht wird dies durch die Verwendung des
wissenschaftlichen Python-Software-Stacks, wobei Uproot, Awkward und NumPy zu den
wichtigsten verwendeten Bibliotheken gehören. Während die anfänglichen Änderungen
des Algorithmus einige Verbesserungen bringen, ermöglicht die Einführung von Dask eine
bessere Nutzung der verfügbaren Ressourcen. Die ,,Single-Thread”-Analyse wird paral-
lelisiert, um alle verfügbaren CPU-Kerne auszunutzen. Mit Dask-Sammlungen ist es möglich,
mit nur geringfügigen Änderungen am Algorithmus mit Datensätzen zu arbeiten, die größer
als der Arbeitsspeicher sind. Die maximale Datensatzgröße kann um den Faktor 8, auf
Datensätze mit 400 Millionen Ereignissen, erhöht werden, während die Rechenzeit im Ver-
gleich zum vorherigen Algorithmus um den Faktor 2 sinkt. Mit minimalen Änderungen kann
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die Dask-basierte Analyse vom Notebook auf die lokalen Rechencluster skaliert werden. Auf
dem HTC-Cluster ATLAS-BFG und dem HPC-Cluster NEMO kann die Obergrenze der in
einer interaktiven Analyse nutzbaren Datensatzgrößen um das 2,5-fache erhöht werden. Die
beschriebene Konfiguration ermöglicht zwar die Analyse von Datensätzen, die größer als 170
GB sind, aber ihre Struktur ist entscheidend. Die meisten Datensätze in dieser Arbeit sind
monolithisch, das heißt, eine Datei enthält alle Ereignisse. HEP-Datensätze sind im Allge-
meinen auf mehrere Dateien verteilt, deren Größe von einigen zehn kB bis zu etwa 5 GB
reicht. Die Leistung des in dieser Arbeit vorgestellten Algorithmus wird negativ beeinflusst,
wenn er auf mehreren Dateien ausgeführt wird, was dazu führt, dass sich die Rechenzeit
für einen repräsentativen Datensatz versechsfacht. Die in dieser Arbeit gewonnenen Infor-
mationen können für die Planung zukünftiger Teilchenphysik-Analysen für Bachelor- und
Master-Studierende verwendet werden. Mit dem in dieser Arbeit vorgestellten Software-
Stack können die Studierende große HEP-Datensätze in kurzer Zeit in einer vertrauten
Umgebung analysieren.
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1 Introduction

Many aspects in modern physics benefit from computers. Some common applications are
data gathering, simulations and data analysis. A multitude of tools exist for this purpose.
One example is the scientific Python software stack [1]. It consists of Python and a variety
of libraries as NumPy [2] for array based operations, matplotlib [3] for data visualization
and multiple others. Undergraduate students in physics at the University of Freiburg are
introduced to it in combination with Jupyter Notebooks [4]. Jupyter Notebooks combine
an interactive shell with rich outputs like plots and text. All of this is contained in one
single file with different cells for code, outputs and markdown. Python is generally single
threaded with support for multithreading over different libraries. One example for this is
Dask [5], a library for parallel computing. Dask offers the possibility to scale python code,
both locally and on clusters. It also includes data structures to operate on data sets, which
are larger than the memory of the compute resource.

In high-energy physics (HEP), the traditionally used analysis framework is the C++
based ROOT [6] package. It enables statistically correct scientific data analyzes and offers
a wide range of mathematical and visualization tools. It also comes with threading and
parallelization support as well as an efficient file storage. While interactive tools exist,
ROOT analyses are commonly implemented in the form of C++ programs or scripts to
perform the given task. Additionally, a binding between Python and C++ is offered with
PyROOT [7]. This enables the utilization of ROOT objects in a Python environment.
PyROOT is also usable in interactive environments like Jupyter Notebooks.

The focus of this thesis is the combination of the scientific Python software stack and
Dask for interactive HEP analyzes. While ROOT is very powerful, the scientific Python
software stack is much more accessible to students for aforementioned reasons. For these
reasons, exploring this alternative for HEP analyses, especially for undergraduate students,
is a worthwhile endeavor. To achieve this, an example analysis is ported to the scientific
Python software stack. The ported analysis is then scaled with Dask. First on a notebook,
then on the local computing clusters.

The data provided to study the decay of the Higgs-boson into two photons (H → γγ) in
the 13 TeV ATLAS Open Data release [8] is used as an example analysis for this purpose. It
is a PyROOT based analysis, published in a Jupyter notebook. The physical process covered
by this analysis is theH → γγ decay mode of the Higgs-boson. The events in the dataset are
preselected to include at least 2 photon event candidates. In addition, the example analysis
performs a series of selection cuts. They involve the trigger type, geometric-, energy- and
momentum constraints and the number of photons. As the subsequent step, the invariant
mass of the photon-pairs mγγ is computed. The invariant masses are finally presented as a
histogram. The algorithm of this analysis is based on an event loop. It simply iterates over
all the events in the dataset. The reference analysis is single threaded.

The PyROOT based analysis is first ported to use the scientific Python software stack.
The dataset is loaded with Uproot [9]. It then is stored in-memory as an Awkward Ar-
rays [10]. The numerical functions applied to the data are provided by the NumPy library.
As a contrast to the PyROOT based analysis, the algorithm is vectorized. Instead of the
event loop, all operations are performed on the columns of the array. After verifying the
results of this new algorithm, both algorithms are benchmarked for computing time. Both,
the verification and the benchmarks are run locally on a bwNOTEBOOK, a laptop computer
with 8 logical CPU cores and a RAM of 16 GB.

The NumPy based analysis is then converted to utilize Dask for parallel computations.
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Again, the algorithm is verified and benchmarked on the bwNOTEBOOK. Subsequently,
the algorithm is scaled out to the local compute clusters. Available for this are the high-
throughput computing (HTC) cluster, the ATLAS-Black-Forrest-Grid (ATLAS-BFG)[11],
and the high-performance computing (HPC) cluster NEMO [12]. After verifying the al-
gorithm on the clusters, the algorithm is benchmarked on both clusters. In addition to
the standard benchmarks, measurements comparing the performance on the two different
clusters are included. Finally, a representative dataset is created, modeling the dataset of
a typical HEP PhD thesis. After analyzing the file size distribution of the reference, a new
dataset is generated with events from the H → γγ dataset to match this distribution. The
performance of the Dask-based algorithm analyzing it is then compared to the analysis of
monolithic file containing the same number of events.

The structure of this thesis is as follows: In chapter 2 the physics process of the bench-
mark analyzes and the ATLAS experiment at the LHC are briefly introduced. Chapter 3
covers the original PyROOT analysis, the vectorized version, their performance and the
hardware and dataset used. In chapter 4, an introduction to Dask is given, the conversion
process is briefly mentioned and the performance of the converted algorithm is discussed.
Chapter 6 first introduces the HTC and HPC clusters, then covers the benchmark results
on both individually and compares them. In chapter 7, a typical HEP PhD thesis is in-
troduced, with its dataset used as a reference to build the representative dataset. Then
the performance of the Dask-based algorithm analyzing the representative dataset and a
monolithic dataset with the same number of events are compared. Finally, in chapter 8,
the conclusion and an outlook for further research are given.
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2 Phenomenological Background and Experimental Setup

In this section, a brief overview about the theoretical background and the experimental
setup for the physics analyses mentioned will be given.

2.1 The Standard Model of Particle Physics

The Standard Model (SM) of particle physics describes the currently known particles and
their interactions. Matter consists of fermions, which interact by the exchange of gauge
bosons. In the SM, three interactions are described with great accuracy: The electromag-
netic interaction, the weak interaction and the strong interaction. In addition to these
interactions, the Higgs field exists. It explains how particles acquire mass and predicts the
existence of the Higgs-boson.

2.1.1 Particles

In total, 12 fermions and their anti-particles and 12 gauge bosons are known to exist. Some
of their properties are listed in tables 2.1 and 2.2.

Table 2.1: Selected properties of the Fermions [13]

Particle Symbol Charge [e] Mass [GeV] Interactions

Q
u
ar
k
s

Up Quark u +2/3 2.16× 10−3

Down Quark d -1/3 4.67× 10−3

E
le
ct
ro
m
ag

n
et
ic

S
tr
on

g
W
ea
k

Charm Quark c +2/3 1.27
Strange Quark s -1/3 93.4× 10−3

Top Quark t +2/3 173.21
Bottom Quark b -1/3 4.18

L
ep

to
n
s

Electron e− -1 0.511× 10−3

E
le
ct
ro
m
ag

n
et
ic

(o
n
ly

e,
µ
,τ
)

W
ea
k
(A

ll
)

Electron Neutrino νe 0 < 1.1× 10−9

Muon µ− -1 0.1057
Muon Neutrino νµ 0 < 0.19× 10−3

Tau τ− -1 1.777
Tau Neutrino ντ 0 < 18.2× 10−3

Table 2.2: Selected properties of the gauge-bosons [13]

Particle Symbol Charge [e] Mass [GeV] Interactions

V
ec
to
r

b
o
so
n
s

Photon γ 0 0 Electromagnetic
Gluon g 0 0 Strong

W boson W± ±1 80.4 Weak
Z boson Z0 0 91.2 Weak

2.1.2 Interactions

As previously mentioned, the SM describes three of the four fundamental interactions. Elec-
tromagnetism and weak interactions can be unified in the electroweak theory [14–16]. The
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force carrier of electromagnetism is the photon. The force carriers of the weak interaction
are the Z and W± bosons. The theory of quantum chomodynamics describes the strong
interaction. The force carrier of the strong interaction are the gluons.

2.2 The Higgs-boson

The Englert-Brout-Higgs-Guralnik-Hagen-Kibble-Mechanism [17–22] allows to describe mas-
sive particles without breaking gauge invariance. It is responsible for the fermion masses
as well solving the symmetry breaking problem of the mass of W± and Z0 gauge bosons.
This is achived by introducing a complex scalar field, the Higgs field.

From this field, the existence of the Higgs-boson was predicted. The Higgs-boson is
predicted to be a charge-neutral spin-0 particle. The Higgs particle was discovered by the
LHC in 2012, with an observed mass of approximately 125 GeV [23, 24].

2.2.1 Production

There are multiple production mechanisms for the Higgs-boson at the LHC. In the following,
the most common production mechanims with proton-proton collisions will be mentioned:
Gluon-gluon fusion and vector boson fusion [25].

ggF The most common production mode is gluon-gluon fusion gg → H. Here the Higgs-
boson couples to the gluons via a heavy quark loop. This is illustrated in figure 2.1. The
production cross-section for this process is 48.52 pb [25] at 125.09GeV. In a dataset with the
integrated luminosity of 10.06 fb−1, assuming a perfect detector with detection probability
of 1, the number of Higgs-bosons produced by ggF and decaying to two photons are expected
to be 1108.

Figure 2.1: Leading order Feynman diagram of gluon fusion [26].

VBF With a cross-section of 3.78 pb at 125.09GeV. [25], the second most common pro-
duction mode is vector-boson fusion qq′ → q′′q′′′H. A more concrete example would be
ud → scH. The production cross-section for this process is 48.52 pb [25].

Here a quark from both protons in the collision is emitting a heavy vector-boson. These
then fuse, producing a new Higgs-boson. This is illustrated in figure 2.2. Assuming the
same dataset and detector, the number of Higgs-bosons produced by VBF and decaying to
two photons are expected to be 86.
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Figure 2.2: Leading order Feynman diagram of vector-boson fusion [27].

2.2.2 Decay

Many decays of a Higgs-boson are possible. Since it can not be measured directly, only
the decay products are measured. The most common decay mode is H → ff̄ , where the
Higgs-boson decays to two fermions. One example for this type would be H → bb̄, which
has a Branching Ratio of 5.824 × 10−1 at 125GeV. [25]. This thesis is concentrating on
the H → γγ process, where the Higgs-boson decays to a photon pair. This process has a
branching ratio of 2.270× 10−3 at 125.09GeV [25]. This is illustrated in figure 2.3.

(a) Leading order Feynman diagram of the
H → γγ process, where the Higgs-boson de-
cays over a heavy quark loop.

(b) Leading order Feynman diagram of the
H → γγ process, where the Higgs-boson de-
cays over a W boson loop.

Figure 2.3: Leading order Feynman diagrams of the two most common decay modes of the
H → γγ process.

2.3 Experimental Setup

The ATLAS detector is one of the four large experiments, located at the Large Hadron Col-
lider (LHC) at CERN (Conseil européen pour la recherche nucléaire) in Geneva, Switzerland.

2.3.1 LHC

The LHC [28] is a circular particle collider, designed for proton-proton and heavy ion
collisions. Two particle beams are accelerated in opposite directions through separate tubes
under a high vacuum over a length of approximately 27 km. The beams consist of proton
”bunches”, which are collided at the four interaction points inside the main experiments.
These are ALICE [29], ATLAS [30], CMS [31] and LHCb [32]. The center of mass energy of
the pp-collisions are planned to be up to

√
s = 14TeV. To quantify the amount of collected

data, the integrated luminosity Lint (equation 1) is defined.
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Lint =

∫ tstop

tstart

Ldt (1)

L =
N2

b nbfrevγr
4πεnβ⋆

F (2)

tstart tstop are the start and stop of the considered period. Nb is the number of particles
per bunch and nb is the number of bunches per beam. frev is the revolution frequency of
the beam around the accelerator. γr is the relativistic gamma factor, εn is the normalized
transverse beam emittance, β⋆ is the beta function at the collision point, and F is the
geometric luminosity reduction factor [28].

