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1 Introduction

The Standard Model of particle physics is a theory that describes forces and particles on
a microscopic scale [1][2][3]. A major part of the Standard Model is the Higgs mechanism,
which allows for a consistent description of massive particles [4][5][6]. A consequence of
the Higgs mechanism is the prediction of the existence of the Higgs-boson.

In 2012, the CMS and ATLAS collaborations detected a particle with a mass of ap-
proximately 125 GeV. In 2013 it was confirmed that this particle had properties consistent
to that of the Higgs-boson predicted by the Standard Model [7].

However a question arose on whether one could more effectively differentiate signals
from the Higgs-boson from other background processes that may leave similar signatures
in the detectors. The precision of this measurement depends on the signal-to-background
ratio s/b and the significance s/

√
s+ b, where s and b are the number of signal events

and background events classified as signal events, respectively. Methods in optimizing
these values came with the increase in computing power of modern computers. The use
of machine learning has especially proven to be a powerful tool in solving a wide range
of problems.

An approach in machine learning is the use of artificial neural networks (NN). Artifi-
cial neural networks were initially developed to mirror the behavior of biological neural
networks in animal brains. Although the function of modern neural networks differ sig-
nificantly from those biological, the common foundation is that the system learns from
examples over time, and uses this information to make predictions.

This thesis explores the use of artificial neural networks to discriminate VBF→ H →
ττ → eµ4ν decay signals from background processes. The influence of different hyperpa-
rameters such as the learning rate, L2 parameter, batch size, network architecture and
input variables on the performance of the neural network are investigated.

Possible further investigations utilizing results of this thesis may be precise measure-
ments of the cross section of VBF Higgs production or testing CP invariance in this sector
using H → ττ events.
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2 Theoretical background

2.1 The Standard Model

The Standard Model of particle physics is a theory that describes three of the four funda-
mental forces of nature: electromagnetism, strong and weak forces, as well as fundamental
particles and interactions between them. Particles are classified into four categories: lep-
tons, quarks, gauge bosons and the Higgs-boson. Since its formulation in the 1970’s it
has seen exceptional success in tests and predictions, predicting the existence of particles
such as the top quark [8] and tau neutrino [9], which were experimentally confirmed many
years later.

2.2 The Higgs-boson

The Higgs mechanism allows a consistent description of massive particles. The Higgs
mechanism postulates the existence of a Higgs-boson, whose mass is not predicted by the
Standard Model. The mass of the Higgs-boson is therefore a free parameter of the Stan-
dard Model which had to be determined experimentally. The Higgs-boson was predicted
to have an even parity and spin 0.

The energy of the LHC allowed the production of Higgs-bosons, and in 2011, CERN
observed a particle with a mass of 125 GeV, which had properties consistent with the
predictions of the Standard Model. In 2012 it was confirmed that CERN had indeed
observed the Higgs-boson [7]. The mass of the Higgs-boson was measured to be 125.18 ±
0.16 GeV [10], with a spin of 0, neutral electric charge, and even parity, consistent with
the predictions of the Standard Model.

2.3 Higgs-boson production modes

The four leading production modes of the Higgs-boson in pp-collisions at the LHC are
gluon fusion (ggF), vector boson fusion (VBF), Higgs-Strahlung (V H), and Higgs pro-
duction in association with a pair of top quarks (t̄tH). The theoretical Higgs-boson
production cross sections as a function of the mass of the Higgs-boson for different pro-
duction modes can be seen in figure 1. Example leading order Feynman-Diagrams of
these processes can be seen in figure 2. The predicted production cross section for each
of these production modes for a center of mass energy of

√
s = 13 TeV and a Higgs-mass

of 125.09 GeV can be found in table 1.

In this thesis, VBF production is considered as the signal process, where a quark or
an anti-quark scatters with another quark or an anti-quark by emitting aW or a Z boson
each, which emits a Higgs-boson. This is characterized by two jets in the forward and
backwards region [13].
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Figure 1: The predicted production cross section of the Higgs-boson as a function of the
mass of the Higgs-boson for different production modes [11].

Process H-Production Cross Section [pb]
VBF 3.766 +0.45%

−0.33%(scale) ±2.1%(PDF+αs) ×106

VH
W−H 0.527 +0.59%

−0.63%(scale) ±2.03%(PDF+ αs)
W+H 0.831 +0.74%

−0.73%(scale) ±1.79%(PDF+ αs)
ZH 0.880 +3.50%

−2.68%(scale) ±1.65%(PDF+ αs)
ggH 48.61 +4.27%

−6.48%(theory) ±1.85 (PDF) +2.59%
−2.62%(αs)

t̄tH 0.507 +5.8%
−9.2%(scale) ±3.6%(PDF+αs)

Table 1: The production cross section of the Higgs-boson as predicted by the Standard
Model at a Higgs mass of 125.09 GeV at a center of mass energy of 13 TeV. Explanations
for uncertainties are described in [12].

2.4 Decays of the Higgs-boson

This thesis considers the H → ττ → eµ4ν process. However, since neutrinos are not
detected by the ATLAS detector, this process is not distinguishable from the H →
WW → eµ2ν process. Therefore this process is also classified as a signal process.

The different predicted decay branching ratios of the Higgs-boson depend on the mass
of the Higgs-boson. The branching ratio of each possible Higgs decay as a function of the
mass of the Higgs-boson can be seen in figure 3. The predicted branching ratios of the
relevant decays H → ττ and H → WW for a Higgs mass of mH = 125.36 GeV can be
seen in table 2.

The τ -lepton has a very short mean lifetime of 290.3 ± 0.5 ×10−15 s and therefore
only its decay products can be directly measured. The τ -lepton may decay hadronically
or leptonically. It decays into µ+ ν̄µ+ντ in 17.39 ± 0.04% of cases and into e+ ν̄e+ντ in
17.82±0.04% of cases [10], where the e and µ are the visible parts of the decay, which are
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(a) Vector boson fusion
(b) Production in association with a pair of top
quarks

(c) Gluon-Fusion
(d) Higgs-Strahlung

Figure 2: Example Feynman diagrams of the different production modes of the Higgs-
boson: (a) Vector boson fusion, (b) Production in association with a pair of top quarks
(c) Gluon-Fusion (d) Higgs-Strahlung.

detected by the detectors, and the neutrinos the invisible parts of the decay, which are
not detected by the ATLAS detectors. Therefore, a di-τ system decays into e+µ+ 4ν in
6.20±0.03% of all cases. A W boson decays into a e+ νe and µ+ νµ in 10.71±0.16% and
10.63±0.15% of cases respectively [10]. A WW system therefore decays into e + µ + 2ν
in 2.91±0.08% of all cases.

The product of the branching ratio and the VBF Higgs production cross section for
H → ττ → eµ4ν and H → WW → eµ2ν are therefore 14.6 ± 1.3 fb and 24.1±2.3 fb
respectively. Using the relation N = Lintσ, where N is the number of events, Lint =
139fb−1 the integrated luminosity and σ the cross section, one can find the expected
number of events for these processes. For H → ττ → eµ4ν and H → WW → eµ2ν these
are 1950 ± 170 and 3300 ± 190 events respectively.
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Figure 3: The Branching Ratios of the different Higgs decay modes as a function of the
mass of the Higgs-boson as predicted by the Standard Model [12].

Decay Channel Branching Ratio/%
H → WW 22.0± 0.9
H → ττ 6.26± 0.35

Table 2: Branching Ratios for H → WW and H → ττ as predicted by the Standard
Model at mH = 125.36 GeV [14].

3 Artificial neural networks

The increase in computing power allowed the development and implementation of com-
puter algorithms that would improve automatically through experience. A method in
machine learning is supervised learning, where an algorithm tries to find a certain func-
tion that maps an input to an output by analyzing different input-output pairs. The main
goal of machine learning is either regression, where the relationship between an indepen-
dent variable and a dependent variable is estimated, or classification, where a certain
item is classified to a certain category. One approach in machine learning is the usage
of artificial neural networks. This thesis explores the usage of artificial neural networks
in classifying different recorded events from pp-collisions in the LHC to their respective
processes.
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Figure 4: An example artificial neural network with one hidden layer [15]

3.1 Architecture of a neural network

An artificial neural network is composed of units called nodes. In this thesis, a feedforward
neural network is used, where the connections do not form a cycle. Therefore every node
is organized in layers whose nodes are connected to nodes in another layer. The input
nodes form the first layer of neural network. For each input variable, there is an input
node, which takes the value of the variable as its input. The last layer of the neural
network is the output node, whose output is the prediction of the network. The layers of
nodes between these input and output layers are referred to as hidden layers (see figure
4).

A node that receives inputs from nodes in the previous layer computes an output by
non-linearly transforming the sum of the inputs. This non-linear transformation is called
the activation function. A bias may be added to the argument of the function. The
output of a node with an activation function f is therefore:

xj+1
i = f

(∑
k

wkx
j
k + bj+1

i

)
(1)

Where xj+1
i is the output of the i-th node in the j+1st layer, and wk the weights provided

by the connections from the neurons in the previous layer, and b the bias. In this thesis,
two activation functions are considered: the Rectified Linear Units (ReLU) for hidden
layers, defined by:

fReLU(x) = max(0, x) (2)

and Softmax for output layers, defined by:

fSoftmax(xi) =
exi∑
k e

xk
(3)
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respectively, where xi is the input to the i-th node. The reason for the usage of Softmax
in classification is due to the fact that the sum of the outputs of the output nodes sum
to 1, allowing the outputs of these nodes to be considered as probabilities. fSoftmax(xi) is
then the prediction of the model, ŷi, for node i. This contrasts with the true value, yi.
For example, if there were two output nodes, the first for signal events and the second
for background events, and if a signal event were to be classified as a background event
with a 100% certainty, the true values would be y1 = 1, y2 = 0, while the predicted values
would be ŷ1 = 0, ŷ2 = 1.

The goal of the training process is to find a combination of weights and biases that
minimizes the error between the predicted values and true values.

