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Abstract

This thesis compares the sensitivities of various CP-odd observables to possible CP-violating
contributions in the HVV vertex of the vector-boson-fusion (VBF) Higgs-boson production
mode, considering the decay channel H ! ⌧had⌧had. Simulated event samples, corresponding
to proton-proton collision data, measured by the ATLAS detector at the LHC during the
full Run2, at a center of mass energy of p

s = 13 TeV corresponding to an integrated
luminosity of 139 fb�1 are used. The analysis considers established observables, like the
Optimal Observable (OO) and the signed difference between the azimuthal angles (��sgn

jj )
of the two leading VBF tagging jets and observables constructed using various machine
learning methods, namely the observable (O3Class

NN )final constructed directly from the output of
a multiclass neural network (NN), the observable O

Reg
NN obtained by targeting the OO using

a regression NN and the observable P
T

j0
P

T

j1
sin��sgn

jj , resulting from a symbolic regression
method, when targeting the OO. The CP-sensitivity is estimated via a maximum likelihood
(ML) method that allows constraining the dimensionless parameter d̃, that defines the strength
of possible new CP-violating couplings, through the construction of central confidence intervals
for this parameter, considering only the shape of the CP-odd observable distributions. The
expected CP-sensitivity of the OO is d̃ 2[-0.0150(5),0.0149(5)] at 1� confidence level and
d̃ 2[-0.0301(5),0.0300(5)] at 2 � confidence level. This CP-sensitivity is not exceeded by the
other considered CP-odd observables. The expected CP-sensitivity achieved by ��sgn

jj is
d̃ 2[-0.0158(5),0.0157(5)] at 1� confidence level and d̃ 2[-0.0318(5),0.0316(5)] at 2� confidence
level. The observable (O3Class

NN )final constrains d̃ to [-0.0152(5),0.0152(5)] at 1� confidence
level and to [-0.0306(5),0.0306(5)] at 2� confidence level. O

Reg
NN , allows imposing the following

constraints: d̃ 2[-0.0149(5),0.0150(5)] at 1� confidence level and [-0.0301(5),0.0301(5)] at 2�

confidence level. The observable P
T

j0
P

T

j1
sin��sgn

jj constrains d̃ to [-0.0150(5),0.0151(5)] at 1�
confidence level and to [-0.0303(5),0.0303(5)] at 2� confidence level.



Zusammenfassung

Diese Arbeit vergleicht die Sensitivitäten verschiedener CP-ungerader Observablen gegenüber
potenziellen CP-verletzenden Beiträgen im HVV-Vertex des Vektor-Boson-Fusions (VBF)
Higgs-Boson-Produktionsmodus unter Berücksichtigung des Zerfallskanals H ! ⌧had⌧had. In
der vorgelegten Analyse werden simulierte Ereignisse verwendet, die dem gesamten Datensatz,
der mit dem ATLAS Detektor am LHC während des Run2 bei einer Schwerpunktsenergie von
p
s = 13 TeV entsprechend einer integrierten Luminosität von 139 fb�1 aufgenommen wurde,

entsprechen. Die Analyse umfasst etablierte CP-ungerade Observablen wie die Optimal Ob-
servable (OO) und die vorzeichenbehaftete Differenz zwischen den Azimutwinkeln (��sgn

jj )
der beiden führenden VBF-Tagging-Jets. Zusätzlich werden mittels verschiedener Methoden
des maschinellen Lernens konstruierte Observablen untersucht, darunter (O3Class

NN )final, OReg
NN

und P
T

j0
P

T

j1
sin��sgn

jj . (O3Class
NN )final resultiert direkt aus den Vorhersagen eines mehrklas-

sigen Klassifizierungs-Neuronalen-Netzwerks, während O
Reg
NN die OO-Verteilung numerisch

approximiert und P
T

j0
P

T

j1
sin��sgn

jj eine analytische approximation der OO, resultierend
aus einer symbolischen Regressionsmethode, darstellt. Die CP-Sensitivität wird mithilfe
eines Maximum-Likelihood-(ML)-Verfahrens abgeschätzt, das es ermöglicht, die Stärke d̃

der Beiträge möglicher neuer, CP-verletzender Kopplungen, durch die Konstruktion zen-
traler Konfidenzintervalle einzugrenzen. Die erwartete CP-Sensitivität der OO liegt bei
d̃ 2[-0.0150(5),0.0149(5)] auf dem 1�-Konfidenzniveau und bei d̃ 2 [�0.0301(5), 0.0300(5)]

auf dem 2�-Konfidenzniveau. Diese CP-Sensitivität wird von allen anderen betrachteten CP-
ungeraden Observablen nicht übertroffen. Die für ��sgn

jj erwartete CP-Sensitivität, liegt bei
d̃ 2[-0.0158(5),0.0157(5)] auf dem 1�-Konfidenzniveau und bei d̃ 2 [�0.0318(5), 0.0316(5)] auf
dem 2�-Konfidenzniveau. Die Observable (O3Class

NN )final beschränkt d̃ auf [-0.0152(5),0.0152(5)]
auf dem 1�-Konfidenzniveau und auf [-0.0306(5),0.0306(5)] auf dem 2�-Konfidenzniveau.
O

Reg
NN ermöglicht die folgenden Eingrenzungen: d̃ 2[-0.0149(5),0.0150(5)] auf dem 1�-

Konfidenzniveau und [-0.0301(5),0.0301(5)] auf dem 2�-Konfidenzniveau. Die Observable
P

T

j0
P

T

j1
sin��sgn

jj beschränkt d̃ auf [-0.0150(5),0.0151(5)] auf dem 1�-Konfidenzniveau und auf
[�0.0303(5), 0.0303(5)] auf dem 2�-Konfidenzniveau.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics [1–3] is the current best theory to describe
elementary particles - the fundamental constituents of the universe - and the forces that govern
their interactions. A central principle of the SM is the concept of local gauge invariance,
which forms the basis for its successful description of three out of the four fundamental forces:
electromagnetism, the weak force and the strong force.

The SM demonstrated its predictive power on numerous occasions, anticipating the
existence of several particles, for example the Z and the W bosons, which were later confirmed
through experiments at the SPS Proton-Antiproton Collider [4, 5] at CERN or the top quark
which was first observed at the Fermilab Tevatron [6]. The discovery of the Higgs boson in
2012 at the Large Hadron Collider (LHC) [7, 8], validated the Brout-Englert-Higgs-Guralnik-
Hagen-Kibble mechanism [9–11], formulated in 1964, by which elementary particles acquire
mass within the SM framework and simultaneously confirmed the existence of the last missing
piece of the SM.

However, some observed phenomena can not be explained by the predictions of the
SM. One such phenomenon is the imbalance of the amount of baryons and anti-baryons
that is observed in our universe. This observation can only be explained if three conditions,
formulated by A.D. Sakharov in 1967 [12], are fulfilled. One of these conditions requires the
existence of processes that violate the invariance under the combination of charge conjugation
and parity transformation (CP). In the SM, CP- symmetry is broken only in the electroweak
sector. Here, CP-violation is incorporated through complex phases in the Cabibbo-Kobayashi-
Maskawa (CKM) matrix [13]. However, the amount of CP-violation resulting from this SM
source is not sufficient to explain the baryon asymmetry of our universe (BAU). This motivates
the experimental search for additional sources of CP-violation beyond the standard model
(BSM).

Given that the electroweak sector already encompasses SM sources of CP-violation, at-
tempts have been made multiple times to search for BSM sources within this sector. Analyses,
probing the CP-invariance of Higgs boson couplings to electroweak gauge bosons (HVV cou-
plings) have been performed using data from the vector-boson-fusion (VBF) Higgs boson



2 CHAPTER 1. INTRODUCTION

production through proton-proton (pp) collisions, exploiting the decay H ! ⌧⌧, at the ATLAS
detector [14] in 2016 at an integrated luminosity 20.3 fb�1 and at a center of mass energy
p
s = 8 TeV [15] and in 2020 with 36.1fb �1 at p

s = 13T eV [16]. In both cases, no signs
for CP-violation have been found. These analyses utilized the Optimal Observable (OO)
method, where the structure of the HVV couplings is probed using the CP-odd observable
OO, constructed from additional CP-violating contributions that appear with a strength
d̃, when introducing CP-odd BSM interactions in the framework of an effective field theory
(EFT). The strength parameter d̃ could be constrained to the interval [-0.11,0.05][15] and
[-0.090,0.035][16] at 1� confidence level, compatible with the SM prediction of d̃ = 0. A fur-
ther established CP-odd observable, besides the OO, is given by the signed difference ��sgn

jj
between the azimuthal angles of the two leading tagging jets that occur in the VBF Higgs
boson production [17]. Recently, new machine learning based CP-odd observables have been
introduced. For example, in [18] a CP-odd observable is constructed directly from the output
of classification neural networks (NNs). Furthermore, [19] employs a symbolic regression
method to construct an analytical expression that approximates the OO.

In this thesis, the sensitivity of CP-odd observables, constructed following the machine
learning approaches proposed in [18, 19], to CP-violating contributions in the HVV vertex
of the VBF Higgs boson production process is evaluated using a maximum likelihood (ML)
method and compared to the CP-sensitivities of the well established observables OO and
��sgn

jj .
The presented analysis particularly focuses on the decay channel H ! ⌧had⌧had of the

VBF Higgs boson, using simulated event samples corresponding to data recorded by the
ATLAS detector during the full Run2 with an integrated luminosity of 139 fb�1 at a center
of mass energy of ps = 13 TeV.

The thesis is structured as follows: Chapter 2 describes the signal and background
processes considered during the analysis. In chapter 3 the MC generated dataset and the
corresponding event weights are discussed. Furthermore, this chapter specifies selection
criteria imposed on the events in the dataset, aiming to enhance the signal to background
ratio during the analysis.

The approach of utilizing CP-odd observables for performing CP-tests within the frame-
work of effective field theories is elaborated in chapter 4. Moreover, the technique of estimating
sensitives of CP-odd observables to CP-violating HVV couplings by utilizing negative log like-
lihood (NLL) scans, a maximum likelihood (ML) method that allows constraining d̃ through
the construction of central confidence intervals, is discussed. This method requires predictions
on the observable distributions in different CP-violating scenarios. The generation of these
predictions, through a matrix elements based reweighting technique is also introduced in
this chapter. Chapter 5 introduces well established observables that are commonly used in
CP-tests, namely the Optimal Observable OO and the signed difference in azimuthal angles of
the leading tagging jets ��sgn

jj and provides a first demonstration of estimating CP-sensitivity
via NLL scans. In chapter 6 various machine learning methods are employed for the construc-
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tion of CP-odd observables which are then also evaluated in terms of their CP-sensitivities
via NLL scans. When introducing additional CP-odd couplings in the EFT approach, their
contribution appears in the corresponding matrix elements as a CP-odd interference term
and an additional CP-even quadratic term. Classification NNs are used to construct CP-odd
observables that comprise the information on the CP-structure of the HVV-vertex that is
present in the interference term, following the approach proposed in [18]. Several binary and
multiclass NNs are considered. Different studies are performed regarding the impact of specific
conditions during the NN training, i.e impacts of the choice of the specific CP-violating d̃ 6= 0

scenario assumed during training, the choice of input features and the inclusion of the matrix
element based weights in the loss function. Moreover, regression neural networks are employed
to resemble the OO distribution and finally the method of symbolic regression is applied, first
following [19] to analytically approximate the OO distribution as it is predicted by the SM
and in the next step, aiming to additionally approximate the OO distribution as predicted
for a CP-violating scenario. Chapter 7 compares the well established CP-odd observables and
the constructed machine learning based observables regarding their CP-sensitivites. Finally,
chapter 8 provides a discussion of the results obtained during this analysis.



Chapter 2

Signal and Background Processes

The Large Hadron Collider (LHC) [20] is the world’s most powerful and complex particle
collider, located beneath the Franco-Swiss border near Geneva. Operated by CERN (Conseil
Européen pour la Recherche Nucléaire), the LHC is a scientific instrument designed to
explore the fundamental constituents of matter and their interactions. In the LHC, protons
are collided at high energies.

One of the main motivations for building the LHC was the search for the Higgs boson,
which is a short-lived, electrically neutral, fundamental particle with a spin of 0. After its
prediction through the Brout-Englert-Higgs-Guralnik-Hagen-Kibble mechanism, formulated
in 1964 [9–11], the Higgs boson was first experimentally observed in 2012 by the ATLAS and
CMS experiments at CERN, using data from proton-proton (pp) collisions at center-of-mass-
energies of 7 TeV and 8 TeV [7, 8]. According to the current ATLAS measurement [21], the
mass of the Higgs boson is MHiggs = 125.11± 0.11 GeV.

Since protons are hadrons, their collision ultimately comes down to the interaction of
partons, enabling the emergence of the Higgs boson through different production mechanisms.
Figure 2.1 shows example Feynman diagrams for the four dominant Higgs-boson production
modes at the LHC, namely the gluon-gluon-fusion (ggF) production, the vector-boson-fusion
(VBF) production, the associated production with a vector boson (VH) and the associated
production with two top-quarks (ttH) [22].

(a) (b) (c) (d)

Figure 2.1: Example Feynman diagrams for the dominant Higgs-boson production modes
at the LHC: (a) Gluon-gluon-fusion (ggF) (b) vector-boson fusion (VBF) (c) associated
production with vector bosons (VH) and (d) associated production with top-quark pairs
(ttH).
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2.1 VBF Higgs-Boson Signal

The presented analysis considers the production of Higgs bosons via VBF at the LHC at
a center of mass energy of ps = 13 TeV, to investigate the CP-invariance of the couplings
of electroweak gauge bosons V 2 {W

+
,W

�
, Z} to the Higgs-boson (HVV-couplings). This

process is described by
pp ! Hqq. (2.1)

The corresponding cross-section is �VBF = (3.779 ± 0.794) pb (for MHiggs = 125.09 GeV)
[23]. During the collision of the initial state protons p, two quarks q interact through the
emission of electroweak gauge bosons, which then fuse, resulting in the production of the Higgs
boson. Since quarks cannot exist in unbound states [22], each final state quark hadronises
[22] and causes a cascade of secondary particles, which is referred to as tagging jet. These
tagging jets are characterized by having a large invariant mass Mjj and a large separation in
pseudorapidity (see section 3.2) �⌘jj .

Particularly, this analysis focuses on the decay of the VBF Higgs-boson into a pair of
⌧ -leptons, for which the branching ratio is [23]

BR(H ! ⌧⌧) = 6.27% ± 1.6% . (2.2)

Since ⌧ -leptons have a mean lifetime of ⌧⌧ = 2.9 · 10�13 s [24], they can only be detected
through their decay products. Specifically, processes where the ⌧ -leptons decay into a fully
hadronic (visible) final state are considered:

H ! ⌧had⌧had ! ⌫ + (n⇡�m⇡0) + ⌫̄ + (n⇡+m⇡0). with n = 1, 3 and m = 0, 1, 2.

An example Feynman diagram for this process is shown in figure 2.2

Figure 2.2: Example Feynman diagram for the VBF production of the Higgs-Boson decaying
into a pair of hydronically decaying ⌧ -leptons

The branching ratio for the decay of a ⌧ -lepton in a hadron and a ⌧ -neutrino is given as
[24]

BR(⌧ ! had + ⌫⌧ ) = (64.79± 0.06)% (2.3)
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The analyzed dataset corresponds to an integrated luminosity of
R
Ldt =139 fb�1. The total

number of produced signal events is then given as

Nprod = (
R
Ldt) · �VBF · BR(H ! ⌧⌧) · BR(⌧ ! had + ⌫⌧ )2 = 13825. (2.4)

To reconstruct the four momentum of the Higgs boson, the kinematic information of all
final state decay products is required. However, since the final state includes neutrinos
(see figure 2.2), which do not interact with the detector, this information is not entirely
accessible. Since the momentum in the transverse plane is a conserved quantity, assuming
the transverse momenta of the incoming partons are zero allows to reconstruct a part of this
information. Due to the missing neutrinos, calculating the negative sum of the transverse
momenta of all detected final state particles will result in a non-zero value, which represents the
missing transverse energy (Emiss

T
). However, this method only allows restoring the transverse

kinematics of the di-⌧ system and cannot fully reconstruct the corresponding four momenta.
In this thesis, the Missing Mass Calculator (MMC) algorithm [25] is utilized to obtain the
complete four momenta of the di-⌧ sytem.