2.3.2 The ATLAS detector

The ATLAS (A Toroidal LHC ApparatuS) detector is one of the two general purpose de-
tectors at the LHC [30]. The physical dimensions are 25m in height and 44m in length
with a weight of 7000 t. Its sub detectors are arranged in a layered structure. A schematic
overview of them can be found in figure 2.4. Starting from the very center of the detector,
the collision point of the protons and ions, it has a layered construction. The inner detector,
containing the tracking system, is made up of silicon pixel and strip detectors and the tran-
sition radiation tracker. It is surrounded by a superconducting solenoid magnet generating
a 2T magnetic field. The inner magnet is followed by the electromagnetic calorimeter and
the hadronic calorimeter. The outer toroidal magnet provides a magnetic field of up to
3.5T. On the outside of the detector is the muon spectrometer.

For the H → γγ process, the electromagnetic calorimeter and tracking system are
the most important subdetectors. The electromagnetic calorimeter is used to measure the
energy and direction of the photons. From these quantities, the four-momentum vectors
of the individual photons and the invariant diphoton mass is computed. Photons and
electrons have a similar signature in the electromagnetic calorimeter. To differentiate them,
the tracking system is needed: Unlike an electron, a photon does not leave a track in the
inner detector.

The coordinate system To specify points in space inside the detector, a right-handed
coordinate system is defined originating in the interaction point of the two beams. The
z-axis is defined by the beam direction, the positive x-axis points toward the center of the
LHC, and the positive y-axis points upward. The azimuth angle ϕ is around the beam axis,
the polar angle θ is defined as the angle from the beam axis. The pseudorapidity is defined
as η = − ln(tan(θ/2)).
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Figure 2.4: Schematic overview of the ATLAS-detector [33].
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3 Benchmark Analysis H → γγ

This chapter initially introduces the original H → γγ analysis [34], the dataset [35], the
vectorized Python analyzes, the validation procedure, and the experimental setup for this
part of the thesis.

3.1 Dataset

The 13 TeV ATLAS Open Data set [35] is used in this thesis. It is based on data collected
by the ATLAS detector during the first four data-taking periods of proton-proton collisions
in run 2 of the LHC in 2016. The data collected during these four periods is separated into
the files A, B, C and D. The complete dataset contains approximately 270 million collision
events from a total of 61 runs at a center-of-mass energy of

√
s = 13TeV.

The dataset corresponds to an integrated luminosity of 10.06 ± 0.37fb−1 [36] of pp-
collisions. The entire dataset is preselected with quality criteria for beam, data and detector.
While multiple physical processes are analyzable on the complete dataset, for this thesis
the Higgs-Gamma-Gamma subset is used. The Higgs-Gamma-Gamma dataset satisfies two
additional criteria: Every event must contain more than two photons, and the leading
photon must have an energy of more than 35GeV. For this thesis, only the measured data
of the Higgs-Gamma-Gamma dataset set is utilized. This includes more than 7.7 million
events. As seen in sections 3.6, 4 and the subsequent sections, the Higgs-Gamma-Gamma
dataset proves too small to fully utilize the available resources. After the verification part
of this section, new files based on the Higgs-Gamma-Gamma dataset are generated for
benchmarking purposes. While it is possible to repeatedly load parts of the Higgs-Gamma-
Gamma dataset or the entire dataset multiple times for analysis, generating new files allows
to freely choose the dataset’s size and file distribution.
For this purpose, the first 1 million events of the second period of data-taking (stored in file
B), are used to generate bigger datasets for the various benchmarks. This file is selected,
because it contains over 1 million events, unlike file A of the first data-taking period. Using
the files C or D for this purpose would also be possible.
Initially, a base file consisting of the first million events of file B in the Higgs-Gamma-
Gamma dataset is generated. The resulting file is iteratively combined until the desired
dataset size is reached, using the hadd program of the ROOT package. This program
allows multiple files, including the repetitions of the same one, to create the larger datasets,
without duplicating the source files.
Larger files are built with the largest possible smaller file. For example, a dataset containing
10 million events is constructed by chaining the 5 million events dataset two times, rather
than using the dataset with 1 million events directly. This is repeated to a maximum dataset
size of one billion events in one single ROOT file.

3.2 Hardware and Software used

This section introduces the notebook used for performance measurements in Chapters 3
and 4, as well as a portion of the software essential for this thesis.

3.2.1 bwNOTEBOOK

The notebook used is a bwNOTEBOOK. Its specific model is 7U14A2, manufactured by
Fujitsu in the LIFEBOOK series. The CPU is an Intel i5-1145G7 processor, with four
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physical CPU cores and eight logical cores. The notebook is equipped with 16 GB RAM
and 512 GB disk capacity. The installed operating system is Ubuntu 22.04 LTS, 64-bit. The
installed Python version is 3.10.8, the ROOT version is 6.26. A complete list of installed
Python packages can be found in table C.1.

3.2.2 Software

The analysis code is written as a Jupyter Notebook, and the following paragraphs provide
a brief introduction to the most important Python libraries used in this analysis.

PyROOT The Python interface of ROOT, PyROOT [7], enables the use of ROOT di-
rectly in Python code. In the context of this thesis PyROOT was only used in the reference
analysis. It utilizes PyROOT for the following purposes: Loading the dataset from the
ROOT files, computing the invariant mass of the selected photons based on their four-
vectors, and creating the histogram containing the values of the invariant masses.

NumPy An essential part of the scientific Python software stack, NumPy [2] (Numer-
ical Python) provides a multidimensional array object, the ndarray, and a wide range of
mathematical functions ranging from linear algebra to statistics. NumPy relies heavily
on precompiled code for high performance. The ndarrays and many of the mathematical
functions are written in C and FORTRAN. In this thesis, the mathematical functions and
ndarrays are used in every part except the reference analysis.

Awkward The Awkward library [10] contains structures designed to handle irregularly
structured data. It offers a NumPy-like language to work on nested, variable-sized data
of arbitrary types. The Awkward Array is important for the vectorization. It offers an
abstraction layer to ignore e.g. the irregular numbers of photons, ranging from two to four,
in each event while making it possible to access information on each of them. This makes
them a vital part of the selection process.

Uproot To import ROOT files within pure python and without a complete ROOT instal-
lation, Uproot [9] is needed. The contents of the files can be directly loaded into an array.
For this thesis, Uproots functionality is combined with Awkward Arrays. Every part of the
thesis, except the reference analysis, utilizes Uproot to load the dataset.

Jupyter Notebook The document format Jupyter Notebook [4] combines code, rich
outputs and markdown into one file. They are organized into cells of different types, such
as code, markdown and outputs. In general, the user interacts with a Jupyter Notebook
via a web interface. Many interpretation kernels are available for Jupyter Notebooks, like
C++ or Python. In this thesis, the IPython [37] kernel is used.

3.3 Reference H → γγ ATLAS Open Data Analysis

In this section, the reference H → γγ analysis, and the modifications made to it, are
discussed.

The reference version of the analysis [38], is a part of the ATLAS outreach repository
[34]. The H → γγ channel is one of the decay channels contributing to the discovery of
the Higgs-Boson. On a physics level, the analysis first selects photon pairs based on their
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trigger, momentum, pseudorapidity, and isolation. The trigger refers to the diphoton trigger,
requiring two distinct energy clusters in the electromagnetic calorimeter with energies above
ET > 35GeV and ET > 25GeV for the leading and sub-leading photons and loose isolation
criteria based on track and calorimeter information [36]. In the notebook of the reference
analysis, the only criteria constraining the energy of the photons is pT > 25GeV which
for massless photons is equivalent to a selection constraining energy. This is because the
diphoton trigger already selects for the energy of the leading photon. The pseudorapidity
constraints are necessary to restrict the photons to the fiducial region of |η| < 2.37 and to
avoid the region between the barrel and end caps at 1.37 ≥ |η| ≥ 1.52. After these selections,
only events containing photon pairs are selected. In the isolation selection photons with
less than 6.5% of the energy detected outside an area of ∆R = 0.2 and less than 6.5% of
the transverse momentum is outside an area of ∆R = 0.3. Where ∆R is defined as follows:
∆R =

√
∆η2 +∆ϕ2. This is needed to differentiate between photons of the H → γγ decay

and other particles. In the detector, many pp-collisions happen simultaneously or in shortly
after each other, all producing particles. If a second particle were to hit the detector near one
of the photons produced the H → γγ decay, it can influence the measurement by depositing
its energy in the detector close to the photon. Only photons clearly separated from other
particles are selected to reduce the influence of these background particles. To summarize,
the events selected as final diphoton candidates all satisfy the diphoton trigger, have an
energy of more than 25GeV, are within |η| < 2.37 excluding 1.37 ≥ |η| ≥ 1.52. Furthermore,
each event must contain exactly two photons, both satisfying the aforementioned criteria
and are additionally isolated in ET and pT.

The display of one event, which satisfies all these conditions, is illustrated in figure 3.1.
For all selected pairs, the invariant mass is computed. The invariant masses are stored in a
histogram. As provided, the Jupyter notebook is set up to download a part of the dataset
from the internet, run the analysis and display the results in a histogram. The expected
shape of the histogram is a small bump at 125GeV on an exponential, smoothly falling
background.

The algorithm of the analysis is based on an event loop, iterating over all events. Py-
ROOT is used for loading the file and computing the invariant mass. The cuts are imple-
mented as normal Python statements.

For this thesis, the original notebook is modified. Instead of downloading the dataset,
local storage is accessed. Additionally, the whole dataset is analyzed instead of a small part
of it. Time measurements are also added to gather the runtime of each analysis.
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Figure 3.1: This figure contains an event display from the ATLAS detector of a diphoton
candidate [39]. The electromagnetic calorimeter is colored green in all parts of the picture.
The upper left picture shows a radial cross-section of the detector. While many particles
are detected in the inner part of the detector, the two photons are clearly separated in
the electromagnetic calorimeter. A side view of the detector is in the lower left corner of
the figure. Next to it are the sections of the calorimeter where the photons are detected.
Yellow bars represent the detected energy in the sub parts of the detector. Above these is
a diagram displaying the detected energy in the calorimeter in the η − ϕ− plame, showing
the clear separation of both photons.

3.4 Vectorized python analysis

For the initial experiment, the PyROOT based reference analysis is ported to pure Python.
The new analysis has two major differences to the reference analysis. It is vectorized, the
main loop is replaced by a column based algorithm. Since PyROOT is not used, Uproot is
needed to load the dataset. Due to the irregular shape of the dataset, extra considerations
must be given to the data structure used for storage. The irregular shape of the imported
data is caused by the variable number of photons detected in each event, ranging from
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two to four. From a data perspective, this causes fluctuating sizes in some columns of
the dataset. While it is possible to store the events as-is in a rectangular NumPy array,
the variables would be converted to a different type to ensure the same dimensions of all
columns, increasing the processing difficulty. On an array like this, many of the functions
the vectorized analysis relies on are not directly usable. Alternatively, zero padding could
be used to insure the same dimensions over all columns of the dataset. This method
has two significant drawbacks, necessitating computationally expensive preprocessing and
an increase in the memory needed. Awkward Arrays allow analyzing the dataset as if it
were rectangular, without the need for preprocessing. This dedicated loading step in the
algorithm ensures that the entire dataset is loaded into system memory at the beginning of
the calculations, rather than being loaded gradually. Additionally, NumPy based functions
are implemented for the computation of the invariant diphoton mass and to build and fill the
histogram. From a physics perspective, both analyzes are virtually identical. The results
of both are compared in section 3.5. To work on a dataset consisting of multiple files two
strategies are explored.

Classic loading The simplest method is to work on the files sequentially. With this
algorithm, each file is processed on its own, saving the results for each file in memory by
appending them to the same array. This is needed for the validation section, since the
reference dataset consists of 4 files. In section 3.6, the appending step is not necessary.
Instead, larger files are generated for the use with this algorithm.

In-Memory appending An alternative approach is to append the datasets into one
array before analyzing them. For the monolithic datasets in section 3.6, the algorithm is
modified. Instead of loading the large monolithic files, the 1 million events file is loaded
repeatedly to gather the required number of events for a given benchmark measurement.

3.5 Validation

To validate the computation of the new algorithm, their respective results are compared
in two ways. First, the cut flows of both algorithms are compared with each other. For
the PyROOT and NumPy analyzes, it can be found in figure 3.2. The individual cuts are
numbered from zero to four. Cut number zero is the number of events in the entire dataset.
The first cut requires that the photon trigger has fired. Cut number two requires two photons
with certain kinematic properties. The third cut requires that the leading photon fulfills
the isolation requirement. The fourth cut requires that the sub-leading photon also fulfills
the isolation requirement. These are the events used for the evaluation of the invariant
diphoton mass. Comparing the cut flows of both algorithms, the number of events matches
for all but one cut. In the NumPy based analysis, cut three and four are combined into one.
This is due to the vectorized algorithm. The events after cut three, which contain photon
pairs, are analyzed in separate steps in the PyROOT based algorithm. In the NumPy based
one, both are analyzed in the same step.

The second verification is a direct comparison between the results of both algorithms.
The histograms of the invariant diphoton masses are compared directly with each other,
and their per-bin differences are computed. For the PyROOT and NumPy algorithms, this
is visualized in figure 3.3. The total number of events is identical, but two events shift
between bins. In conclusion: The results of the two algorithms are in good agreement. The
differences between both algorithms are below 0.1% for every bin. These fluctuations can
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be explained by differences in floating point precision, shifting single events from one bin
to the next.
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Figure 3.2: Cut flow comparing the PyROOT and NumPy based analysis. The exact
numbers can be found in table 3.1 or table B.1

Table 3.1: Table listing the sequential number of events retained after each cut.

PyROOT NumPy

Cut 0 All events in the dataset 7798424 7798424
Cut 1 Photon Trigger 7798424 7798424
Cut 2 (|pT| > 25GeV and

|η| < 2.37) excluding
(|η| < 1.37 or 1.52 <
|η|) and
Nγ = 2

979404 979404

Cut 3 Leading photon: Iso-
lation requirements for
ET and pT met

644574 −

Cut 4 Sub-leading photon:
Isolation requirements
for ET and pT met

362972 362972
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Figure 3.3: Validation of the vectorized Python analysis against the PyROOT Analysis on
the original dataset. Shown is the spectrum of the invariant diphoton mass. The lower
panel shows the percentage differences between the two measurements.