The error as a function of the weights and biases is called the loss function and may
have different forms, depending on the structure of the network. This thesis will utilize the
categorical cross entropy as the loss function, commonly used in classification problems.
The categorical cross entropy loss function is defined as:

L = −
∑
i

yi · log ŷi (4)

Where ŷi is the prediction of the model, and yi the target value.

3.2 Minimizing the loss function

An approach to finding a combination of weights and biases that minimizes the loss func-
tion is stochastic gradient descent (SGD) [16]. Since the error is a function of the weights
and biases of the node connections, for a feedforward network, it spans a hyperplane of∑N−1

1 nini+1 + ni dimensions, where ni is the number of nodes in the i-th layer and N
is the number of layers. To find the minimum of this function, a combination of weights
and biases (represented as a vector ŵ) is selected and the gradient of the loss function
in respect to the weights and biases is calculated. A term proportional to the gradient
is then added to the vector, which effectively brings the point of the vector closer to the
minimum of the loss function (see equation 5). The size of this increment is determined
by the learning rate η, and the amount of data used to compute the gradient is called
the batch size. Therefore, the combination of weights for a given iteration is given by:

ŵi+1 = ŵi − η∇ŵL (5)

, where L is the loss function, η the learning rate, ŵi the vector of weights and biases for
the iteration i, and ∇ŵ the gradient operator in respect to the weights.

The hyperparameters, which are parameters which remain constant during training,
here are therefore the learning rate and batch size. An epoch is when the entire dataset
is passed through the training.
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3.2.1 Adam

Adam, short for Adaptive Moment Estimation [17], is a modification of SGD that utilizes
first and second moment vectors, m and v, which are the running averages of the gradient
and squared gradient respectively. With Adam, each iteration is defined by:

m(t+1)
w ← β1m

(t)
w + (1− β1)∇wL

(t)

v(t+1)
w ← β2v

(t)
w + (1− β2)(∇wL

(t))2

m̂w =
m

(t+1)
w

1− βt+1
1

v̂w =
v
(t+1)
w

1− βt+1
2

w(t+1) ← w(t) − η m̂w√
v̂w + ε

Where m(t)
w and v

(t)
w are the first and second moment vectors at iteration t for the

weight w respectively, and m̂w and v̂w the bias-corrected first and second moment esti-
mates respectively. L is the loss function. The initial moments, m0

w and v0w are set to
0, and the parameters β1 and β2 are set to 0.99 and 0.999 respectively, and ε to 10−8.
Adam is often used for its computational efficiency and low memory requirements and
which makes it suitable for large amounts of data [17].

3.3 Training and validation

The process of minimizing the loss function with respects to weights and biases by ex-
posing the network to a training dataset is called training.

After this process of training the neural network, the model is then used to predict the
output of a second dataset, a process known as validation. This provides an evaluation
of the model and helps with the optimization of the hyperparameters.

In this thesis, a process called k-fold cross validation is used, the entire dataset is split
into k equally sized parts. For a given fold one of these parts are used for validation,
another for testing and the rest for training. For every fold, a different combination of
parts is used for training, validation, and testing so that training, validation and testing
has been done at least once on every part. In this thesis, 5-fold cross validation is used.

However, overtraining may occur, which is when the predictions are modelled too
closely to the training data themselves, and not the general trend which it wishes to
model. This may manifest in the validation loss being higher than that of the training
loss. In order to combat this, several regularization methods were developed. In this
thesis the usage of learning rate decay and L2 regularization will be examined.
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3.3.1 L2 regularization

L2 Regularization penalizes networks with large weights and biases by adding a quadratic
term to the loss function.

Ll2 = L(w1, . . . wn, b1, . . . , bn) + λ

n∑
i=1

w2
i (6)

Where L is the original loss function, and λ a positive parameter smaller than 1. There-
fore, network configurations with large weights are suppressed depending on the size of
the parameter λ.

3.3.2 Learning rate decay

The learning rate can be decreased by a certain increment every iteration, which is based
on the fact that the combination of weights and biases approaches the minimum of the
loss function every epoch. The learning rate for iteration i depends on the decay rate by
the following equation:

ηi+1 = ηi
1

1 + Decay× i
(7)

In this thesis, the decay rate is set to a constant of 0.001.

3.4 Hyperparameters

For this thesis, the following hyperparameters remain as constants: Number of epochs,
set to 50, and decay, set to 0.001. The influence of the following hyperparameters on the
performance of the network are investigated: L2 Parameter λ, learning rate η, batch size
and network architecture.
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4 Experiment

4.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [18], located in Geneva, Switzerland, is the largest
and most energetic particle collider in the world. With a circumference of 27 km, it
accelerates protons in two parallel circular beams, focused using hundreds of quadrupole
magnets and bent by dipole magnets. The beams intersect at four points at which the
protons are collided with each other. These intersection points house different particle
detectors used for different experiments, the biggest of them being the ATLAS detector.

In 2015, a center-of-mass energy of
√
s = 13 TeV was reached, and marked the start of

"Run-2", which lasted until 2018. During Run-2, the performance of the particle acceler-
ator was further improved by increasing its instantaneous luminosity. The luminosity is
defined as the ratio between the event rate and the interaction cross section. Therefore:

Lσ = Ṅ . (8)

The integrated luminosity is then the integral of the luminosity with respect to time.

Lint =

∫
Ldt. (9)

The total recorded luminosity by the ATLAS experiment in Run-2 corresponds to 139.0
± 2.4 fb−1. This value will be used for this paper.

4.2 The ATLAS Experiment

The ATLAS experiment is one of the four main experiments conducted with the LHC.
It utilizes large concentric cylinder shaped detectors to do precision measurements of
Standard Model processes including Higgs physics, and to search for phenomena from
physics beyond the Standard Model.

4.2.1 Coordinate system of the ATLAS Detector

Due to the geometry of the ATLAS detectors, a cylindrical coordinate system is used.
The direction of the beam defines the z-axis, while the positive x-axis points into the
center of the LHC, and the positive y-axis upwards. The direction of the velocity vector
of a particle is uniquely determined by two angles, θ and φ, where θ is the angle from
the beam axis, φ around the beam axis (see figure 5). Other useful variables are the
pseudorapidity η, and ∆R, the distance between two particles in the pseudorapidity-
azimuthal angle space. The pseudorapidity η, maps θ from [−π, π] onto [−∞,∞] and is
defined by:

η = − ln

[
tan

(
θ

2

)]
(10)

while ∆R is defined as:
∆R =

√
∆η2 + ∆φ2 (11)
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Figure 5: The Coordinate System of the ATLAS Detector. φ lies in the x− y plane while
θ lies in the plane containing the z-axis at an angle φ [19].

4.2.2 The ATLAS Detector

The ATLAS detector is a cylindrical general-purpose particle detector with a length of
approximately 44 meters and a diameter of 25 meters. It is composed of different parts,
each specialized to measure certain quantities.

The innermost part, the inner detector, is composed of three components, the pixel
detector, semiconductor tracker and transition radiation tracker, whose main purpose is
the measurement of momentum and charge of charged particles as well as vertex recon-
struction, a process, which reconstructs the location of a certain decay event [20]. The
inner detectors cover a pseudorapidity range of |η| < 2.5 [8]. The solenoid magnet sur-
rounds the inner detector and creates a magnetic field with a strength of 2T, which bends
the path of charged particles to determine their charge and momentum [20].

Beyond this are the calorimeters, which measures the amount of energy deposited by
traversing electrons, photons and hadrons. This part is composed of the electromagnetic
and hadronic calorimeters. The main principle of a calorimeter is that a traversing particle
in a dense material may interact with the material to emit secondary particles, which in
turn create further secondary particles. This phenomenon is known as a shower, whose
energies are deposited into the detector. The electromagnetic calorimeter is a liquid argon
calorimeter which measures the deposited energy of electrons, positrons and photons and
has an energy resolution of 10%/

√
E [21]. The hadronic calorimeters measure the energy

deposited by hadrons. The hadronic sampling calorimeters have an energy resolution
of 50%/

√
E [22]. The calorimeters cover a pseudorapidity range of |η| < 4.9 [20]. The

calorimeters are sampling calorimeters, where the material that produces the shower,
the active material, is different to that which measures the deposited energy, the passive
material. Surrounding the calorimeters are the barrel toroidal magnets, which provide a
magnetic field of 8T [20].

Lastly, the muon spectrometer measures the momentum of muons which pass through
the electromagnetic calorimeter undetected. The the monitored drift tubes of the spec-
trometer, which measure the curvature of the muon tracks using the magnetic field from
the toroidal magnets, which provide a magnetic field of 8T [20]. The momentum reso-
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lution for muons up to 1 TeV was measured to be 10% at most [23]. A diagram of the
ATLAS detector can be seen in figure 6.

Figure 6: A cut-away view of the ATLAS detector [20].

4.2.3 The Trigger System

The trigger system is designed to filter relevant data from the 40 million proton collisions
per second in the ATLAS detector. The selection is done in two stages: A level-1 hardware
based trigger and a high-level software based trigger. The level-1 hardware trigger uses
electronics to analyze data from the calorimeters and muon solenoids. A decision to pass
a certain data is made in only 2.5 microseconds [20]. Only 100,000 events per second
can pass through the hardware trigger at most. The high-level trigger uses software to
analyze the data coming from the level-1 trigger. Around 1000 events per second pass
the high-level trigger and are recorded [20].

4.2.4 Event Reconstruction

The goal of event reconstruction is to use signals from the detectors to identify and re-
construct properties such as spacial trajectory, momentum, mass and charge of different
particles. For this thesis, electrons, muons and jets are of relevance. An electron, be-
ing a charged particle, leaves a signal in the inner detector and in the electromagnetic
calorimeter, while a muon leaves no signal in the electromagnetic calorimeter since it
is minimally ionizing, but instead in the muon spectrometer. For the identification of
electrons and muons, there are 3 different types of identification requirements: Loose,
Medium and Tight, whose definitions can be seen in [24] for electrons and [25] for muons.
In this thesis, the loose identification requirements are used for electrons and medium for
muons. Jets are identified using the anti-kt algorithm with a radius parameter of 0.4 [26]
[27]. Jets originating from bottom quarks can be identified through vertex reconstruc-
tion. A jet originating from a bottom quark has its vertex displaced from the collision
point. Machine learning algorithms are used to estimate the probability that a certain
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jet originates from a bottom quark. If the probability exceeds a certain threshold, the jet
is called a b-tagged jet.
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5 Signal and Background Processes and Event Gener-
ation

In order to evaluate the sensitivity of the event selection and to train the neural networks,
simulated event samples for the signal and background processes are used. The samples
are produced with Monte Carlo event generators for each process separately. Each event
generated by the Monte Carlo generators carry a weight in order to make the probability
distribution of simulated events consistent with actual data.