2.2 Background Processes

Proton-proton collisions give rise to a range of processes, that can end up with the same
final state as the signal process. These processes are referred to as irreducible background.
Conversely, the detector may misidentify objects in certain processes, mistakenly categorizing
them as having the same final state as the signal process, e.g. a jet being misidentified as
a hadronically decaying ⌧ -lepton. These are called reducible background processes. In the
following, the most dominant background contributions in this analysis are discussed.

2.2.1 Z ! ⌧⌧

Since the Z boson can be produced via the VBF process, the decay Z ! ⌧⌧ can result in
the same final state objects as H ! ⌧⌧ , namely two jets, a pair of ⌧ -leptons and missing
transverse mass due to undetectable neutrinos. This process provides the most dominant,
irreducible background contribution. An example Feynman diagram of the VBF Z ! ⌧⌧

process is shown in figure 2.3.
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Figure 2.3: Example Feynman diagram of a Z boson that is produced via VBF and decays
in a pair of ⌧ -leptons.

Since the mass of the Z boson MZ = 91.1876± 0.0021 GeV [24] differs from the mass of
the Higgs boson, these background contributions can be reduced by applying requirements
on the reconstructed invariant mass of the di-⌧ system.

2.2.2 Z ! ll

The Z boson can also decay in electrons e or muons µ. In these Z ! ll decays, no missing
transverse energy E

miss
T

occurs. In principle, this can be utilized to suppress the contribution
of these processes by requiring a lower limit for E

miss
T

. However, Emiss
T

can also be caused
by detector deficiencies, such that this requirement only allows a partial reduction of this
background. Furthermore, particularly considering the hadronic decay channel of the ⌧ -
leptons, automatically reduced the contribution of these background processes. In figure 2.4,
an example Feynman diagram for Z ! ll is shown.

Figure 2.4: Example Feynman diagram of a Z boson that is produced via VBF and decays
in a pair of electrons e

± or a pair of muons µ
±.

2.2.3 Top Quark Production

In figure 2.5, example Feynman diagrams for the production of a single top quark t or a top-
quark pair tt̄ are illustrated. Since the t quark can decay both, hadronically and leptonically,
these processes can lead to a final state, similar to the VBF Higgs boson final state, that
consists of two jets and a pair of ⌧ -leptons.



8 CHAPTER 2. SIGNAL AND BACKGROUND PROCESSES

(a) (b)

Figure 2.5: Example Feynman diagrams for (a) pair top quark production (b) single top
quark production.

Since most of the time, t quarks decay in a bottom quark b and a W boson, the contribu-
tion of these background processes can be reduced by applying a veto on jets [26] originating
from b quarks, utilizing that, due to the long mean lifetime of b-quarks, their corresponding
hadrons are characterized by traveling a relatively long distance of a few mm before decaying.

2.2.4 Diboson Production

Since W and Z bosons can decay leptonically and hadronically, di-boson processes, which
refer to the production of the boson pairs ZZ,WW or WZ, can result in a final state that
includes two leptons and two jets. The most dominant background contribution results from
the decay WW ! ⌧had⌫⌧⌧had⌫⌧ , since, like the signal process, they include missing transverse
energy. Jets may arise, for instance, through emission of gluons. Example Feynman diagrams
for these processes are shown in figure 2.6.

Figure 2.6: Example Feynman diagrams for diboson production.

2.2.5 W Boson Production

The production of W bosons with associated jets that are misidentified as hadronically
decaying ⌧ -leptons also contributes to the background. Example diagrams for such processes
are shown in figure 2.7
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(a) (b)

Figure 2.7: Example Feynman diagrams for W boson production with associated jets.

For the following discussions and figures, the processes that were introduced in this
chapter are summarized into the four categories presented in table 2.1. The analysis uses
simulated samples that are generated separately for each of these processes using the Monte
Carlo (MC) method. The corresponding generators are also shown in table 2.1. For the VBF
Higgs boson signal process, the non VBF Higgs processes and the t production processes,
the matrix elements and the parton showers are calculated seperately using POWHEG [27] and
PYTHIA [28], respectively. For the other processes, SHERPA [29] generates both, the matrix
element and the parton shower. Additionally, this table contains the cross-section � for each
process.

Category Processes Generator � [pb]

VBF Higgs H ! ⌧⌧ POWHEG+PYTHIA 0.23

Non VBF Higgs ggF, ttH, WH/ ZH POWHEG+PYTHIA 12.84

Z ! ⌧⌧ Z ! ⌧⌧ SHERPA 2.2.1 7099.32

Others Z ! ll

W boson prod.
Diboson prod.
single t and tt̄

prod.

SHERPA 2.2.1
SHERPA 2.2.1
SHERPA 2.2.1
POWHEG+PYTHIA

13457.54
184597.94
125.97
866.07

Table 2.1: Processes relevant for the presented analysis, grouped into four categories. For
each process, the corresponding Monte Carlo generators are specified. Furthermore, the
corresponding cross-sections �, which are the same as in [30] are displayed.



Chapter 3

Simulated Event Samples and Event
Selection

This section specifies the data that is used in the presented analysis. First, in section 3.1, the
considered dataset, consisting of simulated event samples, is introduced. Next, in section 3.1.1,
the applied event weights are discussed. Lastly, in section 3.2, the criteria considered in the
event selection are reviewed.

3.1 Simulated Event Samples

The presented analysis aims to derive the sensitivities to constrain d̃ with the full data set
collected in pp-collisions at a center of mass energy of ps = 13 TeV during Run-2 of the LHC
corresponding to an integrated luminosity of 139 fb�1.

The simulated samples used for this analysis contain both, events resulting from the VBF
H ! ⌧had⌧had signal process, for which an example Feynman diagram is shown in figure 2.2 and
contributions from the background processes introduced in section 2.2. They include parton
level information about the four-momenta of the in- and outgoing partons and the Higgs
boson, also referred to as truth-level information. Furthermore, they include information that
is reconstructed after running the detector simulation [31], referred to as reconstruction-level
information. This encompasses the four momenta of the two leading tagging jets with the
highest transverse momenta, the four momenta of the ⌧ -leptons, reconstructed only from
their visible decay products and the four momentum of the di-⌧ -system (Higgs boson), fully
reconstructed using the missing mass calculator (see section 2.1). If not stated differently, the
presented results are obtained with reconstruction level information.

3.1.1 Event Weights

In order to attain a reasonable statistical accuracy, a large number Ngen of events needs to
be generated in simulations. To adjust this number of events to match the expectation Nexp

for a measurement at an integrated luminosity
R
Ldt = 139 fb�1 and a given cross-section �,
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the MC events need to be rescaled by applying the weights wi:

Nexp =

NgenX

i=1

wi. (3.1)

These event weights are defined as

wi = ·w
xs

i · w
PU
i · w

corr
i · (

R
Ldt) · SF|{z}

reco only

. (3.2)

Here, wxs
i

are weights that normalize the number of events to the correct cross-section (see
table 2.1), where normalization is performed to an integrated luminosity of

R
Ldt = 1 fb�1.

At the LHC, protons are collided in bunches, which results in multiple simultaneous collisions
in every bunch crossing. This effect is called Pile up. Since MC samples are usually generated
before data taking, the MC pile-up conditions need to be adjusted to actual pile-up conditions
in retrospect. This is achieved by applying pile up weights w

PU
i

. The weights w
corr
i

, correct
the phase space, for example by considering next-to-leading-order corrections. In case of
reconstruction (reco) level events, the scale factor SF, that corrects differences between
simulation and data, has to be applied. It is important to consider that ATLAS Run 2 involved
multiple data-taking periods or ”campaigns” with different pile-up conditions and varying
integrated luminosities. Table 3.1 presents the integrated luminosity for each campaign, that
are used in the weight calculations.

Campaign
R
Ldt [fb�1]

mc16a (2015/16) 36.207

mc16d (2017) 44.307

mc16e (2018) 58.450

) Full Run 2:
R
Ldt = 139.000

Table 3.1: Integrated luminosities
R
Ldt during the different campaigns of ATLAS Run 2 [32],

that are used to calculate the event weights in eq. (3.2) which, in total, scale the MC events
to an integrated luminosity of 139 fb�1.
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3.2 Event Selection

In Chapter 2, both, the signal processes and background contributions have been characterized.
In this section, the identified characteristics are utilized to impose particular requirements
on the analyzed data, aiming to reduce the contribution of background events to the anal-
ysis. Here, three different sets of requirements, also referred to as cuts, are considered: a
preselection cut, the VBF cut [30] and the NN cut (Daniel Bahner, private communication).
The preselection cut aims to reduce background contributions by exploiting kinematic dif-
ferences between signal and background processes. It also ensures that only events, fully
reconstructed with high efficiency by ATLAS are taken into account. The VBF topology
cut further tightens these requirements and includes new criteria that allow to select events
that show topological characteristics typical for VBF processes. Finally, the neural network
cut relies on the predicted probability assigned by a neural network to classify an event as a
signal event.

In the following most of the criteria required for each cut are given in terms of the
components of the four momenta P

µ of final state constituents, expressed using ATLAS
coordinates

P
µ = (P T

, ⌘,�,M). (3.3)

Here, P T denotes the transverse momentum, the spacial coordinates are given in terms of
the pseudorapidity ⌘ = � log(tan ✓/2), which is defined in terms of the polar angle ✓ and the
azimuthal angle �, illustrated in figure 3.1 and M denotes the mass. The subscripts ⌧0,1 refer
to the hadronic decay products of the leading and subleading ⌧ -leptons and j0,1 denote the
leading and subleading tagging jets.

Figure 3.1: ATLAS uses a right-handed coordinate system with its origin at the nominal
interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The
x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards.
Cylindrical coordinates (r, �) are used in the transverse plane, � being the azimuthal angle
around the z-axis. The pseudorapidity is defined in terms of the polar angle ✓ as ⌘ =
� log(tan ✓/2) [33].
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Preselection cut Candidate ⌧ -leptons are identified as hadronic ⌧ -leptons if they pass a
set of criteria, referred to as working point (WP), based on a neural network score [34]. The
WP “medium”, which ensures an identification efficiency of 55% [34], is used.

Since the Higgs-boson is electrically neutral, ⌧ -lepton candidates are only considered if
they have opposite charges.

Furthermore, a pair of ⌧ -leptons is only considered if their spacial separation does not
exceed certain thresholds. Specifically, for the difference in pseudorapidities, �⌘⌧⌧ < 1.5 is
required. Their radial distance

�R⌧⌧ =
p
(�⌘⌧⌧ )2 + (��⌧⌧ )2, (3.4)

must fulfill 0.6  �R⌧⌧  2.5.
Additionally, thresholds for the transverse momenta of the ⌧ -leptons are defined: P T

⌧0
> 40

GeV, P T
⌧1

> 30 GeV. To only select events resulting from processes whose final state involves
neutrinos, a missing transverse energy E

miss
T

> 20 GeV is required. This allows reducing
the contribution from Z ! ll processes. Furthermore, the ratios x0,1 of the visible ⌧ -lepton
energies and the true ⌧ -lepton energies are restricted to 0.1 x0,1  1.4. The true ⌧ -lepton
energies are obtained through the reconstruction of the collinear mass [35]. This assures that
the direction of the missing transverse energy fits the direction expected from the di-⌧ decay.

Events resulting from the production of top quarks, can be suppressed by applying a b-jet
veto (see section 2.2) at the 70% WP [26]. Since the VBF final state involves the hadronisation
of two partons, the presence of at least two tagging jets is required. These tagging jets are
only considered in the analysis if P

T

j0
> 40 GeV and P

T

j1
> 30 GeV. Only the leading and

subleading jets, i.e. the jets detected with the highest and second highest P
T are considered

in the analysis. Additionally, the invariant mass Mjj of these leading and subleading tagging
jets is required to exceed 350 GeV. To ensure that only jets which ATLAS can detect with
a sufficient precision, are considered, the absolute value of their pseudorapidities must fulfill
|⌘j0 | < 3.2.

VBF Cut Considering the topology of the VBF process, the tagging jets are required
to have a spacial separation |�⌘jj | > 3 and they must be detected in different detector
hemispheres, i.e. ⌘j0 ⇥ ⌘j1 < 0. Additionally, |⌘j1 | < 3.2 is required. Another requirement
that considers the VBF topology is lepton centrality, which demands that the ⌘ coordinates
of the visible decay products of the ⌧ -leptons are detected between the two tagging jets with
respect to the ⌘ coordinates. Furthermore, the threshold for the transverse momentum of the
subleading jet is enhanced with respect to the treshhold required in the preselection cut, such
that P

T

j1
> 40 GeV.

Figure 3.2 shows the mass of the di-⌧ system that was reconstructed using the MMC
(MMC Mass) after applying the VBF cut.
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Figure 3.2: Distribution of the mass of the di-⌧ system that was reconstructed using the MMC
(MMC mass), after the VBF cut for an integrated luminosity of

R
Ldt = 139fb�1. The VBF

Higgs-boson signal is presented in red. Background processes are grouped in processes where
a Higgs boson emerges from non VBF production modes (green) and processes where the
detected ⌧ -leptons emerge from the decay of a Z-boson (blue). The category others (yellow)
contains all remaining background contributions, described in section 2.2.

The VBF cut, which focuses on topological characteristics of the VBFH signal process,
cannot sufficiently reduce Z ! ⌧⌧ events, since as discussed in section 2.2.1 this process can
result in the same final state objects as the signal process.

Neural Network Cut A neural network (NN) is applied to predict the probability or score
for each event to be a signal event. The NN cut requires a score � 0.92.

Figure 3.3 illustrates the distribution of this NN score after applying the VBF cut. Here,
the NN cut is represented by the dashed line at 0.92.
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Figure 3.3: Neural network score after the VBF cut for an integrated luminosity ofR
Ldt = 139fb�1. The VBF Higgs-boson signal is presented in red. Background processes are

grouped in processes where a Higgs boson emerges from non VBF production modes (green)
and processes where the detected ⌧ -leptons emerge from the decay of a Z-boson (blue). The
category others (yellow) contains all remaining background contributions, described in sec-
tion 2.2. The dashed line represents the NN cut at a score of 0.92.

To illustrate the effects of the NN cut, the distribution of the Optimal Observable (OO)
(see section 5.1) is shown in figure 3.4 using only events that fulfill the requirement of a
score� 0.92. Especially, the contributions of Z ! ⌧⌧ processes is reduced significantally by
the NN cut. Based on the NN score illustrated in figure 3.3, this outcome is expected, given
that the NN demonstrates strong performance in classifying these processes as background
contributions.
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Figure 3.4: Distribution of the Optimal Observable OO (see section 5.1) after the NN cut for
an integrated luminosity of

R
Ldt = 139 fb�1. The VBF Higgs-boson signal is presented in

red. Background processes are grouped in processes where a Higgs boson emerges from non
VBF production modes (green) and processes where the detected ⌧ -leptons emerge from the
decay of a Z-boson (blue). The category others (yellow) contains all remaining background
contributions, described in section 2.2.