3.6 Performance measurements

In this section, the performance of the classic (sequentially) loading and the in-memory
appending NumPy-based algorithms and the PyROOT based algorithm is determined and
compared.

The measurements here compare the computing and loading times on the bwNOTE-
BOOK for the three algorithms on different sized datasets. Starting from 1 million events,
the datasets were scaled until the Jupyter notebook running the algorithm crashed.

To ensure comparability, the same setup is used for each measurement. This setup
includes the bwNOTEBOOK, which is only connected to the charger with no other periph-
erals. Additionally, one terminal is used in which the Jupyter Notebook server is running,
along with one Firefox window that has two tabs open: the running notebook and the
Jupyter tab to open the notebook.

Throughout the thesis ten measurements are performed for each set-up. As the result
the mean value of these ten measurements and the estimated uncertainty of the mean value
are quantified. To keep the setup as consistent as possible, a new Jupyter kernel is used for
each measurement. This was automated with the library Papermill [40].

In figure 3.4, the loading and computing times of the classical loading algorithm are
shown. The ratio of compute and loading time is similar for increasing dataset sizes. The
runtimes of this algorithm roughly follow a shallow parabola for increased dataset sizes. For
increases in dataset size, the required computing power increases faster than linearly, but
not significantly. As seen in figure 3.5, this changes for the algorithm with in-memory ap-
pending of the input files. Here, the ratio between loading and computing time is changing
with growing datasets. While the computing times stay comparable to the classical loading
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Figure 3.4: Loading and compute times of the NumPy-based algorithm with classical load-
ing. The loading and compute times are comparable in length for each dataset. The
numerical values are shown in table B.3

algorithm, the loading times increase greatly. The cause for this increase is the concate-
nation of the repeatedly loaded file. The computing times of the in-memory appending
algorithm also follow a second order polynomial. The PyROOT algorithm behaves differ-
ently, as shown in figure 3.6. In the figure, the loading time is not visible. Only in table
B.5 a short and consistent loading time can be found. This is because the PyROOT based
algorithm does not split the execution of the algorithm in loading and computation, but
mixes them. The three major differences to the NumPy-based algorithms are the huge in-
crease in computing time, the nonexistent loading time and the decreased maximal dataset
size.
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Figure 3.5: Loading and compute times of the NumPy-based algorithm with in-memory-
appending based loading. The numerical values are shown in table B.4
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Figure 3.6: Loading and compute times of the PyROOT based algorithm. This algorithm
is not split into separate loading and compute phases. The numerical values are shown in
table B.5
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Figure 3.7: Comparison of the computing time of the PyROOT and the two NumPy-based
algorithms. The numerical values are shown in table B.2

All three algorithms are compared in figure 3.7, which omits the loading times. Here
the differences between the reference PyROOT analysis and the two NumPy based ones
are clearly visible. The PyROOT based algorithm is a lot slower compared to the other
two. It also can not work on dataset with more than 15 million data points. One possible
explanation for this could be a memory leak in the reference analysis. The memory usage
of the Jupyter notebook running this analysis is steadily increasing over the runtime of the
analysis. Both NumPy-based algorithms perform similar, but the in-memory appending of
the dataset has an increasing impact on performance. The difference in computing time
between the NumPy and PyROOT based algorithms can have multiple reasons. NumPy
supports SMID, vectorized instructions, which enable modern CPUs to compute multiple
simple calculations at the same time. A bigger influence on performance could be the
memory structure used by NumPy. The entire dataset is stored in one contiguous part of
system memory.
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4 Parallelization of Jupyter based analysis on a bwNOTE-
BOOK with Dask

This section covers the parallelization of the NumPy-based algorithm with Dask. Initially,
a short introduction to Dask is given and the conversion process from pure NumPy and
Awkward Arrays to Dask equivalents is discussed. This is followed by the verification of
the Dask-based algorithm on the notebook and the performance measurements.

4.1 Experimental Setup

In this section, changes to the software running on the bwNOTEBOOK are made. By
introducing Dask [5], multiple aspects of the algorithm, as defined in the previous section,
are updated. Dask is a parallel computing library designed for interactive computing. An
overview of Dask is given in figure 4.1. It offers a wide compatibility to other Python
libraries and offers out of the box diagnostics in form of a dashboard. Dask has three major
components: Collections, the task graph and scheduler.

Figure 4.1: This figure shows an overview of the main components of Dask[41]. Dask
collections are used to create the task graph. The scheduler executes the task graph.
Multiple collections and schedulers are possible.

Dask collections are designed to be similar to other Python data collections, such as
NumPy array and Awkward Arrays. They are lazily executed. Operations on them do not
result in immediate calculations, but additions to the task graph. Dask collections make it
possible, to work with larger than memory datasets. This is achieved by partitioning the
dataset into chunks. In case of the Awkward Arrays used in thesis, this means grouping
a certain amount of events together, forming a sub-array. Awkward Arrays in Dask are
enabled by a separate library, dask-awkward [42]. Usually, the chunks are hidden by ab-
straction, resulting in less overhead for the user. The chunk size can be adjusted by the
user, either to rows or columns of the dataset or to memory sizes. This chunk size is a
variable influencing the performance of the analysis. More details can be found in section
4.5.
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Dask Scheduling The basis of Dask’s scheduling is the task graph. All operations with
either Dask collections or APIs result in nodes on the task graph. A task graph is a directed
acyclic graph, where the nodes represent computation steps, which are connected via their
dependencies. The task graph is lazily evaluated. This means, that instructions are not
directly evaluated as they normally would be, but instead added to the graph. When
the execution is started, the scheduler of Dask begins to assign the computation steps to
workers, parallelizing whenever possible.

Workers The computations initiated with Dask are executed by the workers. Workers
can be processes on the same machine, using the single-machine scheduler, or entirely
different machines in a cluster with the distributed scheduler. This section covers local
workers, running on the same machine as the scheduler. While easier to use, they have a
significant drawback: Sharing the system resources with the scheduler. Workers introduce
many parameters, this thesis measures the influence of the number of them in figure 4.7 in
section 4.5. Some insight into the effects of allocated memory in combination with increasing
chunk sizes can be found in figure 6.6 of section 6.1.4.

Dashboard For feedback and diagnostics, Dask offers a dashboard. This can be accessed
with the browser or from within Jupyter lab as separate tabs. The displayed information
contains, among others, the progress of the computation as well as the worker memory. In
section 4.3, the information from the dashboard is used to aid scaling the analysis.

4.2 Adjust columnar analysis to Dask Syntax

Dask is built to be mostly compatible with other libraries, such as NumPy and Uproot.
It is possible, to directly load the ROOT files to a dask-awkward array. This simplifies
the conversion greatly. For this thesis, the conversion is mostly a matter of replacing the
library for function calls, as well as triggering the computation. This is mostly, because
the NumPy algorithm is designed for such modifications. For example, the calculations
are all performed by discrete function calls, not by + or −. While converting the code is
straightforward, finding initial values for Dask specific parameters is more difficult. More
details on this are given in section 4.3.

4.3 Dask specific constraints on the bwNOTEBOOK

In the scope of this thesis, Dask specific parameters are mostly chunk size, the number of
workers and the memory allocated to them. Both chunk size and worker memory need to
be set to reasonable values for a given dataset size, that the algorithm can work stable.
Working combinations of both are interdependent, one chunk size will work for one memory
size, but not necessarily for other sizes or larger datasets.

A starting point are the best practice recommendations by the developers [43]. They
state, that chunk sizes between 100 MB and 1 GB are safe in most cases. Workers also
need to be able to keep multiple chunks in-memory at the same time, at least two or three
according to the best practice guidelines. From this, the standard value for the chunk size
is set to approximately 200 MB, or one million events. According to the aforementioned
recommendations, the RAM should be 400 to 600 MB. This results in instable performance,
require more memory to be allocated. With the limitations of the device in mind, a max-
imum of 2 GB RAM is allocated to the 6 workers. This saves resources for the scheduler,
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monitoring and operating system to keep the machine responsive. The chunk size also influ-
ences the task graph, since most operations scale directly with the total number of chunks.
The number of chunks should stay above the number of workers available, to fully utilize the
CPU resources. While smaller chunks mean less burden for the workers, they also increase
the size of the task graph by splitting the dataset in more parts. This increases the load in
the scheduler, resulting in delays before the workers begin after the computation is triggered
and high RAM usage by the Dask scheduler. An upper bound for the number of chunks
is suggested between 10 000 and 100 000. During this thesis, even chunk numbers of more
than 1 000 performed poorly, with more than 30GB RAM usage by the Dask scheduler on
the clusters (section 6).

While these are a lot of parameters to consider, worker utilization and computational
progress can be directly viewed in the Dask dashboard. The dashboard of an analysis
running normally can be found in figure 4.2. An additional screenshot, after the analysis is
finished, is shown in figure A.1. The worker memory display helps to determine the upper
limit for the chunk size. It is a bar graph, representing the memory usage of each worker.
The colors of the bars give a quick indicator, how the workers are performing. Blue means,
the memory is within save limits. If the bar is orange, a worker is spilling from RAM to
disk, it’s allocated memory is filling up. This can be seen in figure A.2. Spilling data from
ram to disk hurts performance and can indicate bad parameters, if occurring shortly after
the computation is started. The gray portion of the memory graph indicates, how much a
worker has spilled to disk. If the bar is red, a worker is halted because not enough memory
is available. This is shown in figure A.3. While it may recover from this state, this is
generally a sign of an instable state. E.g. a wrong combination of chunk size and allocated
RAM per worker. The task stream display also helps to visualize, what the workers are
doing. Large gaps between the colored blocks would mean, that the workers have idle time.
This sometimes can be explained by wrong chunk sizes for the dataset, or even too light
of a workload for the number of workers. If new rows appear in it, it means new workers
have joined the computation. This usually happens around the start of the computation,
or if workers terminated. The progress diagram can also be an indicator, if everything is
configured well. The progress of the tasks should be consistent over time. If the execution
stops at a certain point, it can be used to get an indication where the problem lies. E.g. the
selection could work properly, but the workers could be running into memory issues during
the computation part.
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4.4 Validation

In this section, the Dask-based analysis is validated against the PyROOT based analysis.
Both are executed on the bwNOTEBOOK. The cut locations are the same as described in
section 3.5. The cut flow can be found in figure 4.3. The number of events after each cut
matches perfectly, except for cut three, which the Dask-based algorithm performs simulta-
neously with cut four. A direct comparison of both histograms is made in figure 4.4. Both
analyses deviate below 0.1% per bin, meaning they are again in good agreement.
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Figure 4.3: Cut flow of the Dask analysis on the bwNOTEBOOK and the reference analysis.
The numerical values are shown in table B.1
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Figure 4.4: Validation of the locally run Dask analysis against the reference analysis on the
original dataset. Shown is the spectrum of the invariant diphoton mass. The lower panel
shows the percentage differences between the two measurements.

4.5 Performance measurements

The Dask-based analysis is run repeatedly to measure the influence of different parameters
on the run time of the algorithm. During all measurements in this section, if a parameter is
not explicitly mentioned, it is of standard value. The standard values for Dask workers are
the following: Six workers in total, with each using one logical CPU core and 2GB RAM.
The chunk size is usually set to 1 million events. The normally used dataset consists of 50
million events. To insure comparability, the Notebook is prepared similar as described in
section 3.6. After measuring one data point, the local cluster is shut down and the notebook
kernel is reset.
Starting with the series in figure 4.5, the influence of the chunk size is measured. From a
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size of 500 000 up to 3 million, the computing time is consistent. With the smaller chunks,
the execution slows down due to increased overhead on the scheduler side. Workers need to
communicate with it more often and spend less time computing. With larger chunk sizes,
the workers become instable due to memory overflowing. Because of this, they get halted
and even restarted, slowing down the computation. Following the recommendation [43], a
chunk size of approximately 666 MB should be safe. This is roughly equivalent to a 3.6
million events file. While this chunk size would work, it is already firmly in the instable
region.
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Figure 4.5: Measured computing time for different chunk sizes. The numerical values are
shown in table B.6
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The series in figure 4.6 measures the influence of the dataset size on the computing time.
It also shows which dataset is the largest that can be analyzed. The computing time has
an approximately linear relationship to the size of the analyzed dataset. The main limiting
factor for the upper limit for the file size is the system memory. While the analysis starts
with the 500 million events dataset, the memory fills up crashing the notebook kernel.
Compared to the file size series of the NumPy algorithms in figure 3.7, it is clear that Dask
enables the analysis of larger than memory datasets. The largest dataset measured has a
size of more than four times the total system memory with approximately 80 GB.
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Figure 4.6: Measured computing time for a variety of dataset sizes. The numerical values
are shown in table B.7
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For the series in figure 4.7, the number of workers is varied. Each worker is allocated the
standard amount of memory, 2 GB. Doubling the workers from one to two almost halves
the computing time. The decrease of computing time is less pronounced over the next data
points, saturating at four workers. This also coincides with the number of physical CPU
cores of the notebook.
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Figure 4.7: Measured computing time for varying amounts of workers. The numerical values
are shown in table B.8
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The influence of loading multiple files instead of one larger file is measured in two subseries,
with different total combined file sizes. Both are visualized in figure 4.8. In the first
subseries, files equivalent to the 50 million events dataset are loaded. In the second subseries,
this was repeated with the 100 million events dataset. Both are shown individually in the
figures A.4 and A.5. The size of the individual files is indicated on the x-axis. E.g. for the
10 million events file, it is loaded 5 times for the 50 million series and 10 times for the 100
million series. If the files are loaded 10 times or more often, the impact on performance is
becoming more significant. In section 7, this effect is also observed.
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Figure 4.8: Comparison of the computing time when loading multiple smaller files with a
combined number of Data points of 50M and 100M. The numerical values are shown in
table B.9
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5 Comparison between the PyROOT, ROOT and Python
analyses

As seen in section 3.6, re-implementing the reference analysis in a vectorized Python algo-
rithm enhances the performance compared to the PyROOT reference. The ATLAS out-
reach repository [44] also provides a different implementation of the same analysis, written
in C++. In this section, the performance of the C++ version is compared to the Py-
ROOT, the NumPy and Dask algorithms, since the C++ version can also be setup to run
parallelized. The dataset used for these measurements is the unmodified Higgs-Gamma-
Gamma dataset as described in section 3.1 and not the inflated dataset utilized in the other
benchmarks in the previous sections.