5.1 Signal Processes

The signal processes here are the VBF H → ττ → eµ+4ν and VBF H → WW → eµ+2ν
processes as mentioned in section 2.3. Such events are characterized by 2 jets with a large
missing energy due to neutrinos, and a lack of jets origination from bottom quarks (b-
jets). Other Higg boson production modes are then classified as background processes.
The VBF signals are generated using the Powheg-Box v2 generator [28][29][30][31][32]
with the PDF4LHC15 NLO parton distribution function (PDF) [33] set along with the
Pythia 8 unterlying-event activity (UEPS) model [34].

5.2 Background Processes

5.2.1 Other Higgs boson generation modes

The other Higgs boson production processes, namely ggF, ttH, and VH are already de-
scribed in section 2.2. Example Feynman diagrams for these processes can be seen figure
7. For production in association with a pair of top quarks, the Higgs boson, along with
the two jets originating from the top quarks leave a same signal as VBF Higgs boson
production, thereby making it a background process. This background can be reduced
by applying a veto against b-jets, since top quarks decay nearly exclusively into a bottom
quark and W boson. For gluon fusion, if there are two other jets, the detectors also
record the same signal as that of signal events. In the case of Higgs-Strahlung, the Z
or W boson decaying into a pair of quarks, which are detected as jets, leave a signal
identical to that of the signal process. The generators used to simulate these events can
be seen in table 3.

Process Generators PDF Set UEPS Model Reference
ggF Powheg-Box v2 PDF4LHC15 NNLO Pythia 8 [28]
V H Powheg-Box v2 PDF4LHC15 NNLO Pythia 8 [35]
ttH Powheg-Box v2 NNPDF2.3 NLO Pythia 8 [36]

Table 3: The Monte Carlo generators used to simulate events of other Higgs boson
production events.
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(a) Production in association
with a pair of top quarks (b) Gluon-Fusion

(c) Higgs-Strahlung

Figure 7: Example Feynman diagrams of the different production modes of the Higgs
Boson considered as background events:(a) Production in association with a pair of top
quarks (b) Gluon-Fusion (c) Higgs-Strahlung.

5.2.2 Z+Jets

Z bosons are also produced in pp-collisions in the LHC through processes seen in figure
8. The total Z-boson production cross section multiplied by the leptonic branching ratio
is measured to be 1.981 ± 0.007 (stat) ± 0.038 (sys) ± 0.042 (lumi) nb [37].

(a) Strong production (b) Strong production
(c) Electroweak production

Figure 8: Example Feynman diagrams for dominant Z-boson production processes, where
(a) and (b) are strong production processes and (c) an electroweak production process.

It was also measured that in 10% of cases, the Z-Boson decays into a lepton and an
antilepton. The branching ratios of the leptonic Z-boson decays take a similar value of
BR(Z → ll̄) = 3.36% for a specific lepton l [10].

For a Z → ττ decay where the Z-boson is created through strong production, the
final end products are identical to that of VBF signals (2 jets, 2 τ ’s) but mjj and ∆ηjj
are smaller than that of VBF processes. For borg electroweakly and strongly produced
Z → ττ events,mττ differs from that of VBF signals due to the difference in mass between
the Z-boson and Higgs boson. It is also possible that for a Z → ee or Z → µµ that one
of the electrons or muons are falsely identified as another particle or jet. Although the
probability is small, this can also produce a eµ system. This is also the reason why in
this thesis, only the eµ end state is considered: in order to decrease the contribution of
Z → ee and Z → µµ processes. The difference from VBF signals is that there is no
missing transversal energy since no neutrinos are produced in this process.
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5.2.3 W+Jets

W -bosons are also produced at the LHC. The cross section for W -boson production
multiplied with the leptonic branching ratio for one generation was measured to be 11.83
± 0.02 (stat) ± 0.32 (sys) ± 0.25 (lumi) pb for W+ and 8.79 ± 0.02 (stat) ± 0.24 (sys)
± 0.18 (lumi) pb for W− [37]. A W -Boson may decay into a lepton and a antineutrino or
into a quark and antiquark of different types. When a W boson is generated along with
3 jets, where one of the jets is misidentified as an electron, and if the W boson decays
into a muon and muon neutrino pair, this gives a same signal as that of a VBF event.
However, this process has a different mjj and mττ than that of VBF processes due to the
difference in mass between the W and Higgs boson.

The W - and Z + Jets processes are both simulated using the generator Sherpa 2.2.1
[38] with the PDF set NNPDF3.0 NNLO and UEPS model Sherpa 2.2.1.

5.2.4 Diboson-Production (V V )

The following diboson-production processes as considered:WW , ZW and ZZ production.
Examples of Feynman diagrams for these three processes can be seen in figure 9. The cross
section ofWW production was measured to be 115±5.8(stat)±5.7(exp)±6.4(theo)±3.6(lumi)
pb, that of WZ production 40.9±3.4(stat)+3.1

−3.3(sys)±0.4(theo)±1.3(lumi) pb, and that of
ZZ production 14.6+1.9

−1.8(stat)
+0.5
−0.3(sys)±0.2(theo)±0.4(lumi) pb [39]. For ZZ production,

one Z boson may decay into a quark antiquark pair, which are detected as jets, and the
other into a τ−τ+ pair, thereby creating the same end product as that of VBF processes.
Similarly, for WZ production, the W boson may decay into a pair of quarks of different
generations, which are detected as jets, while the Z boson may decay into τ−τ+ pair. For
WW production, if one of the W bosons decay leptonically into a muon and muon neu-
trino pair and the other hadronically into two quarks, which are detected as two jets and
if there is another jet, that is misidentified as an electron, it may leave a signal identical
to that of VBF H events.

Figure 9: Example Feynman diagrams for different diboson production modes.

This process is simulated using the generator Sherpa 2.2.1, with the PDF set NNPDF3.0
NNLO and UEPS model Sherpa 2.2.1 [40].
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5.2.5 Top Quark Pair Production

Pairs of top quarks are produced through processes shown in figure 10. This process was
measured to have a total cross section of 781 ±7 (stat) ± 62(sys) ± 20(lumi) pb [41].
These processes are a background processes since top quarks decay almost exclusively
into a bottom quark and W boson. The two b quarks turn into jets, which are detected
by the detectors, and the twoW bosons may decay into e+νe+µ+νµ. This leaves a signal
that is identical to that of VBF events. This background can be reduced by applying veto
against b-tagged jets, since top quarks decay nearly exclusively into a bottom quark and
W boson. Top quark pair production is simulated using the Powheg-Box v2 generator
with a PDF set NNPDF2.3 NLO and UEPS model Pythia 8.

Figure 10: Example Feynman diagrams for different production modes of a pair of top
quarks.

5.2.6 Single Top Quark Production

Single top quark production may occur as well, although it is not as common as top
quark pair production. The most common modes of single top quark production can be
seen in figure 11.

The total cross section of the t-channel top quark production was measured to be
219.0 ± 1.5(stat)± 13.0(sys) pb [42], and for that of the tW production 63.1 ± 1.8(stat)
± 6.4(sys) ± 2.1(lumi) pb [43]. This process is simulated with the Powheg-Box v1
generator [44] with the PDF set NNPDF2.3NLO and UEPS model Pythia 8.

Single top quark and top quark pair production are collectively referred to as the top
background.

5.3 Fakes

Jets that are misidentified and incorrectly reconstructed as tau lepton decay products are
called fakes. This process is poorly modeled by Monte Carlo simulations, furthermore,
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(a) t-channel
(b) tW -production

Figure 11: Example Feynman diagrams for the dominant Single Top Quark Production
modes in the LHC.

the rarity of the event makes it difficult to generate enough events. Therefore data driven
methods are used to estimate this background process [45].

An overview of the Monte Carlo generators and the cross section of these signal and
processes can be seen in table 4.

Process Generator PDF Set UEPS Model Tot. σ(× BR) [pb]
VBF Powheg-Box v2 PDF4LHC15 NLO Pythia 8 3.766 +0.45%

−0.33%(scale) ±2.1%(PDF+αs) ×106

ggH Powheg-Box v2 PDF4LHC15 NNLO Pythia 8 48.61 +4.27%
−6.48%(theory) ±1.85 (PDF) +2.59%

−2.62%(αs)

tt̄H Powheg-Box v2 PDF4LHC15 NNLO Pythia 8 0.507 +5.8%
−9.2%(scale) ±3.6%(PDF+αs)

V H Powheg-Box v2 NNPDF2.3 NLO Pythia 8 2.238 +1.28%
−2.84%(scale) ±3.16%(PDF+ αs)

Z+Jets Sherpa 2.2.1 NNPDF3.0 NNLO Sherpa 2.2.1 1981 ± 7 (stat) ± 38 (sys) ± 42 (lumi)
W+Jets Sherpa 2.2.1 NNPDF3.0 NNLO Sherpa 2.2.1 11.83± 0.03 (stat) ± 0.40 (sys) ± 0.30 (lumi)

V V Sherpa 2.2.1 NNPDF3.0 NNLO Sherpa 2.2.1
115±5.8(stat)±5.7(exp)±6.4(theo)±3.6(lumi) pb (WW )

40.9±3.4(stat)+3.1
−3.3(sys)±0.4(theo)±1.3(lumi) (WZ)

14.6+1.9
−1.8(stat)

+0.5
−0.3(sys)±0.2(theo)±0.4(lumi) (ZZ)

Single top Powheg-Box v1 NNPDF2.3 NLO Pythia 8 282.1 ± 2.3(stat) ± 14.5(sys) ± 2.1(lumi)
Top pair Powheg-Box v2 NNPDF2.3 NLO Pythia 8 781 ±7 (stat) ± 62(sys) ± 20(lumi)

Table 4: An overview of the Monte Carlo generators and cross sections or product of
cross section and leptonic branching ratio of the signal and background processes. Note
that the cross sections and their uncertainties of Higgs production modes are theoretical,
while others are experimental.
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6 Event Selection

A series of event selection requirements, also known as cuts, were applied to the input
dataset to increase the signal-to-background ratio. Only events, which pass all require-
ments are used for the training of the neural network. A summary of the event selection
requirements can be seen in table 5. In the table, the preselection cuts refer to require-
ments that have already been applied onto the initial dataset and the additional cuts refer
to those that were applied additionally in order to amplify the signal-to-background ratio.
The additional cuts are primarily inspired by those used in the test of CP-invariance in
VBF production of the Higgs-boson in the H → ττ channel [46], where Boosted Decision
Trees were trained instead of neural networks.