Additonal Cuts In addition to the cuts defined above, it is required that the di-⌧ mass,
reconstructed with the missing mass calculator, also referred to as MMC mass, fulfills

MMC Mass > 1 GeV. (3.5)

This assures, that only events, where the Higgs boson mass could be properly reconstructed,
are used. Furthermore, only events for which the Optimal Observable OO, introduced in
section 5.1, and calculated at reconstruction level, satisfies

|OO|  15. (3.6)

are considered. This requirement allows avoiding outlier events.
Table 3.2 presents the remaining number of events after the application of each cut, for

the VBF Higgs boson signal s, for the total background contribution b as well as for the
individual contributions to b, grouped according to table 2.1. Furthermore, it contains the
signal significance

� =
s

p
s+ b

, (3.7)

and the signal to background ratio s/b after each cut.
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Cut s b Non VBF Higgs Z ! ⌧⌧ Others � s/b

Preselection cut 196 9624 246 8929 449 1.98 0.02

VBF cut 84 1692 68 1555 69 1.99 0.05

NN cut 41 32 12 19 1 4.80 1.28

MMC Mass > 1 GeV & |OO|  15 40 29 11 17 1 4.82 1.38

Table 3.2: Expected number s of VBF Higgs boson signal events and numbers b of total
expected background events in 139 fb�1, after each cut. The individual contributions of
each dominant background processes to b are also shown, grouped according to table 2.1.
Additionally, the corresponding signal significance � and the signal to background ratio s/b
are displayed.

The application of full event selection allows increasing the signal significance by a
factor of 2.43 with respect to the significance obtained after the preselection. The signal
to background ratio is improved by a factor of 69. The decay Z ! ⌧⌧ remains to be the
dominant background contribution after all cuts, however, the neural network cut allowed
reducing its contribution by 98.9 %.



Chapter 4

Testing CP-Invariance with CP-Odd
Observables

According to our current understanding, during the early moments of the universe, an equal
amount of baryonic and anti-baryonic matter was created. However, since baryons and
antibaryons annihilate, this scenario would have resulted in a universe where objects like
stars, planets and ultimately all structures composed of baryonic matter that we observe
today, could not have formed.

The observed baryon asymmetry of the universe (BAU) can be parameterized via the
ratio ⌘, which relates the excess of baryonic matter with the photon desity n� of our universe

⌘ =
nB � n

B̄

n�

⇠ 6 · 10�10
. (4.1)

Here, nB and n
B̄

denote the baryon and anti-baryon density, respectively. Notably, this
value ⌘, which was calculated using recent measurements of the average energy density of
baryons made by the Planck satellite [36], represents a remarkably subtle imbalance, yet its
implications are significant for the existence of the universe in its present form.

The favored production of baryons over anti-baryons can only be explained, if three
conditions, formulated by A.D. Sakharov in 1967 [12] are met. One of these conditions
requires the existence of processes that violate invariance under the combination of charge
conjugation and parity transformation (CP). However, the Standard Model (SM) of particle
physics, which is the current best theory to describe all fundamental particles and their
interactions, excluding gravity, does not predict a sufficient amount of CP-violation to explain
the observed baryon asymmetry. This motivates the search for new sources of CP-violation
beyond the standard model (BSM).

The presented analysis focuses on the search for BSM sources of CP-violation in the
Higgs sector, specifically in the process of VBF Higgs-boson production with H ! ⌧had⌧had
that was introduced in section 2.1.
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In this chapter, the approach of probing the CP-properties of the VBF Higgs-boson
production process by utilizing CP-odd observables, within the framework of an effective
field theory, is elaborated. First, in section 4.1 the concept of CP-symmetry is introduced.
Next, in section 4.2 the CP-conserving couplings of electroweak gauge bosons to the Higgs-
boson (HVV-couplings) predicted by the SM are augmented by introducing new, CP-violating
interactions within the framework of an effective field theory. Section 4.3 describes how CP-
odd observables can be used to test the CP-invariance of an interaction. One approach to
evaluate the sensitivity of CP-odd observables to CP-violating contributions is the construction
of central confidence intervals via the maximum likelihood (ML) method, which is introduced
in section 4.4.

4.1 CP-Symmetry

In physics, a symmetry refers to a fundamental property of a physical system that remains
unchanged under certain operations.

Parity (P ) - Symmetry Parity-symmetry refers tho the invariance of a physical theory
under the inversion of the sign of all spacial coordinates. In the SM, the parity-symmetry is
conserved for all interactions except the weak interaction. This was demonstrated in 1956 by
C.S.Wu, by investigating the beta decay of 60CO [37].

Charge Conjugation (C) - Symmetry The charge conjugation operator C reverses all
additive quantum numbers of a particle  , such that it is transformed into its anti-particle  ̄.
In the SM, charge conjugation is conserved for all interactions except the weak interaction
[38]. For example, the C operation would turn a left-handed neutrino into a left-handed
anti-neutrino. However, in nature, only right-handed antineutrinos are observed [39].

CP-Symmetry For almost all processes via the weak interaction, where C or P symmetries
are violated individually, the combination CP of the two transformations is conserved. For
example, the CP operation transforms a left-handed neutrino into a right-handed antineutrino
and thus resolves the symmetry breaking that is observed for neutrinos under pure C and
P transformations. However, in 1964 the Croin and Fitch experiment demonstrated the
violation of CP-symmetry in neutral Kaon decays [40]. This was followed by the discovery of
CP-violation in various other meson-interactions [41, 42].

In the SM, CP-violation is explained through the complex phase of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix [13]. However, the amount of CP-violation resulting
from this SM source is not sufficient to explain the observed baryon asymmetry in our
universe [43]. This motivates the search for new sources of CP-violation beyond the SM.
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4.2 Effective Field Theories

Effective field theories (EFTs) provide a framework that allows to parameterize new physics
beyond the standard model (BSM). Current experiments are limited to observing a low-energy
limit, where the particles corresponding to the new physics, which are expected to emerge
at higher energies, remain unmeasurable. Thus, the only tangible effects of new physics
are alterations in the observable interactions. EFTs allow including the corresponding new
interaction terms into the theory.

New BSM coupling terms are introduced by operators with mass dimensions higher
than the mass dimension D = 4 of the SM Lagrangian density LSM. Only operators that are
invariant under the local gauge transformations SU(2)I,L⇥U(1)Y are considered. Additionally,
conservation of baryon and lepton numbers is required. This suppresses all operators with
odd mass dimensions.

Under these assumptions, an effective Lagrangian density can be constructed as follows
[17, 44]

Leff = LSM +
X

i

c
(6)
i

⇤2
O

(D=6)
i

+
X

i

c
(8)
i

⇤4
O

(D=8)
i

+ ... (4.2)

where O
(D)
i

are the considered operators, the parameters c
(D)
i

denote the Wilson coefficients
and ⇤ represents the energy scale of new physics [17, 22]. Since operators with mass dimension
D � 8 are suppressed for large ⇤, in the following, they will be neglected. Furthermore, only
CP-odd operators are considered.

As suggested in [17, 44] after electroweak symmetry breaking, considering the assumptions
made above, the effective Lagrangian that describes the coupling of electroweak gauge bosons
to the Higgs-boson (HVV coupling) can be written in the mass basis of the Higgs-boson H,
the photon A and the weak gauge bosons Z,W

+ and W
� as

Leff = LSM+ g̃HAAHÃµ⌫A
µ⌫ + g̃HAZHÃµ⌫Z

µ⌫ + g̃HZZHZ̃µ⌫Z
µ⌫ + g̃HWWHW̃

+
µ⌫W

�µ⌫
. (4.3)

Here, V̂ µ⌫ , ˜̂
V

µ⌫ = 1
2✏

µ⌫⇢�
V⇢� represent the field-strength tensors/ dual field strength tensors

of the gauge fields with V 2 {A,Z,W
+
,W

�
}. Requiring SU(2)I,L ⇥U(1)Y invariance allows

expressing the HVV-coupling strengths g̃HVV in eq. (4.3) in terms of two dimensionless
parameters d̃ and d̃B:

g̃HAA =
g

2mW

(d̃ sin2
✓W + d̃B cos2 ✓W ),

g̃HAZ =
g

2mW

sin 2✓W (d̃� d̃B),

g̃HZZ =
g

2mW

(d̃ cos2 ✓W + d̃B sin2
✓W ),

g̃HWW =
g

mW

d̃,

(4.4)

where g and g
0 are coupling strengths and the weak mixing angle ✓W is defined by tan ✓W =

g
0

g
[45].
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Since experimentally, the contributions of W+
W

�
, ZZ,AZ and AA fusion to VBF Higgs-

production are indistinguishable [17], the arbitrary choice

d̃ = d̃B, (4.5)

is made. This yields

g̃HAA = g̃HZZ =
1

2
g̃HWW =

g

2mW

d̃, and g̃HAZ = 0. (4.6)

Thus, the strength of CP-violation in the HVV coupling can be described by a single parameter
d̃ [17, 22, 44]. The matrix element M of the VBF-Higgs-boson production process can then
be decomposed in a CP-even part that results from the SM contributions and a CP-odd part,
resulting from BSM couplings, whose contribution is governed by the magnitude of d̃

M = MSM| {z }
CP�even

+d̃ · MBSM| {z }
CP�odd

. (4.7)

Squaring this matrix element yields the following expression, which is proportional to the
differential cross-section d�

|M|
2 = |MSM|

2

| {z }
CP�even

+ d̃ · 2<{M⇤
SMMBSM}| {z }

CP-odd, source of CPV

+ d̃
2
· |MBSM|

2

| {z }
CP�even

⇠ d�. (4.8)

The first and third terms in eq. (4.8) are CP-even and thus do not contribute to CP-violation.
However, the interference term is CP-odd and therefore provides a source of CP-violation. In
the presented analysis, the CP-odd contribution of this term will be utilized to define CP-odd
observables for testing CP-invariance in the process of VBF Higgs-boson production.

4.3 CP-Odd Observables

A genuine CP-odd observable O is defined by having the following property under a CP-
transformation

CPO = �O. (4.9)

In the effective field theory framework that was introduced in section 4.2, CP-violation yields
two additional contributions in the matrix element M in eq. (4.8) compared to the pure SM
prediction. The first new term is CP-odd and linear in the parameter d̃, whereas the second
term is CP-even and quadratic in d̃. In this framework, the mean value of an observable O,
which is obtained by integrating over the cross-section d� ⇠ |M|

2, can be written as

hOi =

R
Od�SM + d̃ ·

R
Od�CP�odd + d̃

2
R
Od�CP�evenR

d�SM + d̃ ·
R
d�CP�odd + d̃2

R
d�CP�even

. (4.10)



22 CHAPTER 4. TESTING CP-INVARIANCE WITH CP-ODD OBSERVABLES

In case of a CP-odd observable, the integrals over the CP-even phase spaces d�SM and
d�CP�even in the numerator of eq. (4.10), will vanish. In the denominator, the integral over
d�CP�odd vanishes. The mean value of a CP-odd observable can then be written as

hOi =
d̃ ·
R
Od�CP�oddR

d�SM + d̃2
R
d�CP�even

. (4.11)

This indicates that if CP-violation is present in nature, realized through a strength d̃ 6= 0,
asymmetries are induced in the distributions of CP-odd observables, leading to non-zero
mean values. This behavior of CP-odd observables is demonstrated in figure 4.1 for two
CP-violating scenarios, corresponding to d̃ = �0.1 and d̃ = 0.2. For d̃ > 0, a shift of the
distribution towards positive values can be observed, resulting in a mean hOi > 0, whereas
negative d̃ lead to a skew in negative direction and thus hOi < 0. Consequently, measuring a
mean value hOi 6= 0 for a CP-odd observable would be a strong sign for CP-violation.

Furthermore, it is worth noting that in case of small d̃-values, the quadratic term in the
denominator in eq. (4.11) can be neglected, resulting in a linear dependency between d̃ and
hOi.

Figure 4.1: Illustration of the characteristic behavior of a CP-odd observable O. In the SM
prediction (d̃=0), represented by the black histogram, the distribution is symmetric and yields
a mean value hOi = 0. Introducing CP-violation induces asymmetries in the distribution that
are governed by the sign and magnitude of d̃. This is demonstrated for the scenario d̃ = �0.1
(red histogram) which yields hOi < 0 and d̃ = 0.2 (blue histogram), where hOi > 0.
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4.4 Evaluating CP-Sensitivity via Maximum Likelihood Fits

In this thesis, the sensitivity of CP-odd observables to CP-violating BSM contributions in the
HVV coupling (see section 4.2) is estimated using the maximum likelihood (ML) method for
binned data [46], which allows determining the expected confidence intervals for the parameter
d̃, using only information about the shape of the distributions of these observables.

Considering a histogram, consisting of Nbins bins, with the prediction ⌫i(d̃) for the
contents of the i-th bin for a given BSM scenario, corresponding to a d̃ 6= 0 and observations
ni, corresponding to the contents of this bin expected from the SM (d̃ = 0), a likelihood
function can be introduced in form of a multinomial distribution [46]

L(d̃) = N !
NbinsY

i

 
⌫i(d̃)

N

!
ni

1

ni!
, (4.12)

where N denotes the total number of observed events to which the predicted histogram is
normalized:

NbinsX

i=1

ni = N =
NbinsX

i=1

⌫i(d̃). (4.13)

The goal is to find the best estimate for d̃. This translates into maximizing the likelihood
function eq. (4.13) or, equivalently, minimizing the negative log likelihood, which is defined
as

NLL(d̃) = � logL(d̃) = �

NX

i=1

ni log ⌫i(d̃). (4.14)

The additional terms that appear, when calculating the logarithm of eq. (4.13) do not depend
on d̃. For this reason, they are neglected in eq. (4.14).

As described in [46], generally, a change of N
0 standard deviations � in a single best-

estimate parameter ✓̂i yields an increase of N 02/2 in the NLL, relative to its minimum

�NLL = NLL(✓̂i ±N
0
�)� NLL(✓̂i) =

N
02

2
. (4.15)

The parameters ✓±1� = ✓̂ ± (N 0 = 1)�, for which eq. (4.15) yields �NLL = 0.5, define the
borders of the 1� confidence interval. Accordingly, the borders of the 2� confidence interval
are given by ✓±2� = ✓̂ ± (N 0 = 1.96)�, for which eq. (4.15) in NLL becomes �NLL = 1.92.

This is now utilized to construct the confidence intervals for the best estimate of the
parameter d̃. For this, different d̃ 6= 0 hypothesis are considered. The NLL is evaluated for
each hypothesis according to eq. (4.14). This methodology is also refereed to as a NLL-scan.
The values of the NNL-scan can be plotted as a function of d̃, resulting in a curve with
its minimum at the best fit-value. Since in this case, the observation corresponds to the
SM prediction, this minimum will occur at d̃ = 0. Calculating the difference between this
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minimum and the results for all remaining NLL-values yields a curve, similar to the one
portrayed in figure 4.2 serving as an arbitrary illustration, which allows to directly read off
the 1� and 2� CIs according to eq. (4.15):

�NLL = NLL(d̃)� NLL(d̃ = 0)
!
=

8
<

:
0.5, for the 1� CI ,
1.92, for the 2� CI .

(4.16)

Figure 4.2: Illustration of a �NLL-curve that can be obtained by calculating the NLL for
different d̃-hypotheses and allows to directly read off the 1� and 2� confidence intervals at
�NLL = 0.5 and �NLL=1.92, respectively.

The 1� (2�) confidence intervals, by definition, cover the true value in 68.3% (95%)
of all cases. Consequently, the length of these intervals, derived from a specific CP-odd
observable distribution, acts as a metric for the sensitivity to CP-violating contributions of
that observable.
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4.5 Matrix Element based Reweighting

To generate the distributions of CP-odd observables for different CP-violating d̃ 6= 0 hy-
potheses, a matrix element based reweighting technique is applied to the simulated samples
introduced in chapter 3.

This approach utilizes the matrix element defined in eq. (4.8), where additional con-
tributions due to the CP-violating HVV couplings, introduced in section 4.2, occur with a
strength d̃. The information about these new couplings can be incorporated in the observable
distributions by reweighing the VBF H ! ⌧had⌧had signal samples using

ŵ
d̃
= 1 + d̃ ·

2<{M⇤
SMMBSM}

|MSM|2
+ d̃

2
·
|MBSM|

2

|MSM|2
. (4.17)

Since in this analysis the background processes are assumed to be CP-invariant, they are not
reweighted but only considered in the SM prediction.