5.1 C++ ROOT

The ATLAS collaboration also published a classic ROOT H → γγ analysis. As provided on
the GitHub repository [44], the analysis is started by a shell script. The user is prompted to
input if the analysis should run on the data only or also on simulated events and if PROOF,
parallelized ROOT, should be used. The algorithm of this analysis is event loop based. To
ensure repeatability of the measurements, the shell script has been adjusted. The modified
version runs the ROOT analysis directly, skipping the selecting steps. Because C++ is not
interpreted, extra steps are necessary to avoid measuring compilation time during the first
run. The C files are adjusted to avoid recompiling. Before measuring the runtime, the
analysis is run at least once without logging the time to compile it. The computing times
of the four single threaded algorithms can be found in table 5.1 and visualized in figure 5.1.
The PyROOT algorithm is significantly slower compared to the other algorithms. While
the C++ ROOT algorithm is faster than PyROOT, it is still slower than the NumPy-based
algorithms. This performance difference can be explained by the different algorithms. The
vectorization of the NumPy based implementation enables it to outperform the loop based
C++ algorithm. It is possible to vectorize the C++ based analysis by using RDataFrame,
but implementing this algorithm is out of the scope of this thesis.

Table 5.1: Computing times in seconds of the single threaded algorithms on the bwNOTE-
BOOK, using the Higgs-Gamma-Gamma dataset.

C++ ROOT
computing time

NumPy Classic
computing time

NumPy inMem
computing time

PyROOT
computing time

32.01± 0.09 10.61± 0.07 12.32± 0.07 294.9± 1.4

5.2 PROOF

The Parallel ROOT facility, PROOF [45] operates similar to Dask. Multiple worker pro-
cesses compute the workload. In this case, they are running locally, sharing the resources
of the system with the scheduler. Before the computing times are measured, some modifi-
cations to the C++ analysis are made. Similar described in section 5.1, a shell script starts
this analysis. In the ROOT reference analysis, the number of workers is automatically set
to the number of logical CPU cores available. To modify this, the C++ analysis itself is
modified, that the number of PROOF workers can be specified from the shell script.
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In figure 5.1, the computing time for varying numbers of PROOF and Dask workers
is illustrated. The single threaded algorithms are also included, as if they use one worker.
PROOF and Dask behave similarly, but the Dask-based algorithm needs approximately half
the computing time of the PROOF-based one. Doubling the number of workers from one
to two does not reduce the computing time to half on either of them. The fastest are three
workers, which leaves one physical CPU core for rest of the system. When comparing one
worker with the single-threaded version, PROOF has and ROOT have a smaller deviation
compared to Dask and the NumPy algorithms. While the computing time of the ROOT-
based algorithm is less than one second shorter than the PROOF-based one, Dask deviates
approximately 3.3 s and 5 s from the NumPy based ones. A possible explanation are the
additional steps needed by the Dask-based algorithm, delaying the start of computing:
Dividing the dataset into chunks and building the task graph.
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Figure 5.1: Comparison between ROOT and PROOF. The single threaded algorithms are
plotted as if they have one worker. The scale of the PyROOT data point differs from the
rest of the plot. The numerical values are shown in table B.10
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6 Scaling a Jupyter Analysis to the local clusters with Dask

This section introduces Dask on clusters and how it differs from locally running Dask. Then,
the high-throughput computing (HTC) cluster ATLAS-BFG and the high-performance com-
puting (HPC) cluster NEMO are introduced and an overview on their architectures is given.
The performance of both clusters is first evaluated separately, then they are compared with
each other.

Computing clusters provide a large amount of computing power to the user. This is
usually significantly more than one machine can provide. Accessing these resources is not as
straightforward as local computing. Shared resources need management, adding complexity
to their use. When switching from locally running software to a cluster, a minor change is
the split between work and home directories. The user directory is limited in disk space per
user, but generally does not expire. This makes it good for storing programs and results in
this case. The work directory has a lot more capacity available, but after a certain amount
of time it will be deleted. This makes it suited for temporarily storing large datasets. A
bigger change is the shared nature of the computing resources of clusters. Depending on
the system, it is not easily possible to access the allocated computing resources directly.
Usually, a batch job is send by the user to the scheduling system of the cluster. When
compute resources, workers, are allocated to the job, it gets processed. After finishing,
the computing resources are released, making them available to other users. This creates
multiple issues for interactive analyzes. After requesting them, the user needs to wait for
the resources. The user can only begin with her/his work, after the resources are allocated.
Depending on the remaining wall time of the workers, they could be released during the
runtime of the analysis. When requesting more than one worker, there can be a delay
between the allocation of the first and subsequent ones. Dask has build in tools to mitigate
these issues during normal use. New workers can be requested automatically, when the
end of the allocation time is reached. Dask also supports later joining workers. These
functionalities cannot be utilized in the scope of this thesis. For repeatability, it is crucial
to keep the number of workers constant during a measurement. This introduces a new
aspect to this part of the thesis: Actively managing workers.

6.1 BFG

The Black Forrest Grid (BFG) [11] is an HTC cluster, located at the University of Freiburg.
The cluster is exclusively used by users related to the ATLAS experiment. All nodes of
the ATLAS-BFG run on the same hardware: DALCO model S2600K servers with Intel
Xeon E5-2630v4 CPUs, which have 20 cores, operating in hyperthreading mode, providing
40 logical cores. Each node has 128 GB RAM. Three user-interface (UI) nodes and 84
worker nodes are available. A total of 3200 logical CPU cores is made available through
the Slurm (Simple Linux Utility for Resource Management) batch system [46]. Multiple
Slurm queues are available to the user, such as the standard queue, the express queue and
the nemo vm <group-id> queues. Every group of the ATLAS experiment at the University
of Freiburg has their own group-id. In this section, only the express queue is used. The
nemo vm atlsch queue is utilized for two series in section 6.3. A schematic overview can be
found in figure 6.1.
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Figure 6.1: Schematic overview of the ATLAS-BFG and NEMO [47]. The user logs into the
UI node to submit their work to the Slurm scheduler. Depending on the selected queue, the
scheduler sends the job to workers of ATLAS-BFG or to NEMO workers, running a virtual
machine.

6.1.1 Setup and architecture of Dask on ATLAS-BFG

Running the Dask-based analysis on the ATLAS-BFG requires some setup. The Dask-
Jobqueue library [48] enables Dask to communicate with Slurm and other schedulers. The
standard configuration for the workers is defined in the jobqueue.yaml file as follows: One
CPU core and one thread with 2 GB RAM. Unless specified otherwise, all Dask workers
used in this thesis on the ATLAS-BFG use this configuration. The default network interface
with 1 Gb/s is used.

The UI nodes of the ATLAS-BFG are the entry point for users to access the cluster.
They are intended for setting up the jobs before sending them to the scheduler for the actual
computation. The Jupyter Notebook and the Dask scheduler are running on an UI node,
when the ATLAS-BFG is in use for a measurement. The Dask workers should not run on
the UI node, but on the worker nodes of the cluster. This is possible with Dask-Jobqueue.
With it, the user can directly request resources from Slurm for the workers. For better
comparability and to reduce waiting times, the workers are requested from the express

queue. This distributes the workers over a set of 24 nodes, with a maximum of two logical
cores available on each of them. Each worker has a maximum wall time of 30 minutes.
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6.1.2 Analysis Validation

The Dask-based analysis on the ATLAS-BFG was again validated against the PyROOT
reference analysis. The Reference analysis is executed on the bwNOTEBOOK. After veri-
fying the cut flow, as seen in figure 6.2, the histograms for both series are compared. The
number of events after each cut matches perfectly, except for cut three, which the Dask-
based algorithm performs simultaneously with cut four. Figure 6.3 visualizes them and
their deviations. No events have shifted their bins. The Dask-based analysis running on
the ATLAS-BFG shows very good agreement with the reference analysis.
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Figure 6.2: Cutflow comparing Dask Analysis on ATLAS-BFG to the reference analysis.
The numerical values are shown in table B.1
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Figure 6.3: Validation of the Dask Analysis on ATLAS-BFG against the reference analysis
on the original dataset. Shown is the spectrum of the invariant diphoton mass. The lower
panel shows the percentage differences between the two measurements.

6.1.3 Dask specific constraints on the ATLAS-BFG

The combination of a Jupyter Notebook with Dask and Dask-Jobqueue enables the user
to run an interactive analysis on a cluster. As mentioned in section 6, Dask can handle
common issues of this architecture. If the parameter of interest is not the number of workers,
it must be assured that their number is constant during the entire measurement. This makes
actively monitoring the workers necessary. The main goal here is to ensure repeatability of
the measurements, but efficient resource usage is also important. Many of the measurements
are short compared to the wall time of the workers. Releasing the current workers and
requesting new ones generates a lot of overhead. To avoid this, the Dask cluster is not shut
down after measuring a single data point, but reset. This refreshes the Dask workers, but
keeps the Slurm workers active. While this reduces overhead, releasing the Slurm workers
is inevitable when longer series are measured. Slurm automatically reallocates them after
30 minutes. If this were to happen during a running measurement, the data point would
become unusable. Two mitigation strategies are possible: Firstly, Recording such events
and marking or deleting the affected data point. Alternatively, the workers can be restarted
if the remaining wall time is too short to measure the next data point. In this thesis, the
second option is used. For each configuration a runtime estimate is saved or updated after
the data point is measured. This estimate is used to determine if the Slurm workers should
be restarted.
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6.1.4 Performance measurements on the ATLAS-BFG

For the benchmarks on the ATLAS-BFG, the standard setup consists of 48 workers with a
chunk size of one million events. While larger files were generated, ROOT limits the size of
single files to approximately 100 GB. For this reason, the largest generated dataset has one
billion events.

For the first measured series on the ATLAS-BFG, the number of workers is varied. This is
done for the 50 million and 100 million events datasets, individually visualized in figures A.6
and A.7. Both series are combined in figure 6.4. Doubling the number of workers from one
to two halves the needed computing time on both datasets. For the 50 million events file,
significant performance gains stop with more than 6 workers. This saturation effect starts
at 10 to 16 workers for the 100 million events file. This can be explained by the number of
chunks, or in this case available jobs for the workers. The datasets are split into 5 and 10
pieces. For this reason, an upper limit to the parallelization exists. Once a certain number
of workers is exceeded, some are underutilized.
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Figure 6.4: Comparison of the computing time for varying amounts of workers on the 50M
and 100 M events files. The numerical values are shown in table B.11
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The next series measures the performance impact of increased dataset sizes for chunk sizes
of one and three million events. Both subseries individually can be found in figures A.8
and A.9. They are visualized together in figure 6.5. The computing time roughly follows
a second order polynomial. When comparing both subseries, the one with a smaller chunk
size outperforms the one with the larger chunk size. The increased chunk size reduces the
overall number of chunks needed for the dataset, reducing the size of the task graph. This
decreases the overhead in the Dask scheduler running on the UI node, decreasing RAM
usage significantly. A larger influence on the overall performance are the modified jobs
themselves. The larger chunks increase the computing time per job for each worker and
the amount of RAM needed by the workers. Since the dataset size is constant, larger jobs
also mean fewer jobs, reducing parallelization of the workload. This contributes to a larger
overall compute time.
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Figure 6.5: Comparison of the computing time over multiple sizes of datasets. 48 workers
with each using one thread with a chunk size of 1 M and 3 M events. The numerical values
are shown in table B.12
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For the last series in this section, both chunk size and the RAM allocated to the workers
are varied. The ratio of chunks per GB RAM is constant over the three measured series.
The first one, 500 thousand events per GB (500k/GB) are the standard ratio, resulting in
a chunk size of one million events for 2 GB of allocated memory. For the second (1M/GB)
and third (2M/GB) ratios, the available memory per event is halved and quartered. All
data points are measured with the 500 million events dataset and 48 workers. Because this
series has two variables, the allocated RAM per worker and chunk size, two visualizations
are made. In figure 6.6 the allocated memory is the independent variable, in figure 6.7 it is
the chunk size. Because the storage system was under heavy load caused by outside factors
during the measurement of this series, it was remeasured. When comparing figures 6.6 and
A.10 as well as figures 6.7 and A.11, it is clear that the influence is not significant. Table
6.1 lists the total number of chunks for each measurement, as an estimate for the number
of jobs.

Table 6.1: Number of chunks per data point of the chunk size and RAM size series.