Category Event Selection Requirements

Preselection

1 e with pT > 15 GeV & |η| < 2.47 ∧ |η| /∈ [1.37, 1.52]
1 µ with pT > 13 GeV & |η| < 2.5

2 leptons with ∆Rll < 2.5 & ∆ηll < 1.5
At least 1 jet with pJets

T > 20, |ηJets| < 4.5 GeV
pj1T > 40 GeV
Emiss
T > 20 GeV
Nτ = 0

0.1 < x1 < 1
0.1 < x2 < 1

Additional Cuts

mcoll
ττ > mZ − 25 GeV ≈ 66.18 GeV

pl1T > 18 GeV
pl2T > 14 GeV

30 < mll < 100 GeV
Nb-Jets = 0
NJets ≥ 2

pj2T > 30 GeV
mjj > 300 GeV

Table 5: A summary of event selection requirements applied to the initial dataset. When
multiple candidates of the same type exist, such as leptons or jets, they are ordered by
transverse momentum, i.e. l1 has a larger pT than l2. l1 is then called the leading lepton
and l2 the subleading lepton.

6.1 Preselection requirements

This thesis, events with one electron with pT > 15 GeV and |η| < 2.47∧ |η| /∈ [1.37, 1.52]
along with one muon with pT > 13 GeV and |η| < 2.5 are used. This is due to the fact
that the tracker of the inner detector only covers a pseudorapidity range of |η| < 2.5
and that a pseudorapidity range of 1.37 < η < 1.52 is not covered by the electromagnetic
calorimeters. The transverse momentum of the jets must exceed 20 GeV and the absolute
value of the pseudorapidity of jets must be smaller than 4.5. The requirement for the
missing transversal energy was set to 20 GeV to reject events without neutrinos. The
transversal momentum of the leading jet must exceed 40 GeV in order to select VBF
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events. The number of hadronically decaying τ leptons must be 0 since only leptonic
decays of τ leptons are considered. The number of leptons are required to be two since
this paper considers eµ end states. The number of jets must exceed 1. The difference
in R and η between the leptons must be less than 2.5 and 1.5 respectively to suppress
signals originating from Z-bosons, which are produced with low transverse momenta
and therefore their decay products have larger angle separation. The visible momentum
fractions x1 and x2 of their respective τ -lepton and di-τ mass calculated in the collinear
approximation [47] was set between 0.1 and 1 to suppress events where the direction of
the missing energy does not agree with expected di-τ decay kinematics.

6.2 Additional Selection Requirements

This section considers the distribution of each observable before their respective additional
selection requirements in order to illustrate how these requirements amplify VBF signals.

For the analysis, events with at least two jets are considered since, VBF events produce
two jets. The transverse momentum requirements of the leptonically decaying τ ’s were
slightly increased from their preselection requirements since the signal to background
ratio was greater for pτ1T > 18 GeV and pτ2T > 14 GeV (see plots 12b and 13c).

The location of the peak of the distribution of the di-τ mass calculated in the collinear
approximation [47] for VBF signals, as seen in figure 12a, is higher than that of the
background processes. Therefore in order to increase the signal to background ratio,
only events with mcoll

ττ > 66.18 GeV were accepted. In order to suppress signals from
top pair production and diboson production, only events with 30 ≤ mll ≤ 100 GeV were
accepted. As seen in figure 13d, most signals originating from VBF processes have a mll

in this range. Only pj2T of greater than 30 were selected, since as seen in figure 15g, the
signal to background ratio is much higher in the pj2T > 30 GeV region. Only events with
mjj > 300 GeV are taken to suppress signals from Z bosons. It can be seen in figure 15h
that background signals have a small contribution in this region. The number of b-jets
was required to be 0, also known as a b-veto, to suppress top background processes. As
seen in figure 14e, the signal to background ratio is significantly greater for Nb−Jets=0. A
table of the number of events before and after the additional selection requirements for
each process can be seen in table 6.
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Process # Events (No Add. Cuts) # Events (With Cuts)

VBFH 262.39 ± 0.44 74.28 ± 0.23
Other Higgs 1006.7 ± 2.0 53.53 ± 0.48

Top Background 138 630 ± 140 1075 ± 12
Diboson 6829 ± 19 399.4 ± 3.3
Z → ττ 71 440 ± 140 3500 ± 20
Z → ee 3300 ± 150 26 ± 12
Z → µµ 362 ± 48 10.7 ± 3.2
W+Jets 12 720 ± 470 159 ± 35
Fakes 420 500 ± 640 402 ± 16

All Backgrounds 654 750 ± 830 5630 ± 47

s/b [10−3] 4.007 ± 0.008 13.19 ± 0.12

s/
√
s+ b 0.3242± 0.0006 0.984 ± 0.005

Table 6: The number of event before and after all additional selection requirements for
different simulated signal and background processes as well as the signal-to-background
ratio s/b and significance s/

√
s+ b.
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(a) Di-τ mass calculated in the collinear approximation (mcoll
ττ ) before mcoll

ττ >66.18 GeV cut

0 20 40 60 80 100 120 140 160 180 200
 [GeV]0

T
Lepton p

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

E
ve

nt
s 

/ b
in otherH

top+X
VV
Ztt
Zee
Zmm
W+jets
Fakes
VBFH (x849)
Data

-1 = 13 TeV, 138.2 fbs

(b) pl1T before pl1T > 18 GeV cut.a

aThe numbering of the leptons and jets in the figure follow the zero-based numbering convention used
for programming, while in text it follows one-based numbering.
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(c) pl2T before pl2T > 14 GeV cut.

0 20 40 60 80 100 120 140
 [GeV]llm

0

2000

4000

6000

8000

10000

12000

E
ve

nt
s 

/ b
in otherH

top+X
VV
Ztt
Zee
Zmm
W+jets
Fakes
VBFH (x846)
Data

-1 = 13 TeV, 138.2 fbs

(d) Di-τ Mass (mll) before the 30 < mll < 100 GeV cut.

Figure 13: The distribution of different variables before their respective additional selec-
tion requirements.
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(e) Number of b-Jets before the Nb-Jets = 0 cut.
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(f) Number of Jets before the NJets ≥ 2 cut

Figure 14: The distribution of different variables before their respective additional selec-
tion requirements.
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(g) pj2T before pj2T > 30 GeV cut.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
jjm

1000

2000

3000

4000

5000

6000

E
ve

nt
s 

/ b
in otherH

top+X
VV
Ztt
Zee
Zmm
W+jets
Fakes
VBFH (x234)
Data

-1 = 13 TeV, 138.2 fbs

(h) mjj before the Mjj > 300 GeV cut.

Figure 15: The distribution of different variables before their respective additional selec-
tion requirements.
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7 Neural network analysis

In this section, an artificial neural network is developed and optimized to separate VBF
H → ττ → eµ4ν signals from background events. The influence of different hyperpa-
rameters, architecture and input variable sets on the performance of the neural network
is examined. Events are classified as signal events if the neural network output is larger
than a certain threshold. The performance of a neural network was determined by its
maximum significance, where the significance is defined by:

Sign. =
s√
s+ b

(12)

Where s is the number of signal events, and b the number of background events that
are classified as a signal event for a given threshold. The total uncertainty of the signifi-
cance score was calculated through Gaussian propagation of error. For each network, the
optimal threshold was determined by the threshold that gave the maximum significance.

Before the data was exposed to the neural network for training, a new weighting was
defined to be used specifically for the training. In order to increase the neural network’s
ability to learn signals, the weights of the background events were normalized to yield
the same expected amount of events as the signal events.

7.1 Optimizing the hyperparameters for a fixed architecture.

In order to consistently select an optimized combination of hyperparameters, the same
process of selection was used for optimizing all neural networks. The initial network,
before the optimzation, was selected to have a 50-50-50 architecture, 2 output nodes
for signal and background events (which in reality corresponds to only one output node
since only the output of the signal node is used), an L2 parameter, λ, of 10−5, a learning
rate of 0.01, batch size of 200, 50 epochs and a decay of 0.001. As a first step, the
L2 parameters was varied using λ ∈ {10−7, 10−6, 10−5, 10−4, 10−3} to ensure there is no
overtraining in the later steps. Then, using the optimal L2 parameter, the learning rate
was varied for η ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}. Once the learning rate
with the largest significance was selected, the batch sized was varied for batch sizes ∈
{50, 100, 200, 500, 1000, 2000}. The batch size which had the best results, as well as the
selected L2 parameter and learning rate, is then termed the optimized combination of
hyperparameters.