The matrix elements defining the weights ŵ
d̃

are calculated using HAWK [47, 48] and
depend on the four momenta of incoming and outgoing partons, as well as the Higgs-boson
four momentum

M = M

⇣
P

µ

in, P
µ

out, P
µ

Higgs

⌘
. (4.18)

The complete weight of a given MC event ei in some d̃ scenario is then given by

w
d̃
= wi · ŵd̃

, (4.19)

where wi are the nominal event weights defined in section 3.1.1, such that in case of the SM
prediction, where d̃ = 0 eq. (4.19) reduces to

wSM := w
d̃=0 = wi. (4.20)



Chapter 5

Established CP-Odd Observables

The Optimal Observable (OO) and the signed difference in the azimuthal angles (��sgn
jj ) of

the two tagging jets that emerge in the process of VBF Higgs-boson production, are commonly
used observables for performing CP-Tests [49]. This chapter introduces these two CP-sensitive
observables. Further, in this chapter a first demonstration of estimating the CP-sensitivity
via Negative Log Likelihood (NLL) scans, as it was introduced in section 4.4, is provided for
the examples of OO and ��sgn

jj .

5.1 Optimal Observable OO

The Optimal Observable [50, 51], is defined as the ratio of the interference term and the
squared SM matrix element introduced in eq. (4.8), both calculated using HAWK [47, 48]

OO =
2<{M⇤

SMMBSM}

|MSM|2
. (5.1)

By construction, for small d̃ values, when the quadratic term in eq. (4.8) is negligible, this
observable contains the full information on the seven dimensional phase space that describes
the final state of the VBF Higgs-boson production mode, making it highly sensitive to the
CP-structure of this interaction.

In this section, reconstruction level information is used to calculate the OO. As explained
in section 4.5, the matrix elements depend on the four momenta of incoming and outgoing
partons P

µ

in, P
µ

out, as well as the Higgs-boson four momentum P
µ

in. Since, experimentally and
thus in the case of simulated samples at reconstruction level, the full parton information
is not directly accessible, for P

µ

out, the four momenta P
µ

j0
, P

µ

j1
of the leading and subleading

tagging jets, resulting from the hadronisation of the final state quarks, are used. The kine-
matic information about the incoming partons is derived from energy and three-momentum
conservation. The corresponding four momenta are

P
µ

in = x0,1

p
s

2
(1, 0, 0,±1), (5.2)
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where x0,1 denote the fractions of momenta carried by the two incoming partons

x0,1 =
MHfinal
p
s

e
±yHfinal , (5.3)

with the invariant mass Mfinal and the rapidity yHfinal of the final state, consisting of the
vectorial sum of the tagging jets and the Higgs boson. As discussed in section 2.1, the
Higgs-boson information P

µ

Higgs is reconstructed using the Missing Mass Calculator [25].
Figure 5.1 shows the distribution of the Optimal Observable as predicted by the SM

and for two additional cases with d̃ = �0.1 and d̃ = 0.2. The predictions for these CP-
violating scenarios are obtained by reweighting the SM signal samples according to the
method introduced in section 4.5. As described in section 3.2, events are considered only if
|OOorg|  15. The distribution is normalized as follows

OO =
OOorg
15

. (5.4)

The SM prediction yields a symmetric distribution, whereas introducing CP-violation
causes asymmetries, controlled in direction and strength by the sign and the magnitude of d̃.
Positive d̃-values cause asymmetries towards positive values and vice versa.

Figure 5.1: Distribution of the Optimal Observable OO as predicted by the SM for an
integrated luminosity of

R
Ldt = 139 fb�1. The VBF Higgs-boson signal is presented in

red. Background processes are grouped in processes where a Higgs boson emerges from
non VBF production modes (green) and processes where the detected ⌧ -leptons emerge
from the decay of a Z-boson (blue). The category others (yellow) contains all remaining
background contributions, described in section 2.2. Additionally, distributions predicted for
two CP-violating scenarios with the strengths d̃ = �0.1 and d̃ = 0.2 are presented. These
distributions are normalized to the total number NSM = 69 of expected SM events.

The asymmetry induced by CP-violation then results in non-vanishing mean values hOOi.
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For small values of d̃, the quadratic term in eq. (4.11) can be neglected, and the mean value
of a CP-odd observable is expected to depend linearly on d̃. As demonstrated in figure 5.2,
this behavior can be observed for the OO.

Figure 5.2: Linear dependency between the mean value of the Optimal Observable OO and
d̃ in case of small d̃-values. Only signal events are considered.

To estimate the CP-sensitivity of the Optimal Observable, a Negative Log Likelihood
(NLL) scan in d̃, as introduced in section 4.4 is performed. For this purpose, the NLL is
calculated considering different CP-violating hypotheses corresponding to 200 d̃-values within
the range [-0.05, 0.05]. The choice of this specific range is based on the constraints imposed
on d̃ in recent ATLAS analyses [52, 53]. The scan is performed in evenly spaced steps of
0.0005, resulting in an uncertainty of

�b = 0.0005, (5.5)

on the interval borders b. When calculating interval lengths `, this error propagates as follows

�` =
p
2�b = 0.0007. (5.6)

The distribution of all considered CP-odd observables is divided into 20 bins, for evaluating the
NLL eq. (4.14). The resulting �NLL curves for the Optimal Observable are shown in figure 5.3.
To obtain the borders of the 1� interval, linear fits between the two points closest to �NLL=0.5
are performed using the Python function scipy.optimize.curve_fit. This interpolation
then allows calculating the two d̃-values, for which �NLL=0.5 is fulfilled. Analogously, the 2�

interval borders are obtained by finding the d̃-values, for which �NLL=1.92. The advantage
of this procedure, compared to simply extracting the interval borders via parabolic fits, is
that it provides sensitivity to possible asymmetries in the �NLL curves. Table 5.1 displays
the resulting confidence intervals, as well as their lengths, as a measure of CP-sensitivity. The



CHAPTER 5. ESTABLISHED CP-ODD OBSERVABLES 29

results are shown separately for the case where only signal events are considered and the case
where also background events are included. As all considered background interactions are
assumed to be CP-invariant and do not depend on d̃, their inclusion in the NLL calculations
results in a decrease in CP-sensitivity. This explains the increase in confidence interval
lengths by 37% at 1� confidence level and by 39% at 2� confidence level that is observed
when including background events compared to only considering events from the VBFH signal.

Figure 5.3: �NLL curves and resulting 1� and 2� confidence intervals, obtained with the
Optimal Observable, shown for the case where only signal events are considered (red) as well
as for the case where background events are included (blue).

1� CI 1� CI length 2� CI 2� CI length
Signal Only [-0.0109, 0.0109] 0.0218 [-0.0216, 0.0216] 0.0432
Including Background [-0.0150, 0.0149] 0.0299 [-0.0301, 0.0300] 0.0601

Table 5.1: 1� and 2� confidence intervals (CIs), as well as their lengths, extracted from
�NLL scans on the Optimal Observable distribution. Results are shown separately for the
case where only signal events are considered and for the case where background events are
included. The uncertainties on the interval borders are �b = 0.0005, resulting in uncertainties
on the interval lengths of �` = 0.0007.

5.2 ��sgn
jj

Another CP-sensitive observable, first proposed in [17], can be constructed as the signed
difference in the azimuthal angles � of the two outgoing tagging jets, described in section 2.1

��sgn
jj = �j+ � �j�. (5.7)

The sign in the subscript denotes, whether the jet is located in the positive (+) or negative (-)
detector hemisphere. Thus, as already considered in the event selection defined in section 3.2,
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only events with jets detected in different hemispheres (⌘j0⌘j1 < 0) can be taken into account
when calculating ��sgn

jj .
Figure 5.4 shows the distribution of ��sgn

jj as predicted by the SM and additionally for
two CP-violating scenarios with d̃ = �0.1 and d̃ = 0.2. Physically, ��sgn

jj is distributed
within the range [�⇡, ⇡]. Here, the distribution is normalized as follows

��sgn
jj =

(��sgn
jj )org

⇡
. (5.8)

For negative d̃-values, CP-violation manifests in ��sgn
jj as a preference of negatively signed

azimuthal angles between the two jets, whereas for positive d̃ a preference towards positive
values is observed.

Figure 5.4: Distribution of ��sgn
jj as predicted by the SM for an integrated luminosity ofR

Ldt = 139 fb�1. The VBF Higgs-boson signal is presented in red. Background processes are
grouped in processes where a Higgs boson emerges from non VBF production modes (green)
and processes where the detected ⌧ -leptons emerge from the decay of a Z-boson (blue).
The category others (yellow) contains all remaining background contributions, described in
section 2.2. Additionally, distributions predicted for two CP-violating scenarios with the
strengths d̃ = �0.1 and d̃ = 0.2 are presented. These distributions are normalized to the total
number NSM = 69 of expected SM events.

Figure 5.5 illustrates that in the case of small d̃-values, the mean values of ��sgn
jj

in different BSM scenarios show a linear dependency on d̃, as it is expected for CP-odd
observables from eq. (4.11).
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Figure 5.5: Linear dependency between the mean value of ��sgn
jj and d̃ in case of small

d̃-values. Only signal events are considered.

The CP-sensitivity of ��sgn
jj is estimated with the same procedure as for the Optimal

Observable in section 5.1. As before, hypotheses for 200 different d̃-scenarios, taken in equally
spaced steps of 0.0005 from the range [-0.05, 0.05], are considered in the NLL scan, leading
to the uncertainty �b = 0.0005 for the confidence interval borders and �` = 0.0007 for the
confidence interval lengths. The resulting �NLL curves are shown in figure 5.6 for the case
where only signal events are considered, as well as the case where background events are
included in the calculation. In table 5.2, the extracted 1� and 2� confidence intervals and
their lengths are displayed. Including background events results in an increase in confidence
interval lengths by 28% at 1� confidence level and by 30% at 2� confidence level compared
to only considering events from the VBFH signal.
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Figure 5.6: �NLL curves and resulting 1� and 2� confidence intervals, obtained with the
��sgn

jj distribution, shown for the case where only signal events are considered (red) as well
as for the case where background events are included (blue).

1� CI 1� CI length 2� CI 2� CI length
Signal Only [-0.0123, 0.0123] 0.0246 [-0.0243, 0.0243] 0.0486
Including Background [-0.0158, 0.0157] 0.0315 [-0.0318, 0.0316] 0.0634

Table 5.2: 1� and 2� confidence intervals (CIs), as well as their lengths, extracted from
�NLL scans on the ��sgn

jj distribution Results are shown separately for the case where only
signal events are considered and for the case where background events are included. The
uncertainties on the interval borders are �b = 0.0005, resulting in uncertainties on the interval
lengths of �` = 0.0007.

Comparing these results for ��sgn
jj with the findings presented in table 5.1 for the OO

shows that OO provides a higher sensitivity to CP-violating effects. Specifically, in the
signal only case, the OO yields a decrease in interval lengths by 11% at both confidence
levels, compared to the lengths obtained with ��sgn

jj . When including background, a decrease
by 5% is observed for both confidence levels. This difference in CP-sensitivity is expected,
considering that the OO contains the full information about the seven dimensional phase
space whereas ��sgn

jj only carries the (signed) angular information of the two outgoing tagging
jets.



Chapter 6

Machine Learning CP-Sensitive
Observables

CP-odd observables are crucial for probing the CP-properties of interactions. Exploring new
approaches to construct such observables is an important step towards advancing future
analyses in their search for new sources of CP-violation.

As recently demonstrated in [18] and [19], Machnine Learning (ML) methods are promis-
ing candidates for such new approaches. The Neural Networks (NNs) used in these ML meth-
ods are based on recognizing kinematic correlations between given input features, enabling
a deeper understanding of the structure and properties of the new sources of CP-violation.
Furthermore, machine learning based CP-sensitive observables provide an easier accessibility
than established observables like the OO, whose construction requires the calculation of
matrix elements demanding access to special tools like HAWK.

In the first section of this chapter, selected concepts regarding the machine learning meth-
ods that are utilized in this thesis, are introduced. Section 6.2 presents all input features that
are considered in this chapter. Next, in section 6.3, a CP-sensitive observable is constructed
directly from the output of a classification Neural Network, following the approach in [18].
Section 6.4 employs a Regression Neural Network, to resemble the distribution of the Optimal
Observable. Finally, section 6.5 aims to derive analytical expressions describing the Optimal
Observable as predicted by the SM as well as for CP-violating predictions, using the method
of symbolic regression, following the approach in [19].

6.1 Machine Learning Methods

This section aims to introduce a selection of fundamental principles regarding the different
types of supervised machine learning (ML) methods that are employed in this thesis. First,
in section 6.1.1, an overview about the working principles of fully connected feed-forward
neural networks (NNs) is provided. In this context, a distinction is made between regression
and classification neural networks. Next, section 6.1.2 discusses the optimization of the
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hyperparameters that define the classification and regression NNs constructed in this thesis. In
section 6.1.3, the permutation method, an approach for evaluating the importance of different
input features during the training of NNs, is introduced. Section 6.1.4 discusses the general
concept behind predicting data through analytical expressions via genetic programming based
symbolic regression (SR).

6.1.1 Fully Connected Neural Networks

The basic building blocks of neural networks are units called nodes. As illustrated in figure 6.1a,
these nodes are arranged into layers, where, in the case of fully connected NNs, as considered
in this section, each node in one layer is connected to every node in the subsequent layer.
The first layer of a NN, where each node processes one entry of the initial input vector, is
called input layer. The last layer, which returns the prediction of the NN, is called output
layer. All intermediate layers are referred to as hidden layers.

Each node i in a given layer can take a vector ~x = (x1, ...xn), consisting of n input
features, which it processes into one single, scalar output oi(~x), that is passed as an input to
nodes of the subsequent layer. Figure 6.1b illustrates how a given input vector ~x is processed
inside one single node i. Generally, this processing can be decomposed in two steps. First,
the input is transformed linearly by calculating the dot product with a weight vector ~wi and
adding a bias bi. Next, non-linearity is introduced by applying non-linear activation functions
A, such that the total operation performed by one node to produce the output oi(~x) can be
summarized as

oi(~x) = A(~wi · ~x+ bi| {z }
=:zi

), (6.1)

where zi are referred to as the activations of a given node i.

(a)
(b)

Figure 6.1: Illustration of (a) the architecture of a NN, where the nodes (represented as circles)
are arranged into layers, that can be categorized in three types: the input layer, the hidden
layers and the output layer and (b) the processing of an input-vector ~x = (x1, x2, x3) into a
scalar output by first performing a linear transformation using the weights ~w = (w1, w2, w3)
and adding the bias b and then applying a non-linear activation function [54].

In this thesis, the rectified linear unit (ReLU) is used as an activation function in the



CHAPTER 6. MACHINE LEARNING CP-SENSITIVE OBSERVABLES 35

hidden layers. It is defined as follows

ReLU(z) = max(0, z). (6.2)

The training of neural networks is guided by the objective of minimizing loss functions, which
measure the discrepancy between the NN prediction and the target data. Throughout this
chapter, different loss functions are considered. They are defined in the respective sections.
The minimization of these loss functions is performed using the stochastic gradient descent
based optimizer ADAM [55].