Subseries 0.5M per GB 1M per GB 2M per GB

Ram size [GB] Number of chunks

2 500 250 N/A
4 250 125 63
6 167 84 42
8 125 63 32
10 100 50 25
12 84 42 21
14 72 36 18
16 63 32 16
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Beginning with figure 6.6, some clear trends are visible. After an initial decrease in com-
puting time, all three subseries seem to lose performance with increased RAM allocation.
The initial increase in performance can be explained by the decreasing overhead in the Dask
scheduler with increasing chunk sizes. The decrease in performance for larger memory size
can be explained by a decrease in parallelization. Since the file size is constant, larger
chunks result in fewer total chunks.
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Figure 6.6: Comparison of the computing time for different chunk sizes and RAM allocated
to workers, using the 500M events file. For 2 GB RAM, only chunk sizes of 1 and 2 million
events could be measured. In this series, two parameters are varied: The chunk size and
allocated RAM of the workers. This figure displays the relationship of the RAM size and
computing time. The connection between the absolute chunk size and the computing time
is visualized in fig. 6.7. The numerical values are shown in table B.13. Remeasured series
in fig. A.10

Reviewing figure 6.7 a similar trend is observed. After a certain point, an increase in
chunk size decreases the overall performance. Comparing the three subseries, it is expected
that doubling the allocated memory for a constant chunks size increases performance. At a
chunk size of 8 million events, the workers in the 2M/GB series have 4 GB RAM, the 1M/GB
have 8 GB and the 500k/GB workers have 16 GB RAM allocated. As expected, the 2M/GB
series performs worst. The 1M/GB series performs better than the 500k/GB series. While
not expected when viewing the series in isolation, all Dask workers are running on ATLAS-
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Figure 6.7: Comparison of the computing time for different chunk sizes and RAM allocated
to workers, using the 500M events file. For 2 GB RAM, only chunk sizes of 1 and 2 million
events could be measured. In this series, two parameters are varied: The chunk size and
allocated RAM of the workers. This figure displays the relationship of the absolute chunk
size and computing time. The connection between the allocated RAM and the computing
time is visualized in fig. 6.6. The numerical values are shown in table B.14. Remeasured
series in fig. A.11

BFG worker nodes, which are shared between different users. It is possible, that the other
jobs on the same machine had different performance impacts for both series. Viewing the
same data point in the remeasured series, the 500k/GB subseries has a much higher spread.
In general, the differences between the 500k/GB and 1M/GB series are small compared
to the 2M/GB series. This matches with the results from section 4.5, where both points
would be in the high performing region of the chunk size series. Two other points match the
expectation: For the chunk sizes of 2 and 6 million events, the 500k/GB series outperforms
the 1M/GB series by a small margin. For the chunk sizes above 8 million events, increases in
allocated memory no longer seem to be the driving factor for improvements in performance.
12 and 16 million events, the 2M/GB subseries performs better than the 1M/GB series.

In conclusion, workers with more than 6 GB RAM become inefficient. Within this mem-
ory range, chunk sizes behave proportionally to the computing time. For best performance,
it should be as small as possible within the constraints of the overall system.
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6.2 NEMO

The Research Cluster for Neuroscience, Elementary Particle Physics, Microsystems Engi-
neering and Materials Science (NEMO) [12] is located at the University of Freiburg. Unlike
the ATLAS-BFG, it is not limited to members of the ATLAS experiment. It is available to
users researching the aforementioned domains in Baden-Württemberg. NEMO is equipped
with the same hardware as the ATLAS-BFG, but with disabled hyperthreading. It has 900
compute nodes resulting in 18 000 available CPU cores. In figure 6.8, an overview of NEMO
is shown. NEMO has two login nodes and two directories: home and work. While the home
directory is different for NEMO and the ATLAS-BFG, the work partition is the same. The
main differences between both clusters are related to the workers. In NEMO, each user gets
an entire worker node allocated. This single-user-policy avoids that the workflow of a given
user might interfere with the workflow of a different user. Nevertheless, when requesting
more than one Dask worker with one CPU core each, they get assigned to a single compute
node. Only when requesting more resources as one node can provide, a second node is
allocated. The wall time of the workers on NEMO can be up to four days. Requesting
resources on NEMO is done via the Moab scheduler [49].

Figure 6.8: Overview of the NEMO cluster [50].

6.2.1 Setup and architecture of Dask on NEMO

Since Dask-Jobqueue is compatible with Moab, the setup on NEMO is similar to the
ATLAS-BFG setup. After installing the required Python libraries, a configuration file
defining the standard parameters for the Dask workers is created. These are one CPU core
and one thread, 2 GB RAM and a wall time of 15 hours. The standard number of workers is
set to 20, filling one worker node. Both wall time and worker count are chosen to minimize
the waiting time, because NEMO has a high utilization with no reservation for interactive
jobs.
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6.2.2 Analysis Validation

The Dask analysis on NEMO is also validated against the reference PyROOT analysis on
the bwNOTEBOOK. Both cut flows are visualized in figure 6.9. The number of events
after each cut matches perfectly, except for cut three, which the Dask-based algorithm
performs simultaneously with cut four. The histograms of the invariant diphoton mass of
both analyses do not deviate from each other, as shown in figure 6.10. This implies a good
comparability of both algorithms.
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table B.1
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Figure 6.10: Validation of the Dask Analysis on NEMO against the reference analysis on
the original dataset. Shown is the spectrum of the invariant diphoton mass. The lower
panel shows the percentage differences between the two measurements.

6.2.3 Dask specific constraints on NEMO

Similar to the setup on ATLAS-BFG, the Jupyter Notebook and Dask scheduler are run on
the login node. The maximum possible wall time of the NEMO workers is longer than the
wall time of the express queue on the ATLAS-BFG. With an upper limit of four days, the
workers can be requested for a longer timespan than the total time necessary for any single
series measured on the ATLAS-BFG for this thesis. This eliminates the need for actively
managing workers. As previously mentioned, a wall time of 15 hours is used as the default
value. This enables to measure an entire series without requesting new resources. Resetting
the Dask workers on NEMO is more problematic as on the ATLAS-BFG. Often, not all
workers respond after repeated resets within the default times set in Dask. This necessitates
a more robust restart function, combining longer wait times and repeated restarts. While
needed for the benchmarks in this thesis, during normal use this should not be required.
Requesting and releasing resources on NEMO is slower compared to the ATLAS-BFG.
For this reason, workers are requested before the benchmarks are started. Occasionally,
the demand for resources is high enough, that wait times are multiple hours. This makes
interactive use difficult while working with the standard queue. While an express queue
exists, it is not used in this thesis. Its wall time of 15 minutes would need even more
active job management to ensure repeatability. With the longer waiting times, this would
significantly increase the overhead on any benchmark measurement. For this reason, the
standard queue with a wall time of 15 hours is used. Once the resources are allocated, the
complete series can usually be measured without further delays.
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6.2.4 Performance measurements on NEMO

The first benchmark run on NEMO is the dataset size series. For this, two subseries with
chunk sizes of 1 and 3 million events are measured.. The results are visualized together
in figure 6.11, individually in figures A.12 and A.13. The computing time for increased
dataset sizes does not follow a liner trend. For the subseries with the smaller chunk size,
the computing times loosely follow a second order polynomial. The highest dataset size
in this series is 750 million events with a chunk size of one million events. When three
million events are used, only the 250 million data point file can be processed. A possible
explanation for the smaller maximal amount of processable number of events compared to
the measurement on the ATLAS-BFG is the reduced amount of total RAM available. On
the ATLAS-BFG, 48 workers are used with 2 GB RAM each, for a total of 96 GB RAM.
In this measurement, 20 workers with 2 GB RAM each are used, with a total of 40 GB
RAM. While not the complete dataset needs to be stored in RAM, the workers need to keep
the results they previously worked on. This fills up their RAM to the point where they
eventually cannot continue working on larger datasets. The increased chunk size complicates
this by necessitating a larger amount of RAM for the active computation, leaving less space
for previous results. This could explain, why tripling the chunk size limited the maximal
dataset size to a third.
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Figure 6.11: Comparison of the computing time over multiple sizes of datasets with chunk
sizes of 1 and 3 million events. The numerical values are shown in table B.17
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The second measured series on NEMO investigates the influence of the number of workers
on computing time. Two subseries are run for this, one starting with 40 workers and
one with 20 workers. In each subseries, the 50 million and the 100 million event datasets
are analyzed on varying numbers of workers. In figure 6.12 the complete measurement is
visualized. The individual measurements can be found in figures A.14 - A.19. Similar to
the worker series measured on ATLAS-BFG in figure 6.4, doubling the number of workers
from one to two halves the required computing time. In the subseries of the 50 million
event data set, significant performance gains stop after 6 to 10 workers. For the 100 million
events subseries, the effect starts at 10 to 15 workers. This matches with the ATLAS-BFG
series, where also approximately 10 chunks per worker seems the most efficient utilization
of the workers.

The two subseries have some obvious differences: One series has one fewer data point
and the subseries starting with 40 workers outperforms the other subseries for some numbers
of workers.

The 100 million data point file could not run on one single Dask worker in the series
starting with 20 workers. Here, the computation stopped after the memory allocated to
the worker is filled. This contradicts the expectation of previous measurements, one single
worker should have sufficient memory to analyze this file. Restarting the Dask workers also
empties their allocated memory, so leftover information of previous analyzes occupying it
should be excluded as a possible reason. The two series starting with more workers (40 on
NEMO, 48 on ATLAS-BFG) can both analyze this file, indicating the influence of previous
measurements is dependent on the maximum worker size and probably the total memory
capacity of them.

The series starting with 40 workers are faster compared to the series starting with 20
workers. To explain this, the resource allocation needs to be considered. When starting
with 40 Dask workers, two worker nodes are allocated. On the 20 workers data point,
the workers are spread 13:7 between both worker nodes. The subsequent data points are
distributed between the worker nodes as follows: 10:6, 8:2, 5:1, 2:0, and 1:0. This means,
for all data points with 6 or more Dask workers, two worker nodes of NEMO are running
the calculations. More even distributions of the Dask workers on both worker nodes result
in better performance of the analysis. The random distribution of Dask workers over the
two NEMO worker nodes is caused by the Dask scheduler. It is deciding which resources
to release while unaware, how they are distributed over the machines. For this reason, the
possible utilization optimizations of Moab, running the fewest worker nodes per use do not
apply. With the single-user-policy of Moab, other users are blocked from running on the
same node, resulting in underutilization of resources. If the Dask scheduler was aware of
the distribution of workers per worker node, a different optimization would be possible.
For best performance, the Dask workers should be distributed evenly between all allocated
worker nodes.
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Figure 6.12: Comparison of the computing time with the 50 M and 100 M events files,
starting from 20 and 40 workers. The scale differs between the upper and lower part of the
figure. The numerical values are shown in table B.18

6.3 Comparison between the two clusters

In this section, the performance of both clusters is compared to each other. Five benchmark
series are measured, with one utilizing the workers of ATLAS-BFG for computations. The
four remaining series are running on worker nodes of NEMO, accessed in two different ways.
In the first section, these different ways of accessing the resources in NEMO are discussed.
The second section discusses the performance differences between the subseries.

6.3.1 BFG Slurm on NEMO

While most subseries in this measurement are running as described in sections 6.1 and
6.2, one subseries is utilizing worker nodes of NEMO as if they are a part of ATLAS-
BFG. This can be done by submitting jobs to the vNEMO queue of Slurm on the ATLAS-
BFG. As illustrated in figure 6.1, this sends the workload to NEMO worker nodes. While
the user experience is straightforward, many systems work interconnected to enable this
functionality. Summarized, based on the demand in the Slurm scheduler, worker nodes on
NEMO are requested. They start a virtual machine (VM), which connects to the ATLAS-
BFG scheduler, Slurm, to receive its workload. Since the actual computing workload is not
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send by Moab, the singe-user-policy is bypassed. Jobs requested by multiple users can run
on each physical worker node, enabling better resource utilization while sacrificing isolation
of workflows.

6.3.2 Performance measurements

In this section, the performance of ATLAS-BFG, NEMO and vNEMO is compared. While
using the same hardware, some differences in software and configuration exist between
them. To measure the influence of the clusters’ configuration on computing time, five
different subseries are measured. Measuring the computing time for a range of datasets,
the performance of one worker node of the clusters is compared. This is done by keeping
the datasets used, chunk size and, for the most part, the amount of memory is constant
between subseries.

Keeping the number of physical CPU cores utilized constant for the subseries is not
as simple. On the worker nodes used by ATLAS-BFG and vNEMO, the CPUs have hy-
perthreading enabled. This results in 40 logical cores available per worker node, so 40
Dask workers are used in the first two subseries running on ATLAS-BFG and vNEMO. The
worker nodes on NEMO do not enable hyperthreading, resulting in 20 logical cores available
per worker node to completely saturate the CPU. The third subseries, the first running on
NEMO is using 20 Dask workers of the standard configuration. Using half the number of
workers is severely limiting the usable parallelization and total available memory for the
analysis. For this reason, two extra subseries are measured on NEMO. In the first one, the
Dask workers are allocated 4 GB RAM, reducing the differences between this and subseries
and the first two. The last subseries is running with 40 standard Dask workers on NEMO.
While increasing comparability in the Dask workers, this subseries needs two worker nodes
on NEMO, contrasting the other four.

The results of this series are visualized in figure 6.13. On the datasets containing up to
250 million events, the 40 worker NEMO subseries outperforms the other subseries. The
vNEMO and ATLAS-BFG subseries perform comparable.

When reviewing the numerical values in table B.19 vNEMO outperforms the ATLAS-
BFG by 17% on the 50 million events dataset and by 15 % on the 100 million events
dataset.

The 20 worker series on NEMO perform consistently worse compared to the others. For
datasets larger than 100 million events, the 20 worker series with 2 GB RAM performs
significantly worse than the others.

The difference between each of the 20 worker subseries is most likely due to the limit
in total memory, shown by the increasing computing time for larger datasets. Running on
20 workers also significantly reduces the parallelization of the workload, increasing the load
on each worker and reducing performance compared to the other three series. The better
performance of the 40 worker subseries on NEMO is within expectation, because doubling
the number of physical CPU cores should increase performance on parallel workloads. For
larger datasets, the ATLAS-BFG subseries outperforms it, due to a decrease in overall load
per used worker. With the single-user-policy, the NEMO worker nodes running the analysis
are completely utilized. The ATLAS-BFG worker nodes are utilized less than 100% and
only host two Dask workers each. This influence is only relevant for the larger datasets. For
the smaller datasets, the decreased communication overhead by running on fewer machines
and better performance of non-hyperthreaded CPU cores gives NEMO the advantage. The
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increased overhead of the VM contribute to the worse performance of vNEMO on the larger
datasets.