7.2 Input variables

Several observables are used as input variables for the training of the neural network. Ta-
ble 7 shows a list of high-level variables that will be used as input variables. This section
aims to define these variables. η, φ, pT are the pseudorapidity, φ angle and transverse
momentum of leptons and jets. Emiss

T is the missing energy, the amount of energy needed
to maintain conservation of momentum of the resulting particles from the pp collision.
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Variable Set DNN Input Variables

High Level mMMC
ττ , mjj, ∆Rll,Cjj(τ1),Cjj(τ2),ptot

T ,mvis
ττ

m
l1,Emiss

T
T , Emiss

T /pl1T ,E
miss
T /pl2T ,p

j3
T

Table 7: The high level variable set used as the input for training the neural network.

mMMC
ττ is the invariant mass of the di-τ system calculated using the missing-mass calcula-

tor [48]. mjj is the invariant mass of the jets. Cjj(τ) = exp

[
−4

(ηj1−ηj2 )2

(
ητ −

ηj1+ηj2
2

)2]
is

called the centrality, which has a value of 1 when the object is halfway in η between the
two jets and 1/e when the object is aligned with one of the jets and < 1/e when the object
is not between the jets in η. ptot

T is the magnitude of the vectorial sum of the transverse
momenta of leptons, jets and missing energy. mvis

ττ is the visible mass of the di-τ system.
m
l,Emiss

T
T is the transverse mass, defined as

√
2plTE

miss
T · (1− cos ∆φl,Emiss

T
). The transversal

momentum of the 3rd jet, pj3T was estimated by subtracting the magnitudes transversal
momenta of the leading and subleading leptons and jets from (

∑
pT )scalar.

The distribution of these variables for signal and background processes can be seen
in figures 16 to 17.
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(a) ηj1 (b) ηj2

(c) ηl1 (d) ηl2

(e) φj1 (f) φj2

(g) φl1 (h) φl2

Figure 16: Distribution of variables in the Low Level (1) variable category (stacked).
Signal events are shown in blue and background events as orange.
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(i) pj1T (j) pj2T

(k) pτ1T (l) pτ2T

(m) Emiss
T

Figure 17: Distribution of variables in the Low Level (1) variable category (stacked).
Signal events are shown in blue and background events as orange.
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7.3 Influence of Network Architecture

Using the optimization process above, firstly the influence of the network architecture on
the performance of the network was investigated. For this part, only high-level variables
were used as input (see table 7). The following network architectures were investigated:

50-50
30-30-30
50-50-50
70-70-70

100-100-100
100-50-25
50-50-50-50

Table 8: The different network architectures that were investigated

Where each number represents the amount of nodes in a hidden layer. Out of these
architectures, the full optimization process was done for the architectures 50-50, 50-50-
50, 50-50-50-50 and 100-50-25. For the 30-30-30, 70-70-70 and 100-100-100 architectures,
the optimal hyperparameter combination of the network with the 50-50-50 architecture
was taken. The optimization procedure for the four network architectures can be seen in
figures 18 to 20. The selected hyperparameter for each optimization step for each network
architecture can be seen in tables 9 to 11. A table of the expected number of events for
each process that pass the classification threshold can be seen in table 12.

Figure 18: Maximum Significance as a function
of the L2 λ Parameter for different network archi-
tectures. The other hyperparameters are: Batch
Size = 200, Learning Rate=0.01.

Architecture Selected L2 λ
50-50 10−4

50-50-50 10−5

50-50-50-50 10−5

100-50-25 10−5

Table 9: The selected L2 λ parame-
ters for each network architecture as
determined by their maximum sig-
nificance and presence of overtrain-
ing.
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Figure 19: Maximum significance as a function
of the learning rate for different network archi-
tectures. The other hyperparameters are: Batch
Size = 200, and L2 λ parameter as determined in
the previous step.

Architecture Selected η
50-50 0.01

50-50-50 0.01
50-50-50-50 0.005
100-50-25 0.005

Table 10: The selected learning rate
for each network architecture as de-
termined by their maximum signif-
icance.

Figure 20: Maximum significance as a function of
the batch size for different network architectures.
The other hyperparameters are as determined in
the previous steps.

Architecture Selected batch size
50-50 1000

50-50-50 2000
50-50-50-50 100
100-50-25 500

Table 11: The selected batch sizes
for each network architecture as de-
termined by their maximum signif-
icance.
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Process 50-50 50-50-50 50-50-50-50
VBFH 61.36 ± 0.29 56.37 ± 0.27 47.92 ± 0.24
Other H 7.51 ± 0.24 6.25 ± 0.22 8.25 ± 0.25
V V 16.17 ± 1.28 10.63 ± 0.95 16.15 ± 1.30
Top 48.34 ± 4.10 34.77 ± 3.43 49.11 ± 4.12

W+ Jets 10.40 ± 4.91 7.26 ± 4.34 9.66 ± 4.52
Z → ee -1.10 ± 1.16 -1.15 ± 1.16 -1.15 ± 1.16
Z → ττ 114.29 ± 5.52 82.25 ± 5.00 119.18 ± 5.86
Z → µµ 0.18 ± 0.13 0.18 ± 0.13 0.27 ± 0.15
Fakes 21.42 ± 5.47 14.52 ± 4.66 18.82 ± 5.30

Signal/Bkg 0.29 0.36 0.29
Significance 2.65±0.05 2.80±0.06 2.72±0.05

Table 12: The expected number of events for each process that pass the signal classifica-
tion threshold for the optimized networks with 50-50, 50-50-50 and 50-50-50-50 architec-
tures.

During the optimization of the L2 parameter, the reason why a L2 parameter of
λ = 10−5 was often chosen, even though other parameters gave better significance was
due to the presence of overtraining for λ = 10−6 and 10−7. This is evident from comparing
the loss evaluated with the validation and training data sets. An example for a network
architecture of 50-50-50 with a batch size of 200 can be seen in figure 21.

(a) L2 λ = 10−7 (b) L2 λ = 10−6

Figure 21: The loss as a function of the epoch for the training and validation samples for
a network with a 50-50-50 architecture, learning rate of 0.01 and a batch size of 200.

Furthermore, it was observed that for large L2 parameters such as λ = 10−4, 10−3,
the parameter would prevent the network from learning from the data. This caused the
network to give an output of around 0.5 for both signal and background events. Hence
when scanning over the signal classification threshold, if the threshold is below 0.5, all
events are classified as signal events, resulting in the points in figure 18 that lie on 1.
This is evident when one takes a look at the training and validation loss and accuracy
as a function of the epoch. An example for a network with a 50-50-50 architecture and
a L2 parameter of λ = 10−3, batch size of 200 and learning rate of 0.01 can be seen in
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plot 22. As seen in figure 22a, the accuracy of the neural network does not significantly
increase as a function of the epoch, but instead lies around 0.5. This would imply a
random classification.

(a) Accuracy (b) Loss

Figure 22: Training and validation accuracy and loss as a function of the epoch for a
neural network with a 50-50-50 architecture, L2 parameter of λ = 10−3, learning rate of
0.01 and batch size of 200.

The phenomenon where a small L2 parameter causes overtraining and where a large
L2 parameter causes the net to not learn is a recurring phenomenon, which will be seen
and be referred to in later optimization processes as well.

The optimal hyperparameter combination for these four network architectures as well
as the best significance and optimal neural network output threshold are summarized in
table 13. The a histogram of the output of the neural network as well as the training and
validation loss as a function of the epoch can be seen in figures 23 to 26.

Architecture L2 λ η Batch Size Max. Sign. NN Threshold
50-50 10−4 0.01 1000 2.65± 0.05 0.86

50-50-50 10−5 0.01 2000 2.80± 0.06 0.90
50-50-50-50 10−5 0.005 100 2.72± 0.05 0.86
100-50-25 10−5 0.005 500 2.72± 0.05 0.86

Table 13: The optimized combination of hyperparameters (L2 parameter λ, learning rate,
batch size) for different network architectures along with their maximum significance and
optimal neural network output threshold.
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(a) Training and validation loss as a func-
tion of the epoch.

(b) The neural network output for differ-
ent processes plotted on a logarithmic scale
(stacked).

Figure 23: The training and validation loss and neural network output for the optimized
network with a 50-50 architecture (L2 λ = 10−4, η=0.01, batch size = 1000). The total
of the background events were normalized to the signal events.

(a) Training and validation loss as a func-
tion of the epoch.

(b) The neural network output for differ-
ent processes plotted on a logarithmic scale
(stacked).

Figure 24: The training and validation loss and neural network output for the optimized
network with a 50-50-50 architecture (L2 λ = 10−5, η=0.01, batch size = 2000). The
total of the background events were normalized to the signal events.
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(a) Training and validation loss as a func-
tion of the epoch.

(b) The neural network output for differ-
ent processes plotted on a logarithmic scale.
(stacked).

Figure 25: The training and validation loss and neural network output for the optimized
network with a 50-50-50-50 architecture (L2 λ = 10−5, η=0.005, batch size = 100). The
total of the background events were normalized to the signal events.

(a) Training and validation loss as a func-
tion of the epoch.

(b) The neural network output for different
processes plotted on a logarithmic scale.

Figure 26: The training and validation loss and neural network output for the optimized
network with a 100-50-25 architecture (L2 λ = 10−5, η=0.005, batch size = 100). The
total of the background events were normalized to the signal events.
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7.3.1 Effect of Number of Layers

In order to see the effect of the number of layers on the performance of the neural network,
the maximum significance was determined depending on the number of layers (with 50
nodes each). This can be seen in figure 27. The training and validation loss as a function
of the epoch as well as the output of the neural network of these networks can be seen
above in figures 23 to 25. A summary of the expected number of events for each process
that pass the neural network signal classification threshold can be seen above in table 34.

Figure 27: Maximum significance as a function of the number of layers with 50 nodes
each. The other hyperparameters are as determined in the optimization process.

As it can be seen from the figure, the network with three layers had the best nominal
value for the significance, however not significantly more than that of the network with 4
layers. It can be seen that the network with 3 layers performed significantly better than
the one with two layers.

7.3.2 Influence of number of nodes per layer

As an additional investigation, for the optimized 50-50-50 architecture, the number of
nodes was further varied to see its impact on the significance. This was done with 30, 50,
70 and 100 nodes per layer. The other hyperparameters were fixed to the optimal values
of the 50-50-50 neural network. The maximum significance as a function of the number
of nodes per layer can be seen in figure 31. The training and validation loss as a function
of the epoch as well as the output of the neural network of these networks can be seen
in figures 28 to 30. A summary of the expected number of events for each process that
pass the neural network signal classification threshold can be seen in table 34.
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(a) Training and validation loss as a func-
tion of the epoch.