Classification Neural Networks Classification neural networks are employed for tasks
that involve categorizing input data into pre-defined classes. In the general case of multiclass
neural networks, which are used to categorize data in n > 2 classes, the number of output
nodes corresponds to the number of considered classes, such that each output node j returns
a probability Pj for an given input set to belong to the respective class. To ensure that all
outputs conform to the characteristics of actual probabilities, i.e., are normalized such that

n�1X

j=0

Pj = 1, (6.3)

the output layer of multiclass NNs is activated using the softmax function

softmax(zi) =
e
zi

P
n�1
j=0 e

zj
, (6.4)

where zi are the activations of the considered output node and j runs over the number of all
n output nodes. For binary neural networks, employed in the special case of n = 2 possible
classes, only one output node is necessary. It is activated by the sigmoid function �(z)

�(z) =
1

1 + e�z
, (6.5)

which again ensures that the output probability P1 for an input set to belong to class 1, is
normalized, such that the probability to belong to class 0 can be obtained via

P0 = 1� P1. (6.6)

Regression Neural Networks If the target data is given in terms of continuous variable
distributions, regression neural networks are employed. Regression neural networks yield
numerical outputs that aim to approximate the values of the target variables. The activation
function of the single output node is the identity function.
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6.1.2 Hyperparameter Optimization

The choice of hyperparameters and the architecture of the neural networks constructed in this
chapter is based on the results of studies performed using OPTUNA, a Bayesian optimization
algorithm, utilizing the Tree-Structured Parzen estimator (TPE) [56]. An OPTUNA study is
performed over several trials, where in each trial a NN, defined by a set of hyperparameters that
is sampled from a pre-defined search space, is trained. The performance of this neural network
is evaluated based on a customizable figure of merit and the search for hyperparameters is
guided by optimizing this target metric. In this chapter, the figure of merit that defines a
neural networks’ performance is the CP-sensitivity of the observable constructed from its
output. Specifically, the objective of the conducted optimization studies is to minimize the
length of the 1� confidence intervals extracted from NLL scans on the observable distributions.
Besides the number of hidden layers and the number of nodes in each individual layer, the
following hyperparameters are considered in these optimization studies:

L2 regularization strength To prevent overfitting, the method of L2-regularization [54] is
applied. Since models that mimic the training data too closely, tend to have large weights wi,
they can be penalized in training, by considering an additional term inside the loss function
that is quadratic in w

lossL2 = loss(w1, .., wn, b1, ..., bn) + sL2 ·
nX

i=1

w
2
i . (6.7)

The hyperparameter sL2 < 1, allows controlling the strength of this penalization.

Learning rate decay The learning rate ↵ is a hyperparameter that enables to control
the step size used to approach the minimum of the loss function during training. To avoid
becoming trapped in local minima of the loss function early in the training process, while
still enabling convergence to the global minimum, it is advantageous to decay the learning
rate during training. This learning rate decay is realized as follows

↵(step) = ↵in · �
step

decay steps , (6.8)

where ↵in is the initial learning rate, step refers to the specific optimizer step that this
exponential decay is applied to and decay steps and the decay parameter � are hyperparameters
that allow to control the strength of the decay.

Batch size The hyperparameter batch size defines the number of input samples that are
processed by the NN before updating the model parameters.
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6.1.3 Feature Importance: The Permutation Method

The permutation method is a way to estimate the impact of a given input feature on the
performance of a neural network. First, the performance p of the NN trained with the initial
set of input features is evaluated. Then the NN is trained again with the entries of one specific
feature being randomly permuted. If the resulting NN performance pperm is worse than the
performance p obtained with the initial feature set, the permuted feature is classified to be
beneficial for the training process. The choice of the figure of merit p that quantifies the NN
performance is problem specific. Since in this chapter, the NN performance is quantified by
the CP-sensitivity of the observable constructed from its output, p and pperm are defined as
follows

p ⌘ 1� interval-length obtained with initial set of input features
pperm ⌘ 1� interval-length obtained with a specific input feature randomly permuted

A score that classifies the importance of a given feature can then be constructed as

feature importance score = 1�
p

pperm
. (6.9)

6.1.4 Genetic Programming Based Symbolic Regression

Similar to usual regression methods, symbolic regression (SR) aims to approximate continuous
distributions. However, in this case, the model is constructed in terms of mathematical
operators and variables, which are combined by the algorithm such that the output is given
in terms of analytical expressions, rather than numerical values. In this thesis, the framework
PySR [57] is used for SR. The fitness of a constructed analytical expression for describing
the target data is evaluated by a function (score) that considers deviations between the
analytical approximation and the target data (often evaluated via the mean squared error) and
simultaneously favors expressions with low complexity. The search for analytical expressions
is guided by optimizing this score-function. For this, PySR employs an algorithm that is based
on genetic programming [58]. This algorithm operates inspired by natural selection. As a
starting point, a population of randomly generated mathematical expressions, represented as
trees consisting of nodes that contain operators or variables, is selected from a pre-defined
search space. The expressions that best fit the target data are selected to produce the next
generation. In the process of producing a new generation, modifications are included in
the form of mutations and crossovers. As illustrated in figure 6.2, mutations refer to the
process of randomly replacing nodes in existing trees and in crossover new trees are created
by combining random subtrees of existing trees [59].
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Figure 6.2: Illustration of modification of existing trees when breeding a new generation by
(a) mutation, where nodes are randomly replaced and (b) crossover, where new trees are
created by combining random subtrees of existing trees [59]

6.2 Input Features

In table 6.1, all input features that are considered in the training of the neural networks
discussed in this chapter, are presented. These include both low and high-level features. The
low-level features consist of simple kinematic information about all final state constituents in
the analyzed VBF Higgs-boson production mode, namely the two tagging jets, the ⌧ -leptons,
whose kinematic information is reconstructed from only their visible decay products (see
section 2.1 and section 3.1), and the Higgs-boson, reconstructed using the MMC. On the
other hand, the high-level features are more complex quantities, build through combining
different low level features. Examples for such high level features are the signed difference in
azimuthal angles ��sgn

jj introduced in section 5.2 and the variable P
T

j0
P

T

j1
sin��sgn

jj which is
the result of a symbolic regression, found in [19] and verified in section 6.5.

Variable Description

P
T

j0
,�j0 , ⌘j0 Leading jet (j0) three vector components

P
T

j1
,�j1 , ⌘j1 Subleading jet (j1) three vector components

P
T
⌧0
,�⌧0 , ⌘⌧0 Leading tau-lepton (⌧0) three vector components

P
T
⌧1
,�⌧1 , ⌘⌧1 Subleading tau-lepton (⌧1) three vector components

P
T

higgs,�higgs, ⌘higgs,Mhiggs Higgs-boson four vector components (obtained with the MMC)

Mjj Invariant mass of the two tagging jets

M⌧⌧ Invariant mass of the two tau-leptons

�⌘jj Difference in pseudorapidity of the two tagging jets

�⌘⌧⌧ Difference in pseudorapidity of the two tau-leptons

��sgn
jj Signed difference in azimuthal angles of the two tagging jets [17]

��⌧⌧ Difference in azimuthal angles of the two tau-leptons

P
T

j0
P

T

j1
sin��sgn

jj Result of symbolic regression [19]

Table 6.1: Collection of all considered input features.

For each pair of input features, the Pearson Correlation Coefficient (PCC) [46] is dis-
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played in the correlation matrix shown in figure 6.3. As the PCC is a measure of the linear
relationship between two variables, it is not able to register more complex feature depen-
dencies. This explains the low Pearson correlation between the high level input features
��sgn

jj , P T

j0
P

T

j1
sin��sgn

jj and all low level input features. Figure 6.4 illustrates the correlation
between these two high level features and selected low level features. The separated structure
observed in the correlation plots that include ⌘j0,1 reflects the discrimination between positive
and negative detector hemispheres, included in ��sgn

jj by considering the sign of ⌘j0,1 when
determining the angle difference of the two tagging jets (see section 5.2). On the other hand,
this requirement removes the correlation between ��sgn

jj and �j0,1 . As expected, a strong
correlation between P

T

j0
P

T

j1
sin��sgn

jj and P
T

j0,1
is observed.

Figure 6.3: Correlation matrix, including the Pearson coefficients for each input feature pair.
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Figure 6.4: Correlation between the high level input features ��sgn
jj , P T

j0
P

T

j1
sin��sgn

jj and
selected low level input features.

6.3 Classification Neural Network Observable O
Class
NN

This section investigates the construction of CP-sensitive observables, directly from the output
of classification neural networks, as it was first proposed in [18].

As described in chapter 4, the interference term in eq. (4.8) is responsible for introducing
new sources of CP-violation. For a CP-even observable, this interference leaves no measurable
traces in its distribution. However, in the distributions of CP-odd observables, asymmetries
are induced by interference effects.

This can be exploited by training a neural network that learns to distinguish between
events in which the interference term <{M

⇤
SMMBSM} is positive and negative, respectively.

A simple CP-odd observable can then be build from the probabilities P+, P� that the NN
assigns to a given event, for having a positive/ negative interference term

O
Class
NN = P+ � P�. (6.10)

Positive d̃-values realized in nature will create an asymmetry towards positive O
Class
NN values

and vice versa. Thus, this observable qualifies to be used in CP-tests as they are described
in chapter 4.

6.3.1 Binary Neural Network

First, a binary neural network is trained, aiming to discriminate only between events for
which the interference term is positive and events for which the interference term is negative.
Specifically, the two classes are assigned and targeted as folows:

Class 0: <{M
⇤
SMMBSM} > 0, Target-value: 0

Class 1: <{M
⇤
SMMBSM} < 0, Target-value: 1

The NN is constructed such that it has only one output node which is activated by
the sigmoid function eq. (6.5), such that it returns the probability P� for an event to have
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a negative interference term (class 1). Respectively, the probability P+ to have a positive
interference term (class 0) can be obtained via

P+ = 1� P�. (6.11)

In contrast to the methodology presented in [18], where positive and negative interference
samples are generated through MC simulations, this thesis follows a different approach. As
explained in section 4.5, here, the information about interference effects that arise in a specific
d̃ 6= 0 scenario is incorporated by reweighting the signal events predicted by the SM using the
event weights w

d̃
that are calculated via eq. (4.19) while using the respective d̃-value. These

weights are included in the training of the NN by considering them when calculating the loss,
which in this case is given by the binary cross entropy

loss = �

P
i
ŵ

i

d̃
·
⇥
y
i
true · log(P i

�) + (1� y
i
true) · log(1� P

i
�)
⇤

P
i
ŵ

i

d̃

. (6.12)

Here, ŵi

d̃
are the event weights w

i

d̃
given in eq. (4.19) normalized by the factor

NF± =
NSMP
i
w

i

d̃

, (6.13)

such that the total number of considered events adds up to the total number of signal events
predicted by the SM, NSM = 40. P

i
� denotes the probability for a given event to belong to

class 1 (negative interference) and y
i
true denotes the target value for this event.

The architecture and hyperparameters of the NN are chosen based on the outcome of an
optimization study that is conducted within the framework OPTUNA, over 100 trials. For this,
the search space in the hyperparameters is defined as follows:

• Number of hidden layers 2 {1, 2, 3, 4, 5}

• Number of nodes (individually for each layer) 2

{5, 25, 45, 90, 100, 150, 200, 250, 300, 350, 400}

• Strength of L2 regularization 2 [10�5
, 10�1], scanned logarithmically

• Initial learning rate 2 [10�5
, 10�1], scanned logarithmically

• Learning rate decay steps 2 [1000, 10000], scanned linearly
• Learning rate decay parameter 2 [0, 0.7], scanend linearly
• Batch size 2 {32, 64, 96, 128}

The outcome of this optimization study can be found in table 6.2.
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Optimized hyperparameter Study outcome

Number of hidden layers 4

Number of nodes in hidden layer 1 350

Number of nodes in hidden layer 2 400

Number of nodes in hidden layer 3 5

Number of nodes in hidden layer 4 150

L2 regularization strength 2.9·10�3

Initial learning rate 1.8·10�3

Learning rate decay steps 634.3

Learning rate decay rate 0.2

Batch size 128

Table 6.2: Architecture and hyperparameters of the binary neural network as found in a
hyperparameter optimization study using OPTUNA.

This binary neural network is trained using the complete set of input features presented
in section 6.2, table 6.1, taking only signal events into account. During training, 80% of
the entire dataset are considered, while the remaining data is reserved for validation. The
training is conducted assuming the CP-violating scenario corresponding to d̃ = 1, i.e. using
the weights w

d̃
from eq. (4.19) that correspond to this d̃-value, when calculating the loss

eq. (6.13). Section 6.3.4 presents a study on the impacts of the specific d̃ scenario that is
assumed during training.

Figure 6.5a shows the distribution of the predictions P� made by the binary NN on the
validation dataset in the d̃ = 1-scenario. It demonstrates that the NN is able to effectively
separate between positive and negative interference events, allowing the construction of a
CP-sensitive observable O

2Class
NN according to eq. (6.10). The distribution of this observable,

calculated using the predictions on the validation dataset, is shown in figure 6.5b for the
d̃ = 1-scenario. As expected for a CP-sensitive observable, the assumption of a non-zero
d̃-value yields an asymmetric distribution. Specifically, since in this case the distribution is
shown in the d̃ = 1-scenario, an asymmetry towards positive values of O2Class

NN can be observed.
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(a) NN output P� (b) CP-Sensitive observable O
2Class
NN

Figure 6.5: Output P� of the binary NN predicted for the validation dataset (a) and CP-
sensitive Observable O

2Class
NN constructed directly from this output (b). Both distributions are

shown as predicted for the CP-violating scenario, corresponding to d̃ = 1. This validation
dataset consists of 20% of the events in the full signal sample. This corresponds to an expected
number of events Nval = 8.

6.3.2 Multiclass Neural Network

The binary neural network described in the previous section is now expanded by an additional
class, such that besides predicting the probabilities for positive and negative interference
terms, it is also able to predict the probability PSM that a given event is a SM event. This
new multiclass neural network now has three output nodes that predict the probabilities
P�, P+ and PSM and are activated by the softmax function eq. (6.4) such that

P+ + P� + PSM = 1. (6.14)

Specifically, the three classes are assigned and targeted as follows

Class 0: SM event Target: (1, 0, 0)
Class 1: <{M

⇤
SMMBSM} > 0 Target: (0, 1, 0)

Class 2: <{M
⇤
SMMBSM} < 0 Target: (0, 0, 1).

In this case, the training set is created by first splitting the original data set, consisting
of only SM signal events, in half, using the odd-even-splitting method, based on the event
number assigned in the MC simulation. One half of the data set is now kept as SM sample.
The remaining events are split in positive/ negative interference samples, based on the sign
of their interference term. These interference samples are then normalized to the expected
number of events NSM = 20 in the SM sample, using the normalization factors

NF± =
NSMP
i
w

±
d̃,i

, (6.15)
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where w
±
d̃

, denote the weights of positive (+) or negative (-) interference events, calculated
according to eq. (4.19) assuming a value d̃ 6= 0.

For multiclass NNs, the loss function is given by the categorical cross entropy

loss = �

P
n

i

P3
j=1w

ij

d̃

h
y
ij

true · log(P ij)
i

P
i
w

ij

d̃

. (6.16)

Here, the first sum runs over all n data points and the second sum runs over the number
of classes, such that y

ij

true denotes the j-th entry of the target vector for a given event i and
P

ij denotes the according probability PSM, P+ or P� for a given event i to belong to the
respective class. The weight of an event i that belongs to class j is denoted by w

i,j

d̃
.

Again, the architecture and hyperparameters of the model are determined by the
outcome of an optimization study conducted within the framework OPTUNA over 100 trials,
using the search space defined in section 6.3.1. The outcome of this optimization study can
be found in table 6.3.

Optimized hyperparameter Study outcome

Number of hidden layers 2

Number of nodes in hidden layer 1 350

Number of nodes in hidden layer 2 400

L2 regularization strength 1.7·10�5

Initial learning rate 8.2·10�4

Learning rate decay steps 7849.9

Learning rate decay rate 0.3

Batch size 128

Table 6.3: Architecture and hyperparameters of the multiclass neural network as found in a
hyperparameter optimization study using OPTUNA.