Running the analysis on hyperthreaded CPU cores enables this to happen on fewer phys-
ical machines. The performance gained by increasing the number of workers has a higher
impact on performance than running with hyperthreading disabled. The total amount of
memory also influences performance, but an increases in parallelization outweigh increases
in allocated memory. Running on fewer worker nodes is advantageous for smaller datasets,
but the increased load per machine hurts performance on larger datasets.
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Figure 6.13: Comparison of the computing time between the three different ways of accessing
the two clusters. The numerical values are shown in table B.19
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7 Runtime Analysis on a representative Dataset

The measurements in the previous sections analyze the performance of the interactive anal-
ysis on monolithic datasets. In typical physics analyses of PhD theses, the datasets differ
on file level. They are not monolithic, but distributed over multiple files of different sizes.
For this reason, the file distribution of the HH → bbℓℓ+ Emiss

T analysis by Benjamin Rot-
tler [51] is analyzed and a model data set with a similar distribution of number of files and
file sizes representing 1 % of the total analysis is created. The model dataset is based on the
Higgs-Gamma-Gamma dataset and includes approximately 540 million events distributed
over 58 files. More information on it can be found in section 7.2.

7.1 The HH → bbll + Emiss
T Analyzis

The thesis “Search for Higgs-Boson Pair-Production in the bbℓℓ + Emiss
T final state with

the ATLAS detector at
√
s = 13 TeV” [51] measures the signal strength and cross-section

of Higgs-boson pair-production of the ggF and VBF production modes. Additionally, a
constraint on the self-coupling modifier κλ = λ/λSM is set. λ denotes the measured trilinear
Higgs-boson self-coupling strength, λSM the value predicted by the SM. To achieve this, the
full dataset taken with the ATLAS detector during Run-2 of the LHC was analyzed. The
integrated luminosity of the dataset is 139 fb−1. While the complete data collected by the
ATLAS detector in this timeframe is orders of magnitude larger, after preprocessing and
preselection specific to the PhD thesis, the dataset size is reduced to 8 TB.

7.2 Preparation of the representative dataset

Before the representative dataset can be generated, the reference dataset needs to be ana-
lyzed. This is done by extracting the file size distribution of the reference dataset. Then,
the representative dataset is generated based on the Higgs-Gamma-Gamma dataset. More
details on both procedures are given in this section.

Analysis of the reference dataset The file list of the reference analysis is exported
from rucio [52] in form of a CSV file. This CSV file contains fields for, among others, the
scope and name of the individual files as well as their file sizes. Figure 7.1 shows a frequency
distribution of the different file sizes. To keep the number of files per bin roughly equal, a
modified logarithmic scale is used.
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Figure 7.1: Comparison of the file distributions of the generated and reference dataset. The
file numbers per bin of the reference dataset are marked on the left y-axis. On the right
x-axis, the same is shown for the generated dataset.

Generating the representative dataset According to the file distribution in the ref-
erence dataset, new files based Higgs-Gamma-Gamma dataset are generated. The targeted
sizes are the bin centers in the histogram, e.g. 500 kB, 5.5 MB, and so forth. For the total
size of the representative dataset, 1% of the HH-analysis is targeted. Information on the
frequency, how often each file type occurs in the final dataset, can be found in table 7.1.
Similar to the dataset used in the other sections, ROOT is used to generate the new files
for this dataset. More details on the previously generated files can be found in section 3.1.

The specific process used to generate the files uses a larger file and splits a specified
number of events into a new one. To establish a relationship between file size and the
number of events inside a ROOT file of the dataset used in most parts of this thesis, a
linear model is fitted to the previously generated files up to the 30 million events file. The
others are not included, because they are significantly larger than the files required for the
representative dataset. More details to the linear model can be found in figure A.20. With
this linear model, the number of events for each required file size is determined: For the 500
kB file, 2551 events are needed, for the 5.5 MB file 28921 events and so forth. The events
needed for the other sizes can be found in table 7.1.
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Table 7.1: List of the files for the representative dataset. The number of events used for
the monolithic file is also included.

File size [MB] Number of Events Replications

0.5 2551 2
5.5 28921 5
30 158138 7
75 395476 4
175 922893 4
375 1977726 3
750 3955538 4
1500 7911162 3
2500 13185328 6
3250 17140953 6
3750 19778036 6
4500 23733660 8
Σ 542514147 1

Using the file containing 30 million events, all files for the representative dataset are
created. While the actual file sizes deviate from the targeted sizes, they are well within their
respective bins. This can be verified in table B.20. In order to get a good representation of
the HH-analysis, the newly created files are replicated as depicted in figure 7.1 and listed
in table 7.1: The 500 kB file two times, the 5 MB file five times and so on. With this,
every file is loaded once and any influence of multiple workers accessing the same file is
eliminated. Additionally, a monolithic version is generated with the same number of events
as the entire dataset has. Due to file size constraints in ROOT, this results in two separate
files. The source file for this dataset is the one billion events dataset.

7.3 Performance measurements

The analyses of both, the representative dataset and monolithic equivalent to it, are exe-
cuted on the ATLAS-BFG using 48 workers where each worker is allocated 2 GB RAM.
The chunk size is set to one million events. The analysis is run 10 times on each dataset
to compensate for differences in the load of the worker nodes. The mean computing times
and their errors are listed in table 7.2.

Table 7.2: Compute times on representative and monolithic datasets executed with 48
workers and 2 GB RAM per worker on ATLAS-BFG. The chunk size is 1 M.

Dataset Total time [s]

Representative dataset 1284± 5
Monolithic dataset 201± 4

By loading 58 separate files, a large overhead is generated. The dataset in one single
file is more than 6 times faster. This can be compared to the series measured on the
bwNOTEBOOK, visualized in figure 4.8 with the numerical values in table B.9. Two of the
data points in this series load individual files a similar number of times as the representative
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dataset. The first loads the 1 million events dataset 50 times, resulting in a computing time
of 101.2 ± 0.4 s. Compared to the 50 million events dataset with a computing time of
39.97± 0.15 s, the analysis of the monolithic file is more than two times better. The second
data point loads the 1 million events dataset 100 times, enabling a comparison to the 100
million events dataset. Here the repeatedly loaded dataset needs 323.8 ± 1.2 s, while the
monolithic dataset needs a computing time of 80.80±0.25 s. This makes the monolithic file
on this data point approximately 4 times faster.

These measurements indicate, that the use of larger files increases the performance of
the algorithm. The influence of the individual file size can not be determined with the
data gathered so far. While the representative datasets files are larger on average, the
performance increase when analyzing the monolithic dataset is also larger. That being
said, both measurements differ greatly. Running on the bwNOTEBOOK, 6 workers with
a total of 12 GB RAM analyze a dataset of 100 million events from local storage. The
representative dataset has more than 540 million events and is analyzed by 48 workers with
a total 96 GB RAM from a networked storage.

To conclude, the structure of the dataset influences the performance of the algorithm.
Monolithic datasets perform much better than datasets distributed over a number of files
of different sizes.
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8 Conclusion and Outlook

In this thesis, the performance of a parallelized interactive HEP analysis running in Jupyter
Notebooks is benchmarked The standard for HEP analyzes is ROOT, a C++ based analysis
framework. ROOT based analyzes are often implemented as scripts. With PyROOT, a
binding between Python and ROOT exists, enabling easy use of ROOT in an interactive
Python environment, like Jupyter Notebook. Interactive analyzes have a lower barrier to
entry compared to script based ones. It is possible to further decrease it by switching
from PyROOT to the scientific Python software stack, as demonstrated in section 3, while
maintaining comparable or better performance and accurate results. When designed with
mostly explicit function calls, an algorithm which relies on Uproot, Awkward Arrays and
NumPy can be modified for parallelized computation with Dask. In section 4, this is first
demonstrated on a single notebook, then scaled to multiple clusters in section 6.

8.1 Conclusion

Vectorizing the reference PyROOT analysis results in great performance gains, with com-
puting times decreasing by an order of magnitude. This allows the utilization of larger
datasets than possible with the reference algorithm while significantly decreasing the needed
computing times, compared to the reference, when analyzing the same dataset. As seen in
figure 3.7, the largest dataset analyzable with the PyROOT algorithm contains 15 million
events with a computing time of more than 500 seconds. Both variations of the NumPy
algorithm could analyze a dataset containing 50 million events in under 100 and under 200
seconds, depending on the loading mechanism. While comparatively poor performance of
the PyROOT analysis could be caused by a memory leak, optimizing the reference analysis
is out of the scope of this thesis. The C++ script based version of the reference analysis
outperformed the PyROOT version by a wide margin, but the NumPy based analysis is still
faster than the C++ reference. The difference is smaller, with the faster NumPy algorithm
outperforming it by a factor of approximately 2.
To utilize all resources available on the notebook, the algorithm is parallelized with Dask.
This is possible by breaking down the dataset into smaller parts and parallel running com-
putations on these parts. With Dask workers, it is easily possible to scale the analysis to
exploit all locally available resources. The six used Dask workers are configured with one
thread and 2 GB RAM for each. In practice, the performance increases plateaued when all
physical CPU cores are fully utilized, as illustrated in figure 4.7. Working with Dask col-
lections, datasets of almost an order of magnitude larger can be analyzed. Comparing the
computing time of the Dask-based algorithm to the fasted NumPy based one on, running
on the largest file analyzable by it, the parallelization halves the required computing time.
This can be seen in figure 4.6. In this figure, the largest dataset analyzed on the notebook
during this thesis is also listed, containing 400 million events with a file size of more than 70
GB and a computing time of less 350 seconds. Loading a file this large is possible, because
Dask collections split the original file into smaller parts, determined by the chunk size. A
wide range of chunk sizes is determined to be usable, but optimal performance is influenced
by multiple variables.

With the structure of Dask and the information gained by running the Dask-based
analysis on the notebook, scaling to the clusters is straight forward. Two clusters, the
ATLAS-BFG and NEMO, are benchmarked. Running on the clusters, more resources are
available. Beginning with an increase of the number of workers, (fig. 6.4, 6.12) saturation
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effects start before all physical CPU cores are utilized by Dask workers. This is because
the datasets analyzed in this series contain too few events to saturate the CPUs. More
workers also make the analysis of larger dataset sizes possible, as seen in e.g. figure 6.13.
With 40 workers, it is possible to analyze files containing one billion events in around 10
minutes. Datasets in this scale increase the overhead in the login nodes of the cluster
significantly. The Dask scheduler running on the login node needs to create the jobs sent
to the Dask workers beforehand. Since the dataset is split into usually smaller pieces which
get analyzed in parallel, the Dask scheduler is determining which parts are to be analyzed
by each worker and which worker collects intermediate results. With fewer divisions of the
dataset, the workload of the scheduler can be decreased. This is done by enlarging the
chunk size. While reducing the overhead on the login node, it also results in worse overall
performance. The larger blocks in the workers’ memory result in an increase of computing
time on both clusters and the maximum file size analyzable on NEMO (fig. 6.5, 6.11).

Most of the previously mentioned benchmarks utilize datasets contained in one single
ROOT file. Typical HEP analyzes of PhD thesis use datasets consisting of multiple thou-
sands files with a combined size of approximately 10 TB. In section 7, a more representative
dataset is generated, based on the dataset of a HEP PhD thesis. After analyzing the file
size distribution, a new dataset is generated with events from the Higgs-Gamma-Gamma
dataset to match this distribution. This more representative dataset has approximately
1% of the total size of the reference dataset. Additionally, a monolithic dataset containing
the same amount of events as the representative dataset is generated. The performance of
the Dask algorithm analyzing both datasets is then compared. Utilizing 48 workers on the
ATLAS-BFG, the representative dataset is analyzed in more than 21 minutes, while the
monolithic dataset needs less than 4 minutes.
For general performance optimizations of an interactive HEP analysis with Dask, the follow-
ing key parameters and constraining factors are identified. The first parameters influence
the Dask workers. Simplest, the number of them, has a large influence. The total available
RAM for the analysis scales proportionally to the number of workers, as well as the po-
tential for parallelization of the workload. Second, the amount of RAM allocated to each
Dask worker. While performance can be improved by allocating up to 6 GB per worker,
this is not feasible in every environment. Increasing these two parameters enables analysis
of larger files by either distributing the dataset and intermediate results better or simply
having more physical space for similar effects. When too many workers are used, it is pos-
sible to underutilize the requested resources. For larger datasets, the overhead in the login
node of a cluster increases. To reduce it, the size of the task graph needs to be reduced, e.g.
by increasing the chunk size, decreasing the number of blocks, the dataset is separated into.
This can also necessitate increasing the amount of memory allocated to the workers. While
this is an effective method to decrease the burden on the Dask scheduler, larger chunk sizes
also increased the computing time for the same file size. When comparing the ATLAS-BFG
and NEMO, the infrastructure on the former is more optimized for interactive analyses.
The express queue and reservation make it possible to access the resources of the cluster
with shorter waiting times.
To summarize, Dask is an excellent module to scale an interactive HEP analysis. Switch-
ing from the standard event loop algorithm based analysis to vectorized or column based
algorithms, local parallelization and the utilization of compute clusters is trivial when us-
ing Dask. The datasets usable with this setup range from tens of GB locally to hundreds
of GB on clusters. This setup combines easy to use Jupyter Notebook environment and
the Python software stack, both well known to students, with the functionality of Dask
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to easily scale from single machines to computing clusters. In particular for a HEP B.Sc.
Thesis analysis, a setup like this should become the standard. It allows students to analyze
large datasets in the environment they are familiar with since the first semesters while also
serving as an easy introduction to distributed computing.