(b) The neural network output for different
processes plotted on a logarithmic scale.

Figure 28: The training and validation loss and neural network output for the optimized
network with a 30-30-30 architecture (L2 λ = 10−5, η=0.01, batch size = 2000). The
total of the background events were normalized to the signal events.

Process 30-30-30 70-70-70 100-100-100
VBFH 56.34 ± 0.28 55.23 ± 0.27 58.71 ± 0.28
Other H 6.48 ± 0.22 6.05 ± 0.21 6.99 ± 0.23

VV 12.86 ± 1.23 11.13 ± 0.99 12.74 ± 1.08
Top+X 39.56 ± 3.71 33.69 ± 3.41 42.81 ± 3.86
W Jets 8.67 ± 4.47 6.26 ± 4.27 7.55 ± 4.34
Zee -1.15 ± 1.16 -1.15 ± 1.16 -1.15 ± 1.16
Ztt 89.06 ± 4.89 76.85 ± 4.82 91.69 ± 5.16
Zmm 0.27 ± 0.15 0.18 ± 0.13 0.18 ± 0.13
Fakes 12.90 ± 4.37 11.28 ± 4.06 11.28 ± 4.06

Signal/Bkg 0.33 0.38 0.34
Significance 2.71±0.06 2.82±0.07 2.79±0.06

(a) Training and validation loss as a func-
tion of the epoch.

(b) The neural network output for different
processes plotted on a logarithmic scale.

Figure 29: The training and validation loss and neural network output for the optimized
network with a 70-70-70 architecture (L2 λ = 10−5, η=0.01, batch size = 2000). The
total of the background events were normalized to the signal events.
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(a) Training and validation loss as a func-
tion of the epoch.

(b) The neural network output for different
processes plotted on a logarithmic scale.

Figure 30: The training and validation loss and neural network output for the optimized
network with a 100-100-100 architecture (L2 λ = 10−5, η=0.01, batch size = 2000). The
total of the background events were normalized to the signal events.

Figure 31: Maximum significance as a function of the number of nodes per layer for a
neural network with three layers, learning rate of 0.01 and batch size of 2000 (optimal
configuration for 50-50-50 net))
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As seen in the figure 31, apart from the network with 30 nodes per layer, increasing
the number of nodes did not lead to a significant increase in the performance of the
network.

7.3.3 Influence of a non-flat architecture

A neural network with a 100-50-25 architecture was also investigated, its optimization
process can be seen above in figures 18 to 44. The training and validation loss as a function
of the epoch as well as the output of the network can be seen in figure 26. A table of
expected number of events that pass the neural network classification threshold can be
seen in table 14. As seen in table 13, the optimal configuration returned a maximum
significance of 2.72 ± 0.05, which was not significantly better than that of the 50-50-50
architecture, which was 2.80 ± 0.06. A further investigation which also utilized a 100-
50-25 architecture, but where the L2 parameter was scaled to the number of nodes per
layer can be seen in section 7.4.

Process 100-50-25
VBFH 49.32 ± 0.25
Other H 8.56 ± 0.25
V V 15.65 ± 1.29
Top 48.41 ± 4.08

W+Jets 9.12 ± 4.47
Z → ee -1.54 ± 1.24
Z → ττ 131.43 ± 6.30
Z → µµ 1.06 ± 0.81
Fakes 20.93 ± 5.51

Signal/Bkg 0.28
Significance 2.72±0.05

Table 14: The expected number of events for each process that pass the signal classifica-
tion threshold for the optimized networks with and without scaling the L2 parameter to
the number of nodes (100-50-25 architecture, HL variables).

7.4 Influence of Input Variables

The high level variables seen in table 7 are calculated from low level variables, derived
directly from the 4-momentum of the leptons and jets. Since all information in the high-
level variables derive from low-level variables, a neural network should in principle be
able to discern signal from background events using only low level variables.

In order to investigate the influence of different sets of input variables on the perfor-
mance of the neural network, several groups of input variables were defined. These can
be seen in table 15. (

∑
pT )scalar is the sum of the magnitudes of the transversal momenta

of jets and leptons. The distribution of these variables can be seen in figures 32 to 35
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Variable Set DNN Input Variables
Low Level (1) ηj1 ,ηj2 ,ηl2 ,ηl1 ,φj1 ,φj2 ,φl1 ,φl2 , p

j1
T ,p

j2
T ,p

l1
T ,p

l2
T , E

miss
T

Low Level (2) ∆φll, ∆φjj,∆φl1j1 ,∆φl2j2 ,∆φl1j2 ,∆φl2j1
+ Low Level (1) without φ’s

Low Level (3) (
∑
pT )scalar + Low Level (2)

Low Level (4) ∆φEmiss
T ,τ1 ,∆φEmiss

T ,τ2 ,∆φEmiss
T ,j1 ,∆φEmiss

T ,j2 + Low Level (3)

Table 15: The Variable set used as the input for training the neural network.

(a) ∆φll (b) ∆φjj

(c) ∆φl1j1 (d) ∆φl1j2

(e) ∆φl2j1 (f) ∆φl2j2

Figure 32: Distributions of variables in the Low Level (2) variable category (stacked).
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(a) (
∑
pT )scalar

Figure 33: Distribution of variables in the Low Level (3) variable category (stacked).
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(a) mMMC
ττ (b) mjj

(c) ∆Rll (d) Cjj(τ1)

(e) Cjj(τ2) (f) ptot
T

(g) mvis
ττ (h) mτ1,Emiss

T
T

Figure 34: Distribution of variables in the High Level variable category (stacked).
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(i) Emiss
T /pl1T (j) Emiss

T /pl2T

(k) pj3T

Figure 35: Distribution of variables in the High Level variable category (stacked).
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The full optimization processes were done for the variable category Low Level (1),
High Level and lastly with all variables. The influence of the additional low level variables
such as low level (2),(3) and (4) were investigated using the optimized low level net. The
results of the optimization procedure can be seen from figures 36 to 38. The output of
the neural network and training and validation loss as a function of the epoch can be seen
in figure 39 to 41, and a summary of the optimized hyperparameters as well as the best
significance and optimal NN threshold can be seen in table 19. A table of the expected
number of events that pass the signal classification threshold for each process can be seen
in table 20.

Figure 36: Maximum Significance as a function of
the L2 λ Parameter for neural networks utilizing
different input variables. The other hyperparam-
eters are: Batch Size = 200, Learning Rate=0.01

Variable Set Selected L2 λ
LL (1) 10−6

HL 10−5

All 10−5

Table 16: The selected L2 λ param-
eters for each variable category as
determined by their maximum sig-
nificance.

Figure 37: Maximum significance as a function
of the learning rate for neural networks utilizing
different input variables. The other hyperparam-
eters are as determined in the previous steps.

Variable Set Selected η
LL (1) 0.005
HL 0.01
All 0.005

Table 17: The selected learning rate
for each network architecture as de-
termined by their maximum signif-
icance.
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Figure 38: Maximum significance as a function of
the batch size for neural networks utilizing differ-
ent input variables. The other hyperparameters
are: Batch Size = 200, and L2 λ parameter as
determined in the previous step.

Variable Set Selected batch size
LL (1) 2000
HL 2000
All 500

Table 18: The selected batch sizes
for each network architecture as de-
termined by their maximum signif-
icance.

(a) Training and validation loss as a func-
tion of the epoch.

(b) The neural network output for differ-
ent processes plotted on a logarithmic scale
(stacked).

Figure 39: The training and validation loss and neural network output for the optimized
network utilizing Low Level (1) variables (50-50-50 architecture, L2 λ = 10−6, η=0.01,
batch size = 2000). The total of the background events were normalized to the signal
events.

Variable Set L2 λ η Batch Size Max. Sign. NN Threshold
LL(1) 10−6 0.01 2000 2.01± 0.03 0.80
HL 10−5 0.01 2000 2.80± 0.06 0.90
All 10−5 0.005 50 2.93± 0.08 0.92

Table 19: The optimized combination of hyperparameters (L2λ, learning rate, batch size)
for different network architectures along with their maximum significance and optimal
neural network answer threshold
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(a) Training and validation loss as a func-
tion of the epoch.

(b) The neural network output for differ-
ent processes plotted on a logarithmic scale
(stacked).

Figure 40: The training and validation loss and neural network output for the optimized
network utilizing high level variables (50-50-50 architecture, L2 λ = 10−5, η=0.01, batch
size = 2000). The total of the background events were normalized to the signal events.

As it can be seen in table 19, the neural network utilizing all variables has the highest
nominal value for the significance, although it is not significantly higher than that of
the low level variables. Furthermore, the networks using only high level or all variables
perform significantly better than the network using only low level variables. Performance
of the neural network using high level variables was not significantly better than the one
using all variables, however for computing efficiency and storage optimization, one may
consider using only using high level variables.

7.4.1 Varying the low-level variables

The influence of additional low-level variables were investigated using the optimized low-
level neural network above (50-50-50 architecture, L2 λ = 10−6, η = 0.01, Batch Size
= 200) . Upon the original low-level (1) variable set, additional low-level varible sets
were added as input variables for the neural network. A list of low level input variables,
organized into variable sets, can be seen in table 21. For each addition, its influence on
the maximum significance was investigated. The Low Level (1) variable set was defined
as the set of φ, η and pT of jets and leptons as well as the magnitude of te missing
transversal energy. The φ angle of the leptons and jets were redefined so that the φ of the
missing energy was at 0, i.e. for every event, for every lepton and jet, φ was replaced with
([φ−φEmiss

T
+π] mod 2π)−π, where the modulo operator ensures that the result is between

−π and π. The Low Level (2) variable set contains the differences of φ between all leptons
and jets and variables from Low Level (1). In this case, these variables replace the φ’s in
the Low Level (1) variable set. Low Level (3) contains the variable (

∑
pT )scalar,defined as

the scalar sum of all transversal momenta (i.e. of jets, leptons and missing energy) along
with those in Low Level (2), and Low Level (4) contains the differences in φ between
the missing energy and the leptons and jets, along with those in Low Level (3). For the
calculation of the ∆φ’s, the original unrotated φ were used. A Summary of the results
can be seen in table 21.
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(a) Training and validation loss as a func-
tion of the epoch.