As in the previous section, the network is trained with the full input feature set presented
in section 6.2, table 6.1. During training, 80% (corresponding to an expected number of events
Ntrain = 16 per sample) of the dataset are considered, while the remaining 20% of the data
(corresponding to a weighted number of events Nval = 4 per sample) is reserved for validation.
The training is conducted assuming the CP-violating scenario corresponding to d̃ = 1, i.e.
using the weights w

d̃
according to eq. (4.19) that correspond to this d̃-value when calculating

the loss in eq. (6.16).
Figure 6.6 shows the distribution of the probabilities predicted by the output nodes of

the multiclass NN for the validation dataset. For positive and negative interference events,
high probabilities P+, P� of belonging to their true classes are predicted. However, for SM
events, the probabilities PSM are more broadly distributed, indicating that the multiclass NN
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has difficulties recognizing SM specific characteristics.

(a) Positive interference class (b) Negative interference class

(c) SM class

Figure 6.6: Outputs of the multiclass NN predicted for the validation dataset: Probability P+

for positive interference (a), probability P� for negative interference (b) and probability PSM
for SM prediction (c). Each sample (SM, positive interference, negative interference) contains
an expected number of events Nval = 4.

Figure 6.7 shows the distribution of the CP-sensitive observable O
3Class
NN calculated from

the predictions P+, P� made by the NN on the validation dataset. Standard model events
are distributed symmetrically, whereas for d̃ = 1 a distinct symmetry is observed.
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Figure 6.7: CP-sensitive Observable O
3Class
NN constructed directly from the multiclass NN

predictions P+, P� for the validation dataset. Each of the three histograms contains an
expected number of events Nval = 4.

6.3.3 Comparison of CP-sensitive observables constructed with Binary and
Multiclass Neural Network

The binary neural network and the multiclass neural network constructed in the previous
sections are now applied to the full dataset defined in section 3.2. Figure 6.8 shows the
distributions of the CP-odd observables O2Class

NN ,O
3Class
NN that are constructed from the resulting

NN outputs. The distributions are shown according to the SM prediction and additionally for
two CP-vioalting cases with d̃ = �0.1 and d̃ = 0.2. In both O

2Class
NN and O

3Class
NN , CP-violating

effects induce a shift of the distribution to the edge regions. For the binary NN observable
distribution, this behavior can already be observed in the pure SM prediction, whereas the
multiclass NN observable is distributed more broadly for the SM prediction and only gets
shifted to the edge regions when CP-violating scenarios are considered.
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(a) Binary NN observable O
2Class
NN (b) Multiclass NN observable O

3Class
NN

Figure 6.8: Distributions of the CP-sensitive observables O
2Class
NN ,O

3Class
NN , constructed from

the predictions of the binary/ multiclass NN on the full dataset, shown as as predicted by
the SM for an integrated luminosity of

R
Ldt = 139 fb�1. The VBF Higgs-boson signal is

presented in red. Background processes are grouped in processes where a Higgs boson emerges
from non VBF production modes (green) and processes where the detected ⌧ -leptons emerge
from the decay of a Z-boson (blue). The category others (yellow) contains all remaining
background contributions, described in section 2.2. Additionally, distributions predicted for
two CP-violating scenarios with the strengths d̃ = �0.1 and d̃ = 0.2 are presented. These
distributions are normalized to the total number NSM = 69 of expected SM events.

To estimate the CP-sensitivity of O2Class
NN and O

3Class
NN , NLL-scans according to section 4.4

are employed under the same conditions as for the Optimal Observable in section 5.1. Fig-
ure 6.9 shows the resulting �NLL-curves for the case where only signal events are considered
and for the case where also background events are included. Table 6.4 and table 6.5 contain
the corresponding confidence intervals, as well as their lengths. At both confidence levels,
O

3Class
NN is observed to have a higher CP-sensitivity than O

2Class
NN . Specifically, O3Class

NN reduces
the lengths of the 1� and 2� confidence intervals by 8% in the signal only case and by 5%
when background is included.
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(a) Signal only (b) Including background

Figure 6.9: Comparison of the �NLL-curves obtained with the distributions of the observable
O

2Class
NN ,O

3Class
NN constructed from the binary NN output and multiclass NN output when (a)

considering only signal events and (b) also including background events.

1� CI 1� CI length 2� CI 2� CI length
O

2Class
NN [-0.0122, 0.0122] 0.0244 [-0.0241, 0.0241] 0.0482

O
3Class
NN [-0.0112, 0.0112] 0.0224 [-0.0221, 0.0222] 0.0443

Table 6.4: Signal only: 1� and 2� confidence intervals (CIs), as well as their lengths,
extracted from the distributions of the observables O

2Class
NN ,O

3Class
NN that are constructed from

the binary and the multiclass neural network. The uncertainties on the interval borders are
�b = 0.0005, resulting in uncertainties on the interval lengths �` = 0.0007.

1� CI 1� CI length 2� CI 2� CI length
O

2Class
NN [-0.0163, 0.0163] 0.0326 [-0.0328, 0.0328] 0.0656

O
3Class
NN [-0.0155, 0.0155] 0.0310 [-0.0313, 0.0313] 0.0626

Table 6.5: Including background: 1� and 2� confidence intervals (CIs), as well as their
lengths, extracted from the distributions of the observables O

2Class
NN ,O

3Class
NN that are con-

structed from the binary and the multiclass neural network. The uncertainties on the interval
borders are �b = 0.0005, resulting in uncertainties on the interval lengths �` = 0.0007.

6.3.4 Impact of the Choice of d̃-scenario in Training on the Neural Network
Performance

The neural networks introduced in the previous sections were trained considering interference
events in the arbitrarily selected d̃ = 1-scenario. This section investigates how the choice of the
specific CP-violating scenario that is assumed in the calculation of the loss function during
training, impacts the performance of both the binary and the multiclass neural network.
For this, six different CP-violating scenarios corresponding to the following d̃-values are
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considered:
d̃ 2 {0.01, 0.05, 0.1, 0.25, 0.5, 1}.

For each of these d̃-values, the corresponding weights of the interference events are calculated
according to eq. (4.19) and a new NN is trained and optimized while considering these specific
weights when calculating the losses eq. (6.13) and eq. (6.16), respectively.

Each optimization study is executed in OPTUNA over 100 trials using the search space
defined in section 6.3.1. The results of these optimization studies for all six d̃ scenarios can
be found in table B.1 for the binary case and in table B.2 for the multiclass case.

The predictions of each of these NNs on the full data set are then used for the construction
of CP-sensitive observables (OClass

NN )
d̃

according to eq. (6.10). Figure A.1 shows the distribu-
tions of (O2Class

NN )
d̃

obtained from the binary NNs and figure A.2 shows the distributions of
(O3Class

NN )
d̃

resulting from the multiclass NNs.
For each d̃-assumption, the 1� and 2� confidence intervals are extracted from the NLL

curves obtained using the distributions of the corresponding observable (OClass
NN )

d̃
(see fig-

ure A.3). Figure 6.10 shows the dependency between the lengths of these confidence intervals
and the respective choice of d̃ in training. The results are shown for the signal only cases
and for the cases where background events are included. Table 6.6 and table 6.7 contain the
corresponding numerical values obtained with the binary NN. Table 6.8 and table 6.9 contain
the results obtained with the multiclass NN. In both cases, no clear dependency on d̃ can
be observed. For small d̃-values, the confidence intervals lengths obtained from the binary
and the multiclass neural networks are compatible within their uncertainty �` = 0.0007

(see section 5.1, eq. (5.6)). However, in the multiclass case, choosing a d̃ > 0.1 yields a
significant decrease in confidence interval lengths, whereas in the binary case no such trend
is observed. Further increasing d̃ does not yield notable changes in the multiclass results.
These observations are true at both confidence levels for the signal only case and for the
case where background events are included. Comparing the shortest interval lengths obtained
using the multiclass NN with the shortest interval lengths obtained using the binary NN
shows that with the multiclass NN an improvement by 4% at 1� confidence level and by 5%
at 2� confidence level can be achieved in the signal only case. When including background,
the interval lengths improve by 3% at both confidence levels. Based on these results, for
further studies in this section, multiclass NNs will be utilized and the choice of considering
the d̃ = 1-scenario when training these NNs is retained.
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(a) Binary NNs, signal only (b) Binary NNs, including background

(c) Multiclass NNs, signal only (d) Multiclass NNs, including background

Figure 6.10: Dependency between the lenghts of the 1� and 2� confidence intervals and
the d̃-scenario that is assumed when training and optimizing the NNs. The first row shows
the results obtained with the binary NNs when (a) only signal events are considered and
(b) background events are included. The second row shows the results obtained with the
multiclass NNs, again for the case when (c) only signal events are considered (d) when
background events are included.

1� CI 1� CI length 2� CI 2� CI length
d̃ = 0.01 [-0.0116, 0.0116] 0.0232 [-0.0230, 0.0230] 0.0460
d̃ = 0.05 [-0.0118, 0.0118] 0.0236 [-0.0233, 0.0233] 0.0466
d̃ = 0.1 [-0.0122, 0.0122] 0.0244 [-0.0242, 0.0241] 0.0483
d̃ = 0.25 [-0.0122, 0.0122] 0.0244 [-0.0242, 0.0241] 0.0483
d̃ = 0.5 [-0.0118, 0.0118] 0.0236 [-0.0234, 0.0232] 0.0466
d̃ = 1 [-0.0122, 0.0122] 0.0244 [-0.0241, 0.0241] 0.0482

Table 6.6: Signal only: 1� and 2� confidence intervals (CIs), as well as their lengths,
extracted from the distributions of the observables O

2Class
NN constructed from the binary NN

that was trained and optimized assuming different d̃-scenarios. The uncertainties on the
interval borders are �b = 0.0005, resulting in uncertainties on the interval lengths �` =
0.0007.
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1� CI 1� CI length 2� CI 2� CI length
d̃ = 0.01 [-0.0161, 0.0160] 0.0321 [-0.0324, 0.0323] 0.0647
d̃ = 0.05 [-0.0161, 0.0160] 0.0321 [-0.0326, 0.0322] 0.0648
d̃ = 0.1 [-0.0163, 0.0163] 0.0326 [-0.0328, 0.0327] 0.0655
d̃ = 0.25 [-0.0163, 0.0163] 0.0326 [-0.0328, 0.0329] 0.0657
d̃ = 0.5 [-0.0160, 0.0161] 0.0321 [-0.0323, 0.0325] 0.0648
d̃ = 1 [-0.0163, 0.0163] 0.0326 [-0.0328, 0.0328] 0.0656

Table 6.7: Including background: 1� and 2� confidence intervals (CIs), as well as their
lengths, extracted from the distributions of the observables O

2Class
NN constructed from the

binary NN that was trained and optimized assuming different d̃-scenarios. The uncertainties
on the interval borders are �b = 0.0005, resulting in uncertainties on the interval lengths
�` = 0.0007.

1� CI 1� CI length 2� CI 2� CI length
d̃ = 0.01 [-0.0117, 0.0117] 0.0234 [-0.0230, 0.0231] 0.0461
d̃ = 0.05 [-0.0117, 0.0118] 0.0235 [-0.0232, 0.0234] 0.0466
d̃ = 0.1 [-0.0117, 0.0117] 0.0234 [-0.0231, 0.0232] 0.0463
d̃ = 0.25 [-0.0112, 0.0112] 0.0224 [-0.0220, 0.0221] 0.0441
d̃ = 0.5 [-0.0111, 0.0111] 0.0222 [-0.0219, 0.0220] 0.0439
d̃ = 1 [-0.0112, 0.0112] 0.0224 [-0.0221, 0.0222] 0.0443

Table 6.8: Signal only: 1� and 2� confidence intervals (CIs), as well as their lengths,
extracted from the distributions of the observables O

3Class
NN constructed from the multiclass

NN that was trained and optimized assuming different d̃-scenarios. The uncertainties on
the interval borders are �b = 0.0005, resulting in uncertainties on the interval lengths
�` = 0.0007.

1� CI 1� CI length 2� CI 2� CI length
d̃ = 0.01 [-0.0160, 0.0160] 0.0320 [-0.0323, 0.0322] 0.0645
d̃ = 0.05 [-0.0161, 0.0160] 0.0321 [-0.0326, 0.0322] 0.0648
d̃ = 0.1 [-0.0161, 0.0160] 0.0321 [-0.0326, 0.0321] 0.0647
d̃ = 0.25 [-0.0156, 0.0155] 0.0311 [-0.0314, 0.0313] 0.0627
d̃ = 0.5 [-0.0155, 0.0155] 0.0310 [-0.0313, 0.0312] 0.0625
d̃ = 1 [-0.0155, 0.0155] 0.0310 [-0.0313, 0.0313] 0.0626

Table 6.9: Including background: 1� and 2� confidence intervals (CIs), as well as their
lengths, extracted from the distributions of the observables O

3Class
NN constructed from the mul-

ticlass NN that was trained and optimized assuming different d̃-scenarios. The uncertainties
on the interval borders are �b = 0.0005, resulting in uncertainties on the interval lengths
�` = 0.0007.
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6.3.5 Optimization of Multiclass Neural Networks with different Sets of
Input Variables

In this section, neural networks are trained and optimized using different subsets of the initial
input feature set defined in section 6.2, table 6.1. Specifically, these subsets only include low
level features. The effects of reducing the quantity and complexity of the input-information
on the performance of the resulting NNs are then evaluated in terms of the CP-sensitivities
reached with the observables constructed from their outputs.

Based on the results of section 6.3.3 and section 6.3.4 this study uses a multiclass neural
network that is trained and optimized assuming the d̃ = 1 scenario. The following input
feature subsets, are considered

• Only tagging jet and tau-lepton information:

{~Pj0,1 , ~P⌧0,1}

• Information about all final state constituents (tagging jets, tau-lepton and Higgs-boson):

{~Pj0,1 , ~P⌧0,1 ,
~PHiggs}

• Information about all final state constituents (tagging jets, tau-lepton and Higgs-boson),
with all azimuthal angles � rotated such that �Higgs = 0, to include topological infor-
mation about the considered VBF Higgs-boson production process (see section 2.1):

{~Pj0,1 , ~P⌧0,1 ,
~PHiggs}�Higgs⌘0

Here, ~P denote the three momenta of the respective final state constituents

~P = (P T
, ⌘,�).

With each of these subsets, a new NN is trained and optimized over 100 trials with
OPTUNA, using the search space defined in section 6.3.1. Table B.3 contains the results of these
studies.

A CP-sensitive observable O
3Class
NN is constructed from the predictions of each of these

NNs. Figure A.4 shows the corresponding distributions and figure 6.11 displays the resulting
�NLL-curves.

Table 6.10 contains the 1� and 2� confidence intervals and their lengths obtained from
these curves when only considering singal events. The results that are obtained when including
background events are presented in table 6.11. In the signal only case, rotating the �-
components such that �Higgs = 0 does not significantly influence the length of the confidence
intervals within their uncertainty �` = 0.0007. This is expected, since under these rotations,
all physical information contained in the correlation of the � components is conserved. In
the signal only case, including all input features does not lead to a significant improvement
of the results compared to only including the kinematic information of the tagging jets
and the tau-leptons at 1� confidence level. At 2� confidence level including the full set of
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input features improves the results by only 2%. Notably, the distributions obtained with the
{~Pj0,1 , ~P⌧0,1} and {~Pj0,1 , ~P⌧0,1 ,

~PHiggs} subsets are more resistant to background effects than the
distributions obtained with full set of input features and the subset where the �-components
are rotated. For {~Pj0,1 , ~P⌧0,1} and {~Pj0,1 , ~P⌧0,1 ,

~PHiggs} the confidence interval lengths increase
by 32% when including background compared to the length obtained when only considering
signal events. The 2� intervals increase by 34% after including background. When rotating
the � components, including background yields an increase of 37% at the 1� confidence level
and 40% at the 2� confidence level. For the full set of input features including background
yields an increase of 38% at the 1� confidence level and 41% at 2� confidence level.