8.2 Outlook

Although providing an easy starting point for HEP analyses, interactive analyses with
algorithm similar to the one in this thesis have limits in terms of dataset size. Further
optimizations on the algorithm could change this. While the algorithm as described in this
thesis loads the entire dataset into one Dask collection, it is easy to imagine a different
one inspired by the normal use of the batch system on the computing cluster. Single
files or smaller groups could be analyzed individually by the Dask workers. This could be
implemented with a different Dask collection: Dask Delayed. The task-graph size should
also decrease with this algorithm, enabling the analysis of larger datasets distributed over
multiple files.

When using the algorithm described in this thesis, the login node of the clusters could
get overwhelmed if multiple users are running their analyses at the same time. On large
datasets, approximately 30 GB RAM is needed per user, degrading the performance for
other users of the cluster. A dedicated notebook server, Jupyter hub, could avoid this, with
the benefit of having a standardized environment for all users. It is also possible to run
a Jupyter server on an interactive NEMO worker node. With this dedicated machine, the
aforementioned resource usage on login nodes can be avoided. It can be used to run an
interactive analysis with more resources available than a typical notebook, while running
the same code.
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A Supplementary Figures
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Figure A.4: Comparison of the computing time when loading multiple smaller files with a
combined number of events of 50M
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Figure A.5: Comparison of the computing time when loading multiple smaller files with a
combined number of events of 100M
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Figure A.6: Comparison of the computing time for varying amounts of workers on the 50M
events file
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Figure A.7: Comparison of the computing time for varying amounts of workers on the 100M
events file
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Figure A.8: Comparison of the computing time over multiple sizes of Datasets. 48 Workers
with each using one thread with a chunk size of 1 M events.
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Figure A.9: Comparison of the computing time over multiple sizes of Datasets. 48 Workers
with each using one thread with a chunk size of 3 M events.
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Figure A.10: Remeasured version of the comparison of the computing time for different
chunk sizes and RAM allocated to workers, using the 500M events file. For 2 GB RAM,
only chunk sizes of 1 and 2 million events could be measured. In this series, two parameters
are varied: The chunk size and allocated RAM of the workers. This figure displays the
relationship of the RAM size and computing time. The connection between the absolute
chunk size and the computing time is visualized in fig. A.11. The numerical values are
shown in table B.15
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Figure A.11: Comparison of the computing time for different chunk sizes and RAM allocated
to workers, using the 500M events file. For 2 GB RAM, only chunk sizes of 1 and 2 million
events could be measured. In this series, two parameters are varied: The chunk size and
allocated RAM of the workers. This figure displays the relationship of the absolute chunk
size and computing time. The connection between the allocated RAM and the computing
time is visualized in fig. A.10. The numerical values are shown in table B.16
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Figure A.12: Comparison of the computing time over multiple sizes of Datasets with a
chunk size of 1 million events.
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Figure A.13: Comparison of the computing time over multiple sizes of Datasets with a
chunk size of 3 million events.
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Figure A.14: Comparison of the computing time with the 50 M and 100 M events files,
starting from 20 workers. The sale of the upper part of the figure differs from the lower
part.
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Figure A.15: Comparison of the computing time with the 50 M and 100 M events files,
starting from 40 workers. The sale of the upper part of the figure differs from the lower
part.
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Figure A.16: Comparison of the computing time with the 50 M events file, starting from
20 workers. The sale of the upper part of the figure differs from the lower part.
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Figure A.17: Comparison of the computing time with the 100 M events file, starting from
20 workers. The sale of the upper part of the figure differs from the lower part.
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Figure A.18: Comparison of the computing time with the 50 M events file, starting from
40 workers. The sale of the upper part of the figure differs from the lower part.
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Figure A.19: Comparison of the computing time with the 100 M events file, starting from
40 workers. The sale of the upper part of the figure differs from the lower part.
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Figure A.20: This figure contains a plot of the file sizes of the datasets with less than 30
million events and linear model fitted to them. The parameters contribute according to this
formula: (File size) = a+ b ∗ (Number of events).
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Table B.2: Runtime comparison of the PyROOT algorithm and both NumPy algorithms.
Executed on the bwNOTEBOOK.

N NumPy NumPy in-Memory PyROOT
Total time [s] Total time [s] Total time [s]

1 1.448± 0.004 1.440± 0.005 36.45± 0.12
3 4.156± 0.013 4.35± 0.05 111.8± 0.4
5 7.03± 0.12 7.274± 0.021 185.7± 0.5
7 10.29± 0.11 10.36± 0.04 260.1± 0.7
10 14.08± 0.19 17.54± 0.20 376.8± 1.5
15 21.17± 0.28 28.57± 0.09 559.7± 1.6
20 27.14± 0.13 40.63± 0.13 N/A
25 33.98± 0.21 54.22± 0.09 N/A
30 42.77± 0.20 68.57± 0.25 N/A
40 58.9± 0.6 101.92± 0.30 N/A
50 77.2± 1.2 141.15± 0.28 N/A

Table B.3: Loading, compute and total times of the file size series of the NumPy algorithm
with standard loading. Executed on the bwNOTEBOOK

N Loading time [s] Compute time [s] Total time [s]

1 0.7711± 0.0028 0.6770± 0.0028 1.448± 0.004
3 2.1810± 0.0031 1.9752± 0.0031 4.156± 0.013
5 3.5737± 0.0025 3.4581± 0.0025 7.03± 0.12
7 4.993± 0.007 5.298± 0.007 10.29± 0.11
10 7.090± 0.004 6.991± 0.004 14.08± 0.19
15 10.67± 0.08 10.50± 0.08 21.17± 0.28
20 14.23± 0.12 12.91± 0.12 27.14± 0.13
25 17.657± 0.025 16.323± 0.025 33.98± 0.21
30 21.475± 0.033 21.296± 0.033 42.77± 0.20
40 28.662± 0.032 30.244± 0.032 58.9± 0.6
50 36.09± 0.10 41.15± 0.10 77.2± 1.2
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Table B.4: Loading, compute and total times of the file size series of the NumPy algorithm
with in-memory appended loading. Executed on the bwNOTEBOOK.

N Loading time [s] Compute time [s] Total time [s]

1 0.7497± 0.0014 0.6906± 0.0014 1.440± 0.005
3 2.395± 0.028 1.959± 0.028 4.35± 0.05
5 4.062± 0.005 3.212± 0.005 7.274± 0.021
7 5.928± 0.007 4.434± 0.007 10.36± 0.04
10 9.23± 0.04 8.31± 0.04 17.54± 0.20
15 15.91± 0.04 12.67± 0.04 28.57± 0.09
20 23.67± 0.05 16.95± 0.05 40.63± 0.13
25 32.96± 0.06 21.26± 0.06 54.22± 0.09
30 43.27± 0.15 25.30± 0.15 68.57± 0.25
40 68.24± 0.18 33.68± 0.18 101.92± 0.30
50 98.30± 0.20 42.84± 0.20 141.15± 0.28

Table B.5: Loading, compute and total times of the file size series of the PyROOT algorithm.
Executed on the bwNOTEBOOK.

N Loading time [s] Compute time [s] Total time [s]

1 0.1171± 0.0006 36.3339± 0.0006 36.45± 0.12
3 0.1134± 0.0006 111.7025± 0.0006 111.8± 0.4
5 0.1138± 0.0007 185.6264± 0.0007 185.7± 0.5
7 0.1135± 0.0007 260.0173± 0.0007 260.1± 0.7
10 0.1139± 0.0008 376.6550± 0.0008 376.8± 1.5
15 0.1140± 0.0007 559.6345± 0.0007 559.7± 1.6

Table B.6: Total times of the Dask chunk size series. 6 workers with 2 GB RAM allocated
to each one. 50 M events File. Executed on the bwNOTEBOOK.

Chunk size Total
million events time [s]

0.05 121.3± 0.5
0.10 75.62± 0.12
0.25 48.03± 0.08
0.50 40.25± 0.08
0.75 38.92± 0.20
1.00 40.24± 0.19
1.50 39.46± 0.15
2.00 40.88± 0.22
2.50 40.55± 0.12
3.00 38.78± 0.06
3.50 49.1± 2.4
3.75 86± 34
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Table B.7: Total times of the Dask file size series. The file sizes are given in million events.
6 workers with 2 GB RAM allocated to each one. Chunk size of 1 M events. Executed on
the bwNOTEBOOK.

N Total time [s]

1 2.231± 0.028
3 2.997± 0.007
5 4.484± 0.013
7 6.93± 0.07
10 8.433± 0.017
15 12.83± 0.04
20 17.12± 0.05
25 21.32± 0.19
30 24.86± 0.22
40 32.84± 0.30
50 40.52± 0.26
60 48.3± 0.4
70 55.6± 0.4
100 78.5± 0.7
250 202.6± 0.7
300 244.4± 0.6
350 286.6± 0.8
400 330.6± 1.1

Table B.8: Dask worker series. Each worker is allocated 2 GB RAM. The 50 M events file
is used. The chunk size is 1 M events. Executed on the bwNOTEBOOK.

Workers Total time [s]

1 88.29± 0.16
2 52.28± 0.08
3 43.35± 0.08
4 39.97± 0.11
5 38.84± 0.19
6 39.33± 0.35
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Table B.9: Loading multiple files with equivalent event numbers to 50M and 100 M total
events. The sizes of the files loaded are given in million events. Computed with the Dask
algorithm. 6 workers with 2 GB RAM allocated to each one. Executed on bwNOTEBOOK

N 50 M combined size 100M combined size
Total time [s] Total time [s]

1 101.2± 0.4 323.8± 1.2
5 51.08± 0.16 124.24± 0.13
10 44.82± 0.25 99.5± 0.5
20 N/A 86.6± 0.4
25 40.92± 0.27 84.76± 0.33
50 39.97± 0.15 82.6± 0.4
100 N/A 80.80± 0.25

Table B.10: Runtime of all algorithms executed on the bwNOTEBOOK, using the Higgs-
Gamma-Gamma dataset.

Number C++ PROOF C++ ROOT Dask NumPy Classic NumPy inMem PyROOT
of computing computing computing computing computing computing

Workers time [s] time [s] time [s] time [s] time [s] time [s]

1 32.85± 0.31 32.01± 0.09 15.61± 0.04 10.61± 0.07 12.32± 0.07 294.9± 1.4
2 21.10± 0.21 N/A 9.74± 0.10 N/A N/A N/A
3 17.41± 0.27 N/A 7.990± 0.024 N/A N/A N/A
4 17.7± 0.4 N/A 7.325± 0.023 N/A N/A N/A
5 18.17± 0.26 N/A 7.281± 0.028 N/A N/A N/A
6 18.63± 0.28 N/A 7.117± 0.022 N/A N/A N/A
7 17.9± 0.4 N/A 7.440± 0.023 N/A N/A N/A
8 19.4± 0.4 N/A 7.752± 0.019 N/A N/A N/A

Table B.11: Dask worker series. Each worker is allocated 2 GB RAM. The datasets with
50 and 100 million events are used. The chunk size is 1 million events. Executed on the
ATLAS-BFG

Number of 50 M events 100M events
Workers Total time [s] Total time [s]

1 375± 10 782± 14
2 188.8± 0.7 402± 4
6 66.9± 0.5 141.7± 0.7
10 49.4± 0.4 94.4± 1.1
16 33.76± 0.25 63.8± 0.6
24 25.80± 0.33 47.15± 0.20
32 21.62± 0.20 38.95± 0.26
40 20.12± 0.10 33.96± 0.19
48 17.71± 0.20 32.4± 0.4
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Table B.12: Dask file size series. The file sizes are given in million events. 48 workers are
used, each one is alloceted 2 GB RAM. The chunk sizes of the series are 1 and 3 million
events. Executed on the ATLAS-BFG.

N Chunk size 1 M Chunksize 3 M
Total time [s] Total time [s]

1 8.5± 0.5 8.5± 0.5
3 10.2± 0.4 20.2± 1.0
7 10.58± 0.35 20.7± 1.1
10 11.55± 0.22 21.9± 1.6
15 12.18± 0.30 24.7± 1.6
20 13.14± 0.34 26.2± 1.6
25 12.74± 0.32 25.9± 1.7
30 13.4± 0.5 26.4± 1.7
40 14.8± 0.5 27.3± 1.9
50 18.9± 0.8 31.6± 3.3
60 21.4± 0.6 31.4± 2.2
70 23.3± 1.0 39.0± 3.3
100 32.3± 0.7 48.2± 2.8
175 49.4± 0.9 84.1± 2.4
250 68.8± 0.6 115± 6
300 84.0± 1.7 154.1± 3.4
350 97.3± 0.6 173± 4
500 151.1± 0.8 248.6± 2.8
1000 448.9± 3.1 547± 10

Table B.13: Dask Chunk size - RAM series. The 500 million events dataset and 48 workers
are used. Multiple chunk size to ram ratios are measured: 500k events per GB, 1M events
per GB and 2M events per GB. This table displays the series by the amount of memory
allocated to the workers. The same data, but displayed by absolute chunk size can be found
in table B.14 Executed on the ATLAS-BFG.