(b) The neural network output for differ-
ent processes plotted on a logarithmic scale
(stacked).

Figure 41: The training and validation loss and neural network output for the optimized
network utilizing all variables (50-50-50 architecture, L2 λ = 10−5, η=0.005, batch size
= 50). The total of the background events were normalized to the signal events.

As it can be seen in table 21, replacing φ’s with ∆φ’s between the leptons and jets
slightly increased the performance of the net. This is most likely due to the differences
in the distribution of ∆φjj for background and VBF signals (see figure 42).

Figure 42: The distribution of ∆φjj for background and VBF signal events (stacked).

However, the biggest improvement in the performance of the neural network was made
with the addition of (

∑
pT )scalar. Before the addition of this variable, the maximum sig-

nificance lied on 2.068 ± 0.034, which was increased to 2.52 ± 0.05 through the addition
of this variable. The addition of ∆φ’s with the missing energy however did not signifi-
cantly increase the significance. Which is as expected since it can be seen in figure 43,
that the distribution of these ∆φ’s with the missing energy have very similar distributions
for signal and background events.
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Process 50-50-50 (HL) 50-50-50 (LL) 50-50-50 (All)
VBFH 56.37 ± 0.27 58.77 ± 0.28 36.19 ± 0.21
Other H 6.25 ± 0.22 11.61 ± 0.31 4.12 ± 0.17
V V 10.63 ± 0.95 32.15 ± 1.57 4.42 ± 0.70
Top 34.77 ± 3.43 165.41 ± 7.09 21.76 ± 2.79

W+Jets 7.26 ± 4.34 21.57 ± 5.97 6.43 ± 4.31
Z → ee -1.15 ± 1.16 0.41 ± 0.62 0.00 ± 0.00
Z → ττ 82.25 ± 5.00 281.37 ± 7.53 49.15 ± 3.88
Z → µµ 0.18 ± 0.13 -0.68 ± 0.97 0.09 ± 0.09
Fakes 14.52 ± 4.66 27.19 ± 5.93 4.30 ± 2.52

Signal/Bkg 0.36 0.11 0.53
Significance 2.80±0.06 2.01±0.03 2.93 ± 0.08

Table 20: The expected number of events for each process that pass the signal classifica-
tion threshold for the optimized networks utilizing high level, low level and both variable
sets (50-50-50 architecture).

Input Variable Sets Max. Signifiance Optimal Threshold
Low Level (1) 2.010 ±0.028 0.80
Low Level (2) 2.068 ±0.034 0.86
Low Level (3) 2.52 ± 0.05 0.90
Low Level (4) 2.58±0.05 0.88

Table 21: The maximum significance of the optimized low level neural network for dif-
ferent combinations of input variable sets, defined in table 7

7.5 Scaling the L2 parameter to the number of nodes

A further investigation was done which scaled the L2 parameter proportionally to the
number of nodes per layer as suggested by [49], i.e. if the first layer with a hundred nodes
had an L2 parameter of λ = 10−5, a layer with 50 nodes would have an L2 parameter
of λ = 5 · 10−6. This was applied to the network with the 100-50-25 architecture and
the optimization process was done. For these optimization processes, only the high level
input variables were used. An overview of the optimization process can be seen in figures
44 to 46. A table of the number of expected events that pass the signal classification
threshold can be seen in table 27. The optimization process for the network without
the L2 parameter scaling is identical to that of section 7.2 but displayed again here for
comparison.
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(a) ∆φEmiss
T ,l1

(b) ∆φEmiss
T ,l2

(c) ∆φEmiss
T ,j1

(d) ∆φEmiss
T ,j2

Figure 43: The distributions of ∆φ’s between the missing energy and leptons and jets
for background and signal events (stacked). Background events are normalized to signal
events.

Figure 44: Maximum Significance as a function
of the L2 λ Parameter in the first hidden layer
for different network architectures. The other hy-
perparameters are: Batch Size = 200, Learning
Rate=0.01.

L2 Scaling Selected L2 λ
No 10−5

Yes 10−5

Table 22: The selected L2 λ param-
eters for each variable category as
determined by their maximum sig-
nificance.
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Figure 45: Maximum significance as a function
of the learning rate for different network archi-
tectures. The other hyperparameters are as de-
termined in the previous steps.

L2 Scaling Selected η
No 0.005
Yes 0.005

Table 23: The selected learning rate
for each network architecture as de-
termined by their maximum signif-
icance.

Figure 46: Maximum significance as a function of
the batch size for different network architectures.
The other hyperparameters are: Batch Size =
200, and L2 λ parameter as determined in the
previous step.

L2 Scaling Selected Batch Size
No 500
Yes 1000

Table 24: The selected batch sizes
for each network architecture as de-
termined by their maximum signif-
icance.

It can be seen in table 26 that scaling the L2 parameter to the number of nodes per
layer slightly increases the performance of the network from 2.71 ± 0.05 to 2.85 ± 0.06.

7.6 Utilization of multiple output nodes

In this section, the most dominant background processes were determined, and multiple
output nodes were set up to differentiate not just signal from background events, but
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(a) Training and validation loss as a func-
tion of the epoch.

(b) The neural network output for differ-
ent processes plotted on a logarithmic scale
(stacked).

Figure 47: The training and validation loss and neural network output for the optimized
network with L2 parameter scaling (50-50-50 architecture, L2 λ = 10−5, η=0.005, batch
size = 50, using high level variables). The total of the background events were normalized
to the signal events.

L2 Scaling L2 λ η Batch Size Max. Signifiance Optimal Threshold
No 10−5 0.005 500 2.72 ±0.05 0.90
Yes 10−5 0.005 1000 2.85 ±0.06 0.86

Table 25: The maximum significance for different nets utilizing high level input variables
where one scales the L2 parameter to the number of nodes per layer and the other doesn’t.
Other hyperparameters are as determined in the optimization processes.

Table 26: The expected number of events for each process that pass the signal classifica-
tion threshold for the optimized networks that scale and don’t scale the L2 parameter to
the number of nodes per layer (100-50-25 architecture).

also to differentiate different types of background processes as well. In order to identify
the dominant background processes, the expected number of events for each process that
passes the NN output threshold was calculated. It was consistently observed, that the
top background and Z → ττ processes were the two dominant background processes. An
example table of expected number of events for each process that passes the optimal NN
threshold with the optimized 50-50-50 neural network using high level input variables can
be seen in table 28.

Therefore, the neural network had a total of four output nodes, one for VBF signals,
Z → ττ , top background and other background events each. An event was classified as
one of these processes above when the output of its corresponding output node was greater
than that of the other output nodes. The top background, Z → ττ and other background
events signals were normalized separately to the signal events. The optimization process
for a neural network with a 50-50-50 architecture and multiple output nodes using high
level variables was done. The results of the optimization can be seen in figures 48 to 50.
A table of the expected number of events that pass the signal classification threshold can
be seen in table 33. The optimization process of the neural network with the 50-50-50
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Process No L2 Scaling With L2 Scaling
VBFH 49.32 ± 0.25 58.15 ± 0.28
Other H 8.56 ± 0.25 6.43 ± 0.22
V V 15.65 ± 1.29 10.08 ± 1.00
Top 48.41 ± 4.08 34.26 ± 3.51

W+Jets 9.12 ± 4.47 7.42 ± 4.37
Z → ee -1.54 ± 1.24 -1.59 ± 1.24
Z → ττ 131.43 ± 6.30 88.05 ± 5.04
Z → µµ 1.06 ± 0.81 0.18 ± 0.13
Fakes 20.93 ± 5.51 11.84 ± 4.24

Signal/Bkg 0.28 0.37
Significance 2.72±0.05 2.85±0.06

Table 27: The expected number of events for each process that pass the signal classifica-
tion threshold for the optimized networks with and without scaling the L2 parameter to
the number of nodes (100-50-25 architecture, HL variables).

VBF → H → ττ 42.66 ± 0.23
VBF→ H → WW 13.71 ± 0.15

Other H Production Modes 6.25 ± 0.22
Diboson Production 10.63 ± 0.95
Top Background 34.77 ± 3.43

W+Jets 7.26 ± 4.34
Z → ee -1.15 ± 1.16
Z → ττ 82.25 ± 5.00
Z → µµ 0.18 ± 0.13
Fakes 14.52 ± 4.66

Table 28: The expected number of events for each process above a cut of 0.90 for the op-
timized neural network with a 50-50-50 architecture, L2 parameter of λ = 10−5, Learning
rate of 0.01 and batch size of 2000, corresponding to a luminosity of 139 fb−1.

architecture with only two output nodes are also shown for comparison.
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Figure 48: Maximum Significance as a function of
the L2 λ Parameter for each neural network with
different numbers of output nodes. The other
hyperparameters are: Batch Size = 200, Learning
Rate=0.01

No. Nodes Selected L2 λ
2 10−5

4 10−5

Table 29: The selected L2 λ param-
eters for each neural network with
different numbers of output nodes
as determined by their maximum
significance.

Figure 49: Maximum significance as a function
of the learning rate for each neural network with
different numbers of output nodes. The other hy-
perparameters are as determined in the previous
steps.

No. Nodes Selected η
2 0.01
4 0.01

Table 30: The selected learning rate
for each neural network with differ-
ent numbers of output nodes as de-
termined by their maximum signif-
icance.
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Figure 50: Maximum significance as a function of
the batch size for networks with different num-
bers of output nodes. The other hyperparame-
ters are: Batch Size = 200, and L2 λ parameter
as determined in the previous step.

No. Nodes Selected Batch Size
2 2000
4 500

Table 31: The selected batch sizes
for each neural network with differ-
ent numbers of output nodes as de-
termined by their maximum signif-
icance.