(a) Signal only (b) Including background

Figure 6.11: �NLL-curves obtained from the distributions of the CP-sensitive observables
O

3Class
NN constructed from the outputs of NNs that were trained with different sets of input

features when (a) considering only signal events and (b) also including background events.
Here, ~P denote the three momenta of the respective final state constituents.

1� CI 1� CI length 2� CI 2� CI length
Full input feature set [-0.0112, 0.0112] 0.0224 [-0.0221, 0.0222] 0.0443
{~Pj0,1 , ~P⌧0,1} [-0.0114, 0.0114] 0.0228 [-0.0226, 0.0226] 0.0452
{~Pj0,1 , ~P⌧0,1 ,

~PHiggs} [-0.0114, 0.0114] 0.0228 [-0.0225, 0.0225] 0.0450
{~Pj0,1 , ~P⌧0,1 ,

~PHiggs} with �Higgs ⌘ 0 [-0.0115, 0.0115] 0.0230 [-0.0226, 0.0227] 0.0453

Table 6.10: Signal only: 1� and 2� confidence intervals (CIs), as well as their lengths,
extracted from the distributions of the observables O

3Class
NN obtained with the multiclass NN

that was trained and optimized with different subsets of the initial input feature set defined in
section 6.2. Here, ~P denote the three momenta of the respective final state constituents. For
comparison, the results obtained with the multiclass neural network trained and optimized
with the full input feature set in section 6.3.2 are also included.
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1� CI 1� CI length 2� CI 2� CI length
Full input feature set [-0.0155, 0.0155] 0.0310 [-0.0313, 0.0313] 0.0626
{~Pj0,1 , ~P⌧0,1} [-0.0150, 0.0151] 0.0301 [-0.0302, 0.0303] 0.0605
{~Pj0,1 , ~P⌧0,1 ,

~PHiggs} [-0.0150, 0.0150] 0.0300 [-0.0302, 0.0303] 0.0605
{~Pj0,1 , ~P⌧0,1 ,

~PHiggs} with �Higgs ⌘ 0 [-0.0157, 0.0157] 0.0314 [-0.0316, 0.0316] 0.0632

Table 6.11: Including background: 1� and 2� confidence intervals (CIs), as well as
their lengths, extracted from the distributions of the observables O

3Class
NN obtained with the

multiclass NN that was trained and optimized with different subsets of the initial input feature
set defined in section 6.2. Here, ~P denote the three momenta of the respective final state
constituents. For comparison, the results obtained with the multiclass neural network trained
and optimized with the full input feature set in section 6.3.2 are also included.

6.3.6 Linear Weights only in Training

Ideally, the neural network should only learn interference specific characteristics. However,
the weights in eq. (4.19) that are used to incorporate the interference information during the
training process do not purely consist of the desired interference term. They additionally
contain a term that is quadratic in d̃. This term is CP-even and does not provide a source of
CP-violation but only increases the overall production rate. This section investigates whether
the NN is biased by the presence of this additional CP-even term during the training.

For this a NN is trained while only considering the part of the weights in eq. (4.19)
that is linear in d̃ in the loss function eq. (6.16). This way, the network discriminates the
interference events purely based on characteristics specific for positive/ negative interference.

Based on the results obtained previously in this chapter, this study uses a multiclass NN
that is trained with the full set of input features defined in section 6.2 while assuming the
d̃ = 1-scenario. The NN architecture and hyperparameters are optimized with OPTUNA, over
100 trials using the search space defined in section 6.3.1. Table B.4 contains the results of
this optimization.

Figure 6.12 shows the distribution of the observable (O3Class
NN )lin constructed from the

predictions of this neural network on the full dataset. The distribution is shown as predicted
by the SM, as well as for two CP-violating scenarios with d̃ = �0.1 and d̃ = 0.2.



CHAPTER 6. MACHINE LEARNING CP-SENSITIVE OBSERVABLES 55

Figure 6.12: Distribution of the CP-sensitive observable (O3Class
NN )lin constructed from the

prediction by the multiclass NN that was trained and optimized while only using the linear
term in the weights given in eq. (4.19) inside the loss function, as predicted by the SM for
an integrated luminosity of

R
Ldt = 139 fb�1. The VBF Higgs-boson signal is presented

in red. Background processes are grouped in processes where a Higgs boson emerges from
non VBF production modes (green) and processes where the detected ⌧ -leptons emerge
from the decay of a Z-boson (blue). The category others (yellow) contains all remaining
background contributions, described in section 2.2. Additionally, distributions predicted for
two CP-violating scenarios with the strengths d̃ = �0.1 and d̃ = 0.2 are presented. These
distributions are normalized to the total number NSM = 69 of expected SM events.

In Figure 6.13 the resulting �NLL curves are shown separately for the case where
only signal events are considered and for the case where background events are included.
For comparison, the curves corresponding to the distribution obtained with the multiclass
model discussed in section 6.3.2 which was trained using the full weights in eq. (4.19) are
included. Table 6.12 contains the confidence intervals extracted from these curves for the
case where only signal events are considered. Table 6.13 shows the results obtained when
including background events. Within the considered precision �` = 0.0007, no changes in
CP-sensitivity are observed.
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(a) Signal only (b) Including background

Figure 6.13: �NLL-curves obtained from the distribution of the CP-sensitive observable
(O3Class

NN )lin constructed from the multiclass NN that was trained and optimized while only
using the linear term in the weights given in eq. (4.19) inside the loss function when (a)
considering only signal events and (b) also including background events. For comparison, the
results obtained using the multiclass neural network trained and optimized while considering
the full weights (see section 6.3.2) are also included.

1� CI 1� CI length 2� CI 2� CI length
Full weights [-0.0112, 0.0112] 0.0224 [-0.0221, 0.0222] 0.0443
Linear weights only [-0.0113, 0.0113] 0.0226 [-0.0222, 0.0223] 0.0445

Table 6.12: Signal only: 1� and 2� confidence intervals (CIs), as well as their lengths,
extracted from the distribution of the observable (O3Class

NN )lin constructed from the multiclass
NN that was trained and optimized while only using the linear term in the weights given in
eq. (4.19) inside the loss function. For comparison, the results obtained with the multiclass
neural network trained and optimized with interference samples created using the full weights
(see section 6.3.2) are also included. The uncertainties on the interval borders are �b = 0.0005,
resulting in uncertainties on the interval lengths �` = 0.0007.

1� CI 1� CI length 2� CI 2� CI length
Full weights [-0.0155, 0.0155] 0.0310 [-0.0313, 0.0313] 0.0626
Linear weights only [-0.0156, 0.0156] 0.0312 [-0.0315, 0.0313] 0.0628

Table 6.13: Including background: 1� and 2� confidence intervals (CIs), as well as their
lengths, extracted from the distribution of the observable (O3Class

NN )lin constructed from the
multiclass NN that was trained and optimized while only using the linear term in the weights
given in eq. (4.19) inside the loss function. For comparison, the results obtained with the
multiclass neural network trained and optimized with interference samples created using the
full weights (see section 6.3.2) are also included. The uncertainties on the interval borders
are �b = 0.0005, resulting in uncertainties on the interval lengths �` = 0.0007.
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6.3.7 Final Classification Neural Network Observable

Based on the outcomes of the studies performed in the previous sections, a final classification
neural network is constructed and trained such that it fulfills the following conditions:

• Multiclass NN with three classes: P+, P� and PSM
• Creation of training samples for d̃ = 1 scenario
• Full input feature set as defined in section 6.2 used in training
• Full weights in eq. (4.19), including the quadratic term used in training

In order to examine whether it is possible to reach a further increase of CP-sensitivity com-
pared to what was obtained under these conditions with the NN constructed in section 6.3.2,
another optimization study is performed. For this purpose, the ranges for the hyperparameter
search are adapted, resulting in the following search space:

• Number of hidden layers 2 {3, 4, 5, 6, 7, 8, 9}

• Number of nodes (individually for each layer) 2 [50, 400], scanned linearly
• Strength of L2 regularization 2 [10�6

, 10�3], scanned logarithmically
• Initial learning rate 2 [10�4

, 10�1], scanned logarithmically
• Learning rate decay steps 2 [1000, 10000], scanned linearly
• Learning rate decay parameter 2 [0, 0.4], scanned linearly
• Batch size 2 [30, 80], scanned linearly

The optimization study is performed over 1000 trials using OPTUNA. Table 6.14 shows the
architecture and hyperparameters of the final classification neural network chosen based on
the outcomes of this study.

Optimized hyperparameter Study outcome

Number of hidden layers 9

Number of nodes in hidden layer 1 366

Number of nodes in hidden layer 2 125

Number of nodes in hidden layer 3 180

Number of nodes in hidden layer 4 92

Number of nodes in hidden layer 5 352

Number of nodes in hidden layer 6 199

Number of nodes in hidden layer 7 321

Number of nodes in hidden layer 8 373

Number of nodes in hidden layer 9 50

L2 regularization strength 1.2·10�6

Initial learning rate 5.7·10�3

Learning rate decay steps 4820.8

Learning rate decay rate 9.0·10�2

Batch size 32

Table 6.14: Architecture and hyperparameters of the final multiclass neural network as found
in a hyperparameter optimization study using OPTUNA.
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Figure 6.14 shows the distribution of the observable (O3Class
NN )final constructed from the

predictions of this NN on the full dataset. Here, the distribution is shown as predicted by
the SM and for two CP-violating scenarios with d̃ = �0.1 and d̃ = 0.2.

Figure 6.14: Distribution of the final classification NN obserbable (O3Class
NN )final, as predicted

by the SM for an integrated luminosity of
R

Ldt = 139 fb�1. The VBF Higgs-boson signal is
presented in red. Background processes are grouped in processes where a Higgs boson emerges
from non VBF production modes (green) and processes where the detected ⌧ -leptons emerge
from the decay of a Z-boson (blue). The category others (yellow) contains all remaining
background contributions, described in section 2.2. Additionally, distributions predicted for
two CP-violating scenarios with the strengths d̃ = �0.1 and d̃ = 0.2 are presented. These
distributions are normalized to the total number NSM = 69 of expected SM events.

Figure 6.15 shows the �NLL curves extracted from these distributions. The curves are
shown for both, the signal only case and the case where background events are included.
Table 6.15 contains the corresponding 1� and 2� confidence intervals. In the signal only
case, the length of the 1� confidence interval is consistent with the value reached with the
less complex multiclass model constructed in section 6.3.2 (compare table 6.4). For the 2�

interval, a decrease in length by 2% is achieved. When including background events, the
interval lengths also decrease by 2% compared to the results found in table 6.5 with the less
complex multiclass model. This is true at both confidence levels.
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Figure 6.15: �NLL curves and resulting 1� and 2� confidence intervals, obtained with the
(O3Class

NN )final distribution, shown for the case where only signal events are considered (red) as
well as for the case where background events are included (blue).

1� CI 1� CI length 2� CI 2� CI length
Signal Only [-0.0110, 0.0110] 0.0220 [-0.0217, 0.0218] 0.0435
Including Background [-0.0152, 0.0152] 0.0304 [-0.0306, 0.0306] 0.0612

Table 6.15: 1� and 2� confidence intervals (CIs), as well as their lengths, extracted from
the distributions of the final classification NN observable (O3Class

NN )final. The uncertainties
on the interval borders are �b = 0.0005, resulting in uncertainties on the interval lengths
�` = 0.0007.

Figure 6.16 illustrates, that in the case of small d̃-values, the mean values of (O3Class
NN )final

in different BSM scenarios, show a linear dependency on d̃, as it is expected for CP-odd
observables from eq. (4.11).



60 CHAPTER 6. MACHINE LEARNING CP-SENSITIVE OBSERVABLES

Figure 6.16: Linear dependency between the mean value of (O3Class
NN )final and d̃ in case of

small d̃-values. Only signal events are considered.

6.3.8 Feature Importance

To investigate the impact of each input feature on the performance of the final classification
NN, the feature importance score is calculated according to eq. (6.9). To reduce fluctuations
caused by the specific choice of the initial weights used when training the NN, the feature
importance scores are calculated 20 times, each time with a random choice of initial weights.
The final feature importance scores, shown in figure 6.17, are given as the mean values of
these 20 trials. The highest score is reached by P

T

j0
P

T

j1
sin��sgn

jj . This is expected, since this
high level feature is obtained from a symbolic regression which targets the highly CP-sensitive
OO (see section 6.5). Since ��sgn

jj is strongly correlated with P
T

j0
P

T

j1
sin��sgn

jj it does not
introduce new information to the neural network when P

T

j0
P

T

j1
sin��sgn

jj is already contained
in the input set, explaining its low impact on the NN performance. Notably, the low level
input feature ⌘j0 also yields significant contributions to the learning process. This could be
attributed to the fact that it contains important spatial information, making it sensitive to
the effects of CP-violation.
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Figure 6.17: Feature importance score for all input features used in the training of the final
classification neural network.
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6.4 Regression Neural Network Observable O
Reg
NN

Since the Optimal Observable contains the full information about the seven dimensional
phase space in case of small d̃-values it is a very powerful tool for testing CP-invariance. This
section aims to resemble the distribution of the Optimal Observable using the output of a
regression neural network.

6.4.1 Optimization and Training of the Regression Neural Networks with
different Sets of Input Variables

Two regression NNs are trained and optimized with different input feature sets. These NNs
have one output node that returns predictions OReg

NN , targeting the truth level OO distribution.
The loss is then defined by the mean squared error between prediction and target

MSE =

P
i
wSM,i(O

Reg
NN,i

�OOi)2

NSM
, (6.17)

where wi are the nominal event weights given in eq. (3.2), discussed in section 3.1.1 and
NSM = 40 is the total number of signal events predicted by the SM.

The first NN is provided with only the three-momenta ~Pj0,1 ,
~P⌧0,1 of the final state tagging

jets and tau-leptons, whereas the second NN receives the full set of input features defined in
table 6.1. In both cases, only SM signal events are considered in training. The data is split
in training and validation sets in the ratio 80/20.

The architectures and hyperparameters of the regression neural networks are chosen
based on the results of optimization studies that are conducted within the framework OPTUNA
over 1000 trials in the following search space

• Number of hidden layers 2 {3, 4, 5, 6, 7}

• Number of nodes (individually for each layer) 2 [50, 400], scanned linearly
• Strength of L2 regularization 2 [10�7

, 10�1], scanned logarithmically
• Initial learning rate 2 [10�5

, 10�1], scanned logarithmically
• Learning rate decay steps 2 [1000, 5000], scanned linearly
• Learning rate decay parameter 2 [0, 0.7], scanned linearly
• Batch size 2 [50, 90], scanned linearly

Table 6.16 contains the results of these studies.
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Optimized hyperparameter ~Pj0,1 ,
~P⌧0,1 Full input feature set

Number of hidden layers 4 6

Number of nodes in hidden layer 1 298 372

Number of nodes in hidden layer 2 235 272

Number of nodes in hidden layer 3 400 161

Number of nodes in hidden layer 4 384 143

Number of nodes in hidden layer 5 - 79

Number of nodes in hidden layer 6 - 119

L2 regularization strength 2.1·10�7 5.2·10�7

Initial learning rate 6.5·10�3 1.6·10�3

Learning rate decay steps 3734.3 1803.9

Learning rate decay rate 0.3 0.6

Batch size 87 85

Table 6.16: Architecture and hyperparameters of the regression NN trained and optimized
with only the three momenta ~Pj0,1 ,

~P⌧0,1 of the final state tagging jets and ⌧ -leptons and the
regression NN trained with the full set of input features.

Figure 6.18 compares the regression neural network observables O
Reg
NN , that are predicted

for the validation datasets to the targeted OO. Providing additional and more complex
information in the training process by including all input features allows the NN to resemble
the targeted distribution more accurately and thus results in a significant decrease in event
by event differences between O

Reg
NN and OO.
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(a) NN trained with only P
µ
j0,1

, P
µ
⌧0,1 as input

(b) NN trained with full input feature set

Figure 6.18: Left: Distributions of the regression NN predictions on the validation dataset
O

Reg
NN compared to the targeted OO. Right: Event by event differences between OO and O

Reg
NN .