Allocated 500k/GB 1M/GB 2M/GB
Memory [GB] Total time [s] Total time [s] Total time [s]

2 158.6± 3.1 119.9± 0.8 N/A
4 117.1± 0.5 110.3± 0.6 159.9± 1.9
6 112.1± 0.7 110± 4 111.6± 3.2
8 110.1± 0.4 121.4± 0.6 135± 4
10 119.3± 0.8 132.6± 1.2 159± 5
12 104.5± 0.4 131.3± 1.5 211± 13
14 113.3± 0.5 152± 6 293± 21
16 125.4± 1.1 184± 8 322± 19
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Table B.14: Dask Chunk size - RAM series. The 500 million events dataset and 48 workers
are used. Multiple chunk size to ram ratios are measured: 500k events per GB, 1M events
per GB and 2M events per GB. This table displays the series by the absolute chunk sizes.
The same data, but displayed by the amount of allocated memory can be found in table
B.13 Executed on the ATLAS-BFG

Chunk size 500k/GB 1M/GB 2M/GB
million events Total time [s] Total time [s] Total time [s]

1 158.6± 3.1 N/A N/A
2 117.1± 0.5 119.9± 0.8 N/A
3 112.1± 0.7 N/A N/A
4 110.1± 0.4 110.3± 0.6 N/A
5 119.3± 0.8 N/A N/A
6 104.5± 0.4 110± 4 N/A
7 113.3± 0.5 N/A N/A
8 125.4± 1.1 121.4± 0.6 159.9± 1.9
10 N/A 132.6± 1.2 N/A
12 N/A 131.3± 1.5 111.6± 3.2
14 N/A 152± 6 N/A
16 N/A 184± 8 135± 4
20 N/A N/A 159± 5
24 N/A N/A 211± 13
28 N/A N/A 293± 21
32 N/A N/A 322± 19

Table B.15: Rerun of the Dask Chunk size - RAM series. The 500 million events dataset
and 48 workers are used. Multiple chunk size to ram ratios are measured: 500k events per
GB, 1M events per GB and 2M events per GB. This table displays the series by the amount
of memory allocated to the workers. The same data, but displayed by absolute chunk size
can be found in table B.16 Executed on the ATLAS-BFG.

Allocated 500k/GB 1M/GB 2M/GB
Memory [GB] Total time [s] Total time [s] Total time [s]

2 158.0± 0.8 126.3± 1.1 N/A
4 120.2± 0.6 112.9± 0.6 177± 9
6 117.4± 0.8 118.5± 1.5 126± 4
8 113.0± 1.0 124.2± 1.0 155± 6
10 119.6± 0.8 131.4± 2.3 225± 8
12 109.4± 2.5 134.0± 2.9 221± 10
14 126.5± 1.3 153.9± 3.3 274± 17
16 134± 9 179± 5 349± 21
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Table B.16: Rerun of the Dask Chunk size - RAM series. The 500 million events dataset
and 48 workers are used. Multiple chunk size to ram ratios are measured: 500k events
per GB, 1M events per GB and 2M events per GB. This table displays the series by the
absolute chunk sizes. The same data, but displayed by the amount of allocated memory
can be found in table B.15 Executed on the ATLAS-BFG

Chunk size 500k/GB 1M/GB 2M/GB
million events Total time [s] Total time [s] Total time [s]

1 158.0± 0.8 N/A N/A
2 120.2± 0.6 126.3± 1.1 N/A
3 117.4± 0.8 N/A N/A
4 113.0± 1.0 112.9± 0.6 N/A
5 119.6± 0.8 N/A N/A
6 109.4± 2.5 118.5± 1.5 N/A
7 126.5± 1.3 N/A N/A
8 134± 9 124.2± 1.0 177± 9
10 N/A 131.4± 2.3 N/A
12 N/A 134.0± 2.9 126± 4
14 N/A 153.9± 3.3 N/A
16 N/A 179± 5 155± 6
20 N/A N/A 225± 8
24 N/A N/A 221± 10
28 N/A N/A 274± 17
32 N/A N/A 349± 21
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Table B.17: Dask file size series. Dataset sizes given in million events. 20 workers are used,
each one is allocated 2 GB RAM. Two subseries with chunk sizes of 1 and 3 million events
are used. Executed on NEMO.

N Chunk size 1 M Chunk size 3 M
Total time [s] Total time [s]

1 5.0± 0.4 5.1± 0.5
3 6.3± 0.7 11.2± 1.5
5 6.1± 0.5 11.0± 0.8
7 7.1± 0.5 11.9± 1.1
10 8.5± 0.4 12.2± 0.9
15 10.6± 0.5 14.3± 1.5
20 11.8± 0.7 16.8± 2.0
25 14.7± 1.0 16.9± 0.9
30 15.8± 1.2 18.0± 1.6
40 19.2± 1.3 19.6± 1.7
50 26.3± 1.9 23.3± 2.7
60 27.3± 1.8 25.6± 2.1
70 33.3± 1.9 36± 4
100 43.8± 2.0 45± 4
175 70.6± 3.5 113± 20
250 104± 6 262± 26
300 120± 5 N/A
350 194± 9 N/A
400 232± 14 N/A
500 310± 14 N/A
750 938± 17 N/A

Table B.18: Dask worker series with two different maximum numbers of workers. Each
worker is allocated 2 GB RAM. For each maximum worker count, the datasets with 50 and
100 million data points are measured. The chunk size is 1 million events. Executed on
NEMO.

Number maximum of 20 workers maximum of 40 workers
of 50 M dataset 100 M dataset 50 M dataset 100 M dataset

Workers Total time [s] Total time [s] Total time [s] Total time [s]

1 130± 7 N/A 141± 18 2030± 170
2 68.14± 0.33 149± 12 68.5± 0.4 152± 8
6 33.28± 0.11 60.77± 0.16 31.71± 0.11 60.64± 0.11
10 26.45± 0.19 47.85± 0.21 23.59± 0.14 41.14± 0.07
16 24.98± 0.27 44.68± 0.23 18.42± 0.14 32.58± 0.14
20 28.7± 0.5 47.8± 0.8 17.53± 0.15 30.17± 0.11
24 N/A N/A 16.98± 0.07 29.40± 0.11
32 N/A N/A 16.64± 0.08 28.67± 0.11
40 N/A N/A 19.2± 0.8 32.66± 0.22
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Table B.19: Comparison between the Clusters. Most workers are allocated 2 GB RAM,
except for one series on NEMO where 4 GB are allocated. The dataset size is given in
million events. A chunk size of 1 million events is used. Both series on ATLAS-BFG and
vNEMO are using 40 workers, resulting in a utilization of 20 physical CPU cores. The
workers on NEMO are using one physical CPU core each, resulting in 20 and 40 utilized
cores for 20 and 40 workers.

Cluster BFG vNEMO NEMO
# Workers 40 40 20 20 40

Allocated RAM 2 GB 2 GB 2 GB 4 GB 2 GB

N Total time [s] Total time [s] Total time [s] Total time [s] Total time [s]

50 21.5± 0.4 17.9± 1.8 24.7± 0.5 27.7± 1.2 17.1± 0.9
100 36.5± 0.8 31.1± 2.9 43.50± 0.28 45.39± 0.22 28.6± 1.0
500 170.2± 1.0 162± 14 320± 7 211.3± 0.9 138± 5
750 298.0± 2.8 316± 19 938± 17 404± 12 321± 8
1000 540± 50 881± 32 N/A N/A 612± 7

Table B.20: Real file sizes of the files created for representative dataset. The size of the file
used to create the sub-files and the monolithic equivalent file are also included

File name File Size

data B.GamGam 2551.root 506 kB
data B.GamGam 28921.root 5.3 MB
data B.GamGam 158138.root 29 MB
data B.GamGam 395476.root 72 MB
data B.GamGam 922893.root 167 MB
data B.GamGam 1977726.root 358 MB
data B.GamGam 3955538.root 716 MB
data B.GamGam 7911162.root 1.4 GB
data B.GamGam 13185328.root 2.4 GB
data B.GamGam 17140953.root 3.1 GB
data B.GamGam 19778036.root 3.5 GB
data B.GamGam 23733660.root 4.2 GB

data B.GamGam 30M.root 5.3 GB
data B.GamGam 542514147 complete.root 94 GB
data B.GamGam 542514147 complete 1.root 296 B
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C Details of the Python Packages and Versions used
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Table C.1: Most of the Python packages needed to run the Notebooks for this thesis can be
installed via pip. For the every setup the folllowing packages are needed: uproot, awkward,
numpy, matplotlib, dask[complete], dask-awkward, jupyter dask-labextension and jupyter-
lab or notebook. Specifically on the notebook, a ROOT installation is necessiary. For the
cluster, dask-jobqueue is needed to interface with the schedulers. For completeness, the
table below contains a complete list of all Python packages installed on the Notebook and
both clusters.

Package Version Package Version

aiofiles 22.1.0 dask-labextension 6.1.0
aiohttp 3.8.4 datashader 0.14.4
aiosignal 1.3.1 datashape 0.5.4
aiosqlite 0.19.0 debugpy 1.5.1
alabaster 0.7.12 decorator 5.1.1
anaconda-client 1.11.2 defusedxml 0.7.1
anaconda-navigator 2.4.0 diff-match-patch 20200713
anaconda-project 0.11.1 dill 0.3.6
ansiwrap 0.8.4 distributed 2023.7.0
anyio 3.5.0 docstring-to-markdown 0.11
appdirs 1.4.4 docutils 0.18.1
argon2-cffi 21.3.0 entrypoints 0.4
argon2-cffi-bindings 21.2.0 et-xmlfile 1.1.0
arrow 1.2.3 execnb 0.1.5
astroid 2.14.2 executing 0.8.3
astropy 5.1 fastcore 1.5.29
asttokens 2.0.5 fastjsonschema 2.16.2
astunparse 1.6.3 filelock 3.9.0
async-timeout 4.0.2 flake8 6.0.0
atlas-mpl-style 0.22.1 Flask 2.2.2
atomicwrites 1.4.0 flit core 3.6.0
attrs 22.1.0 fonttools 4.25.0
Automat 20.2.0 fqdn 1.5.1
autopep8 1.6.0 frozenlist 1.4.0
awkward 2.3.1 fsspec 2022.11.0
awkward-cpp 21 future 0.18.3
Babel 2.11.0 gensim 4.3.0
backcall 0.2.0 ghapi 1.0.4
backports.functools-lru-cache 1.6.4 glob2 0.7
backports.tempfile 1.0 gmpy2 2.1.2
backports.weakref 1.0.post1 graphviz 0.20.1
bcrypt 3.2.0 greenlet 2.0.1
beautifulsoup4 4.11.1 h5py 3.7.0
binaryornot 0.4.4 HeapDict 1.0.1
black 22.6.0 holoviews 1.15.4
bleach 4.1.0 huggingface-hub 0.10.1

Continued on next page
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Package Version Package Version

bokeh 2.4.3 hvplot 0.8.2
boltons 23.0.0 hyperlink 21.0.0
Bottleneck 1.3.5 idna 3.4
brotlipy 0.7.0 imagecodecs-lite 2019.12.3
certifi 2023.5.7 imageio 2.26.0
cffi 1.15.1 imagesize 1.4.1
chardet 4.0.0 imbalanced-learn 0.10.1
charset-normalizer 2.0.4 iminuit 2.22.0
click 8.0.4 importlib-metadata 6.8.0
cloudpickle 2.0.0 importlib-resources 6.0.0
clyent 1.2.2 incremental 21.3.0
colorama 0.4.6 inflection 0.5.1
colorcet 3.0.1 iniconfig 1.1.1
comm 0.1.2 intake 0.6.7
conda 23.5.2 intervaltree 3.1.0
conda-build 3.24.0 ipykernel 6.19.2
conda-content-trust 0.1.3 ipyparallel 8.6.1
conda-pack 0.6.0 ipython 8.10.0
conda-package-handling 2.0.2 ipython-genutils 0.2.0
conda package streaming 0.7.0 ipywidgets 7.6.5
conda-repo-cli 1.0.41 isoduration 20.11.0
conda-token 0.4.0 isort 5.9.3
conda-verify 3.4.2 itemadapter 0.3.0
constantly 15.1.0 itemloaders 1.0.4
contourpy 1.0.5 itsdangerous 2.0.1
cookiecutter 1.7.3 jedi 0.18.1
cryptography 39.0.1 jeepney 0.7.1
cssselect 1.1.0 jellyfish 0.9.0
cycler 0.11.0 Jinja2 3.1.2
cytoolz 0.12.0 jinja2-time 0.2.0
daal4py 2023.0.2 jmespath 0.10.0
dask 2023.7.0
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through bwHPC and the German Research Foundation (DFG) through grant no INST
39/963-1 FUGG (bwForCluster NEMO).

91

https://doi.org/10.6094/UNIFR/238604
https://doi.org/10.1007/s41781-019-0026-3
https://doi.org/10.1007/s41781-019-0026-3
https://doi.org/10.1007/s41781-019-0026-3

	Introduction
	Phenomenological Background and Experimental Setup
	The Standard Model of Particle Physics
	Particles
	Interactions

	The Higgs-boson
	Production
	Decay

	Experimental Setup
	LHC
	The ATLAS detector


	 Benchmark Analysis Higgs-diphoton 
	Dataset
	Hardware and Software used
	bwNOTEBOOK
	Software

	Reference Hyy ATLAS Open Data Analysis
	Vectorized python analysis
	Validation
	Performance measurements

	Parallelization of Jupyter based analysis on a bwNOTEBOOK with Dask
	Experimental Setup
	Adjust columnar analysis to Dask Syntax
	Dask specific constraints on the bwNOTEBOOK
	Validation
	Performance measurements

	Comparison between the PyROOT, ROOT and Python analyses
	C++ ROOT
	PROOF

	Scaling a Jupyter Analysis to the local clusters with Dask
	BFG
	Setup and architecture of Dask on ATLAS-BFG
	Analysis Validation
	Dask specific constraints on the ATLAS-BFG
	Performance measurements on the ATLAS-BFG

	NEMO
	Setup and architecture of Dask on NEMO
	Analysis Validation
	Dask specific constraints on NEMO
	Performance measurements on NEMO

	Comparison between the two clusters
	BFG Slurm on NEMO
	Performance measurements


	Runtime Analysis on a representative Dataset
	The TEXT Analyzis
	Preparation of the representative dataset
	Performance measurements

	Conclusion and Outlook
	Conclusion
	Outlook

	Supplementary Figures
	Supplementary Tables
	Details of the Python Packages and Versions used