Figure 51: The training and validation loss and neural network output for the optimized
network with four output nodes (50-50-50 architecture, L2 λ = 10−5, η=0.01, batch size
= 50, high level variables).

No. Outputs L2 λ η Batch Size Max. Signifiance Optimal Threshold
2 10−5 0.01 2000 2.80 ±0.06 0.90
4 10−5 0.01 500 2.95 ±0.06 0.82

Table 32: The maximum significance for different nets utilizing high level input variables
with different number of output nodes for different processes.
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Process 2 Output Nodes 4 Output Nodes
VBFH 56.37 ± 0.27 45.54 ± 0.25
Other H 6.25 ± 0.22 3.90 ± 0.17
V V 10.63 ± 0.95 4.80 ± 0.62
Top 34.77 ± 3.43 15.14 ± 2.37

W+Jets 7.26 ± 4.34 1.47 ± 0.88
Z → ee -1.15 ± 1.16 0.01 ± 0.01
Z → ττ 82.25 ± 5.00 50.34 ± 3.35
Z → µµ 0.18 ± 0.13 0.18 ± 0.13
Fakes 14.52 ± 4.66 1.62 ± 1.62

Signal/Bkg 0.36 0.59
Significance 2.80±0.06 2.95±0.06

Table 33: The expected number of events for each process that pass the signal classifica-
tion threshold for the optimized networks with 2 and 4 output nodes utilizing high level
variables.

As it can be seen in table 32, increasing the number of nodes to consider different types
of background processes has significantly increased the performance of the neural network.
With two output nodes, the significance had a maximum value of 2.80 ± 0.06, while with
four output nodes 2.95 ± 0.06. However, another important aspect of this neural network
is its ability to accurately identify background processes as well. Histograms of the neural
network output for each output node, separated into the different processes, can be seen
in figure 52.

Even though the differentiation from signal to background has improved, the perfor-
mance of the classification of the background processes is not ideal. The output of the
node for other background processes is limited to 0.5, implying that for a given event,
the neural network assigned a maximum probability of 0.5 that the event is from other
background processes. This may be due to the low amount of events in the input data
of this category, since the dominant background processes have been assigned to other
output nodes. Similar phenomena can also be seen from other nodes as well. For the top
background node, the output was limited to 0.9, and for Z → ττ limited to 0.84. This
implies, increasing the amount of output nodes for different processes may be used to
improve the discrimination of signal events from background events, but not necessarily
improve the classification of events into their respective processes.

7.7 Summary of optimized networks

An overview of the predicted expected number of events that pass the signal threshold for
each process can be seen in table 34. It can be seen that the optimized 50-50-50 network
utilizing all variables had the highest signal to background ratio and significance. Apart
from the network utilizing low level variables, the maximum significances of all networks
were between 2.6 and 2.95. It is also evident, that certain network configurations are
able to significantly suppress Z → ττ signals, which is one of the dominant background
processes. For example, the 100-50-25 architecture using high level variables predicted
that 131 Z → ττ events pass the event threshold, while for the 50-50-50 architecture with
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(a) VBF Signals (b) Other background processes

(c) Top background (d) Z → ττ

Figure 52: Distribution of the output of each output node (stacked)

all variables, only 49 events pass the threshold.
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Process 50-50 (HL) 50-50-50 (HL) 50-50-50-50 (HL) 50-50-50 (LL) 100-50-25 (HL) 50-50-50 (All) 100-50-25* (HL) 50-50-50** (HL)
VBFH 61.36 ± 0.29 56.37 ± 0.27 47.92 ± 0.24 58.77 ± 0.28 49.32 ± 0.25 36.19 ± 0.21 58.15 ± 0.28 45.54 ± 0.25
Other H 7.51 ± 0.24 6.25 ± 0.22 8.25 ± 0.25 11.61 ± 0.31 8.56 ± 0.25 4.12 ± 0.17 6.43 ± 0.22 3.90 ± 0.17
V V 16.17 ± 1.28 10.63 ± 0.95 16.15 ± 1.30 32.15 ± 1.57 15.65 ± 1.29 4.42 ± 0.70 10.08 ± 1.00 4.80 ± 0.62
Top 48.34 ± 4.10 34.77 ± 3.43 49.11 ± 4.12 165.41 ± 7.09 48.41 ± 4.08 21.76 ± 2.79 34.26 ± 3.51 15.14 ± 2.37

W+Jets 10.40 ± 4.91 7.26 ± 4.34 9.66 ± 4.52 21.57 ± 5.97 9.12 ± 4.47 6.43 ± 4.31 7.42 ± 4.37 1.47 ± 0.88
Z → ee -1.10 ± 1.16 -1.15 ± 1.16 -1.15 ± 1.16 0.41 ± 0.62 -1.54 ± 1.24 0.00 ± 0.00 -1.59 ± 1.24 0.01 ± 0.01
Z → ττ 114.29 ± 5.52 82.25 ± 5.00 119.18 ± 5.86 281.37 ± 7.53 131.43 ± 6.30 49.15 ± 3.88 88.05 ± 5.04 50.34 ± 3.35
Z → µµ 0.18 ± 0.13 0.18 ± 0.13 0.27 ± 0.15 -0.68 ± 0.97 1.06 ± 0.81 0.09 ± 0.09 0.18 ± 0.13 0.18 ± 0.13
Fakes 21.42 ± 5.47 14.52 ± 4.66 18.82 ± 5.30 27.19 ± 5.93 20.93 ± 5.51 4.30 ± 2.52 11.84 ± 4.24 1.62 ± 1.62

Sum Bkg. 217 ± 10 155 ± 9 220 ± 10 539 ± 13 234 ± 11 90 ± 7 157 ± 9 77 ± 5
Signal/Bkg 0.29 0.36 0.21 0.11 0.28 0.53 0.37 0.59
Significance 2.65±0.05 2.80±0.06 2.72±0.05 2.01±0.03 2.72±0.05 2.93 ± 0.08 2.85±0.06 2.95±0.06

Table 34: A summary of the number of expected events that pass the signal classification
threshold for different processes for different optimized neural networks as well as their
signal to background ratio and significance.(* With L2 parameter scaling, **With four
output nodes).

8 Conclusion

The goal of this thesis was to optimize a neural network to discriminate VBFHH → ττ →
eµ4ν events from background processes for data collected in pp-collisions during Run-2
of the LHC with the ATLAS detector. The effect of the variation in the L2 parameter,
learning rate, batch size, input variables, and network architecture on the performance of
the network was investigated, where the performance of a neural network is determined
by its highest significance, defined as s/

√
s+ b. A standardized optimization process of

the L2 parameter, learning rate and batch size was implemented to find the combination
which results in the highest significance for a given neural network architecture.

Trying to find the optimal combination of hyperparameters for different network ar-
chitectures yielded a result that the 50-50-50, 70-70-70, 100-100-100 architecture perform
similarly albeit better than the 30-30-30 architecture, with maximum significances of
2.80±0.07, 2.81±0.06, 2.77±0.06, and 2.69±0.06 respectively. This implies that simply
increasing the number of nodes per layer does not improve the performance of the neural
network. It was also shown that having more layers does not increase the significance.
The optimized neural network with 2, 3 and 4 layers yielded significances of 2.65±0.05,
2.70±0.06 and 2.72±0.05 respectively. Furthermore, an investigation into a non-flat ar-
chitecture of 100-50-25 showed that it did not discriminate significantly better than the
best flat architectures.

Another investigation into the influence of the type of input variables on the perfor-
mance of the neural network suggests that using both high and low variables is slightly
better than using only high-level variables, while both being far better than utilizing
low-level variables only. However, the performance of the neural network using low-level
variables can be significantly improved by adding the variable (

∑
pT )scalar, while adding

other variables such as ∆φ’s between jets, leptons and missing energy did not significantly
improve the performance of the network.

Increasing the amount of output nodes to consider different types of background pro-
cesses, namely the top background and Z → ττ , significantly improved the discrimination
of signal events from background events with a significance of 2.95±0.05 as compared to
2.80±0.06 for the best neural network with only 2 output nodes and using high level
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variables. However the accuracy of the classification of the background events is not
ideal.

Lastly, it was consistently observed during the optimization processes, that an L2
parameter of λ = 10−5 was shown to most often minimize the amount of overtraining
and at the same time make sure that the network is able to actually learn. In all cases,
learning rates of 0.005 or 0.01 were shown to yield best performances. The influence of
the batch size on the performance of the network was often insignificant, where no single
batch size would perform better than any other.

This implies, as far as the investigation of this thesis is concerned, the ideal neural
network for discerning VBF signal events from background events would be a neural
network with a 50-50-50 or 70-70-70 architecture with multiple output nodes utilizing all
or high-level variables. The maximum significance for an optimized neural network with
a 50-50-50 architecture with multiple output nodes utilizing high level variables is 2.95
± 0.05 with a signal to background ratio of 0.59.
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Zusammenfassung

In dieser Bachelorarbeit wird die Benutzung von neuronalen Netzwerken für die Selek-
tion von H → ττ → eµ4ν Zerfallsereignissen des durch Vektorbosonfusion produzierten
Higgs-Bosons im Run-2 vom ATLAS Experiment mit L = 139fb−1 untersucht. Zuerst
wurde eine Vorselektion auf die Eingangsdaten angewandt, um das Signal-zu-Untergrund
Verhältnis zu vergrößern. Die Monte-Carlo simulierten Daten werden dann benutzt, um
neuronale Netzwerke zu trainieren. Der Einfluss von verschiedenen Hyperparametern wie
die Lernrate, Batch Size, L2 Parameter, Netzwerkarchitektur und Eingangsvariablen auf
die Trennfähigkeit des Netzwerkes wird untersucht, um eine optimale Kombination von
Hyperparametern zu finden. Die beste Signifikanz wird von einem Netzwerk mit einer 50-
50-50 Architektur mit vier Ausgangsknoten, das beide low-level und high-level Variablen
verwendet, geliefert.
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