The first row shows the results for the NN trained with only the three momenta ~Pj0,1 ,
~P⌧0,1

of the final state tagging jets and ⌧ -leptons and the second row shows the results for the NN
trained with the full input feature set. This validation dataset contains 20% of the full SM
signal sample. This corresponds to an expected number of events Nval = 8.

However, the primary goal is for the regression observable to capture the essential
characteristics of the OO that contribute to its CP sensitivity. The regression NN is applied
to the full dataset defined in chapter 3 to obtain the observable distributions of OReg

NN shown
in figure 6.19. These distributions are shown as predicted by the SM and additionally for two
CP-violating scenarios with d̃ = �0.1 and d̃ = 0.2. Each distribution is normalized as follows

O
Reg
NN =

O
Reg
NN,org

max(OReg
NN,org)

, (6.18)

where in both cases max(OReg
NN,org) = 15.
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(a) Only {~Pj0,1 ,
~P⌧0,1} as input (b) Full input feature set

Figure 6.19: Distributions of the observables O
Reg
NN obtained from regression NNs that were

trained with different input feature sets, as predicted by the SM for an integrated luminosity ofR
Ldt = 139 fb�1. The VBF Higgs-boson signal is presented in red. Background processes are

grouped in processes where a Higgs boson emerges from non VBF production modes (green)
and processes where the detected ⌧ -leptons emerge from the decay of a Z-boson (blue).
The category others (yellow) contains all remaining background contributions, described in
section 2.2. Additionally, distributions predicted for two CP-violating scenarios with the
strengths d̃ = �0.1 and d̃ = 0.2 are presented. These distributions are normalized to the total
number NSM = 69 of expected SM events..

Figure 6.20 displays the �NLL curves obtained from these distributions. For comparison,
the curve obtained with the reconstruction level OO is also shown. Table 6.17 contains
the confidence intervals and corresponding lengths extracted from these curves when only
considering signal events. Table 6.18 displays the results that are obtained when also including
background events. The CP-sensitives of both regression NN observables OReg

NN are compatible
with each other and with the CP-sensitivity achieved by the reconstruction level OO (see
section 5.1) within the uncertainty on the length of the confidence intervals of �` = 0.0007.
This is true at both confidence levels, when considering only signal events and when also
including background events.
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(a) Signal only (b) Including background

Figure 6.20: �NLL-curves obtained from the distributions of the observables O
Reg
NN resulting

from regression NNs that were trained with different input feature sets. Additionally, the
curve for the reconstruction level OO (see section 5.1) is shown. These results are shown
separately for the case where (a) only signal events are considered and (b) background events
are included. ~P denote the three momenta of the respective final state constituents.

1� CI 1� CI length 2� CI 2� CI length
OO (see section 5.1) [-0.0109, 0.0109] 0.0218 [-0.0216, 0.0216] 0.0432
O

Reg
NN Full input feature set [-0.0109, 0.0109] 0.0218 [-0.0216, 0.0216] 0.0432

O
Reg
NN {~Pj0,1 , ~P⌧0,1} [-0.0109, 0.0110] 0.0219 [-0.0216, 0.0216] 0.0432

Table 6.17: Signal only: 1� and 2� confidence intervals (CIs), as well as their lengths,
extracted from the distributions of the observables O

Reg
NN resulting from regression NNs that

were trained and optimized with different sets of input features. ~P denote the three momenta
of the respective final state constituents. For comparison, the results obtained with the
reconstruction level OO are also shown. The uncertainties on the interval borders are �b =
0.0005, resulting in uncertainties on the interval lengths �` = 0.0007.

1� CI 1� CI length 2� CI 2� CI length
OO (see section 5.1) [-0.0150, 0.0149] 0.0299 [-0.0301, 0.0300] 0.0601
O

Reg
NN Full input feature set [-0.0149, 0.0149] 0.0298 [-0.0301, 0.0300] 0.0601

O
Reg
NN {~Pj0,1 , ~P⌧0,1} [-0.0149, 0.0150] 0.0299 [-0.0301, 0.0301] 0.0602

Table 6.18: Including background: 1� and 2� confidence intervals (CIs), as well as their
lengths, extracted from the distributions of the observables O

Reg
NN resulting from regression

NNs that were trained and optimized with different sets of input features. ~P denote the three
momenta of the respective final state constituents. For comparison, the results obtained with
the reconstruction level OO are also shown. The uncertainties on the interval borders are
�b = 0.0005, resulting in uncertainties on the interval lengths �` = 0.0007.

Figure 6.21 illustrates that in the case of small d̃-values, the mean values of both regression
observables O

Reg
NN show a linear dependency on d̃, as it is expected for CP-odd observables
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from eq. (4.11).

(a) Full set of input features (b) Input: {~Pj0,1 , ~P⌧0,1}

Figure 6.21: Linear dependency between the mean values of the regression observables O
Reg
NN

and d̃ in case of small d̃-values. Results are shown for the observables constructed with NNs
that are trained and optimized using (a) the full input feature set defined in section 6.2 and
(b) only the three momenta ~P of the tagging jets and the tau-leptons {~Pj0,1 , ~P⌧0,1}. Only
signal events are considered.

6.5 Symbolic Regression Neural Network Observables

In contrast to the previous section, where the OO distribution was modeled, by utilizing the
numerical output from a regression NN, this section aims to approximate the OO distribution
through human-readable analytic expressions obtained via the method of symbolic regression
(SR), following the approach presented in [19]. This study is performed at truth level. The
resulting analytic expressions are then applied to reconstruction level data.

The symbolic regression neural networks considered in this thesis operate within the
framework PySR [57]. For the construction of the desired analytic expressions, a tree structured
search space, consisting of pre-defined variables and mathematical operators, represented as
nodes, is defined. The search inside this space is performed using genetic programming (see
section 6.1.4), following two objectives:

1. Minimizing a loss function, which in this thesis is given as the weighted mean squared
error (MSE) between the target events OOi and the respective analytical functions
fi(~xin) that are found to describe these events in terms of the input-features ~xin

MSE =

P
n

i=1wi,d̃
· (fi(~xin)�OOi)2P
n

i=1wi,d̃

, (6.19)

where w
i,d̃

are the event weights defined eq. (4.19) for a given d̃-scenario.
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2. Preferring expressions with low complexity, where

complexity ⌘ no. of nodes. (6.20)

PySR combines these two objectives into one single score

score = NF · MSE + SF · complexity, (6.21)

where NF is a normalization factor, given as the inverse of the MSE between the data and
the constant unit function (called baseline in PySR)

NF =

 P
n

i=1wi,d̃
· (1�OOi)2P

n

i=1wi,d̃

!�1

, (6.22)

and SF is a scaling factor, that allows to control how much the complexity contributes to the
score. For this scaling factor (called parsimony in PySR) the default value SF= 0.0032 is used.
By default, PySR uses the method of simulated annealing [60] to prevent getting trapped in a
local minimum of the score function. This method defines a probability

P = e
� scorenew�scoreold

alpha·T (6.23)

for accepting mutations (see section 6.1.4). The parameter T , has an initial value of 1 and then
linearly decreases with each mutation, such that in the last considered generation, it becomes 0.
The number of generations to run can be controlled by the parameter ncyclesperiteration,
whose default value 550 is used. The parameter alpha is also used at its default value, given
as 0.1. If the score scorenew of a new function is lower than the score of a reference function
scoreold, this reflects in a positve sign of the exponent, which is used as a criterion to accept
the new function. If the new score is larger than the reference score, the probability P for the
new function to be accepted is exponentially suppressed, rather than strictly denied. In PySR,
an iteration is defined by one full simulated annealing process. The number of considered
iterations can be controlled by the parameter niterations, which in this study is set to
50. PySR provides a so-called hall of fame (HoF), where after each iteration, the algorithm
saves the equation with the lowest score for a given complexity. New equations with higher
complexities are only added to the HoF if their MSE is lower than the MSEs of previously
saved equations. The final result of the symbolic regression is the equation with the best score
and a MSE that is better than at least 1.5x the MSE of the most accurate expression. The
migration of equations from different populations or the HoF is controlled by the parameters
fraction_replaced = 0.000364 and fraction_replaced_hof = 0.035, both left at their
default values.

In this thesis, the search space is defined by the following operators
• Binary operators: +, �, ·, ÷
• Unary operators: cos, sin, exp, ln, sqrt
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and by variables representing the following truth level information

{P̂
T

p0
,�p0 , ⌘p0 , P̂

T

p1
,�p1 , ⌘p1 , P̂

T

Higgs,�Higgs, ⌘Higgs,��sgn
pp ,�⌘pp}. (6.24)

Here, the subscripts p0,1 denote that the respective kinematic information belongs to the
leading/ subleading outgoing partons. The transverse momenta, denoted as P̂

T

particle, are
rescaled to align their order of magnitude with the scale of the other input features,

P̂
T

particle =
P

T

particle
Mhiggs

. (6.25)

This can help PySR with handling and processing the input features more efficiently.

6.5.1 Standard Model Target

First, symbolic regression is applied to find an analytic function fSM that approximates the
OO distribution as it is predicted by the SM. For this, the SM event weights wSM discussed
in chapter 3 are used when calculating the MSE via eq. (6.19). The result is

fSM = A · P̂
T

p0
P̂

T

p1
sin��sgn

pp , where A = 5.9611454, (6.26)

with the following MSE and complexity

MSE = 0.20

complexity = 8.

The full hall of fame is presented in table 6.19.
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Complexity Function MSE

1 ��sgn
pp 7.89

3 3.16961 ·��sgn
pp 4.77

4 7.45406543983682 · sin��sgn
pp 3.05

5 8.505658 · sin(sin��sgn
pp ) 3.04

6 8.505658 · P̂ T

Higgs sin��sgn
pp 1.89

8 5.9611454 · P̂ T
p0
P̂

T
p1

sin��sgn
pp 0.20

10 P̂
T
p0
(5.6764827 · P̂ T

p1
+ 0.3424119) sin��sgn

pp 0.19

11 P̂
T
p0
P̂

T
p1
(6.7836447� cos(⌘Higgs)) sin��sgn

pp 0.17

13 P̂
T
p0
P̂

T
p1

⇣
6.7836447� cos

⇣
⌘Higgs
��sgn

pp

⌘⌘
· sin��sgn

pp 0.17

15 P̂
T
p0
P̂

T
p1

✓
6.7836447� cos

✓
⌘HiggsP̂T

Higgs
⌘p1

◆◆
· sin��sgn

pp 0.15

17 P̂
T
p0
P̂

T
p1

✓
6.7836447� cos

✓
1.11295503027293 ·

⌘HiggsP̂T

Higgs
⌘p1

◆◆
· sin��sgn

pp 0.15

18 P̂
T
p0
P̂

T
p1

 
6.7836447� cos

 
⌘HiggsP̂T

Higgs

⌘p1

q
P̂Tp1

!!
· sin��sgn

pp 0.15

19 P̂
T
p0
P̂

T
p1

 
6.7836447� cos

 
⌘HiggsP̂T

Higgs

⌘p1 sin
q

P̂Tp1

!!
· sin��sgn

pp 0.14

Table 6.19: Hall of fame from symbolic regression targeting the OO distribution as it is
predicted by the SM. These results are obtained at truth level.

The distribution obtained from eq. (6.26) when only considering (truth level) signal
events is shown in figure 6.22. For comparison, the targeted truth level OO distribution is
also displayed. Both distributions are shown as predicted by the SM (d̃ = 0).

Figure 6.22: Approximation of truth level OO distribution by applying the analytic expression
eq. (6.26) found through symbolic regression, targeting the truth level OO distribution as
it is predicted by the SM. Both results are shown as predicted by the SM (d̃ = 0) for signal
events.
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The result found in eq. (6.26) is now utilized to approximate the OO distribution at
reconstruction level

OO ⇠ P
T

j0
P

T

j1
sin��sgn

jj . (6.27)

Here, the parton information is replaced by the corresponding tagging jet information. The
transverse momenta P

T

j0,1
are now given in their original magnitude. Since the primary focus

lies in resembling the overall shape of the distribution, the scaling factor in eq. (6.26) is
neglected.

The distribution obtained from eq. (6.27) when only considering signal events is shown
in figure 6.23. For comparison, the reconstruction level OO distribution is also displayed.
Both distributions are shown as predicted by the SM (d̃ = 0). Here, the distributions are
normalized as follows

Observable =
Observableorg

max(Observableorg)
, (6.28)

where max([P T

j0
P

T

j1
sin��sgn

jj ]org) = 45124 and as discussed in section 5.1 max(OOorg) = 15.

Figure 6.23: Approximation of reconstruction level OO distribution by applying the analytic
expression eq. (6.27) found through symbolic regression, targeting the truth level OO distri-
bution as it is predicted by the SM. Both results are shown as predicted by the SM (d̃ = 0)
for signal events and normalized according to eq. (6.28).

Remarkably, these straightforward and easily interpretable expressions, which solely rely
on information about the final state tagging jets, allow resembling the overall shape of the
OO distribution. This is true not only for the original target truth level information, but also
when applied to the reconstruction level data.

6.5.2 Beyond the Standard Model Target

Now, the procedure introduced in the previous section is repeated, this time targeting the
OO that is predicted in the CP-violating scenario d̃ = 0.5. This is realized by considering the
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corresponding event weights w
i,d̃

according to eq. (4.19) when calculating the MSE eq. (6.19).
Here, the number of BSM events is normalized to the number NSM of predicted SM events,
using the normalization factor

NF =
NSMP
i
w
i,d̃

. (6.29)

The symbolic regression yields the result

f
d̃=0.5 = P̂

T

p0
P̂

T

p1

⇥
cos��sgn

pp +B
⇤

sin��sgn
pp , where B = 6.281698, (6.30)

with the following values for MSE and complexity

MSE = 0.72

complexity = 11.

The full hall of fame can be found in table 6.20.

Complexity Function MSE

1 ��sgn
pp 37.28

3 6.1142375585507 ·��sgn
pp 16.68

4 12.5012541883264 · sin��sgn
pp 15.60

5 2.88670794254885 · P̂ T

Higgs��sgn
pp 12.00

6 8.373081 · P̂ T
p1 sin��sgn

pp 9.20

7 6.02036774693938 ·
P̂

T

Higgs��sgn
pp

⌘p0
8.85

8 6.01319 · P̂ T
p0
P̂

T
p1

sin��sgn
pp 0.87

10 5.6258187 · P̂ T
p0
(P̂ T

p1
+ 0.12879014) · sin��sgn

pp 0.86

11 P̂
T
p0
P̂

T
p1
(cos��sgn

pp + 6.281698) · sin��sgn
pp 0.72

13 P̂
T
p0
P̂

T
p1

⇣
P̂

T

Higgs + 3.0322027
⌘

sin��sgn
pp + sin��sgn

pp 0.71

15 P̂
T
p0
P̂

T
p1

✓
log(�P̂

T
p1
) + e

q
P̂

T

Higgs + 4.9699063

◆
· sin��sgn

pp 0.69

16 P̂
T
p0
P̂

T
p1

⇣
1.8441851 · log(P̂ T

Higgs + 3.9669242))
⌘
) · sin��sgn

pp + sin��sgn
pp 0.66

19
q
P̂ T
p1

·

⇣
5.2899504 · P̂ T

p0
� 5.2899504 · (�

q
P̂

T

Higss + cos(P̂ T
p1

� 0.3397412)) · ⌘�1
p0

⌘
· sin��sgn

pp 0.58

20
q
P̂ T
p1

·

⇣
5.2899504 · P̂ T

p0
� 5.2899504 · (�

q
P̂

T

Higss + cos(P̂ T
p1

� 0.3397412)) · ⌘�1
p0

⌘
· sin��sgn

pp � sin��sgn
pp 0.57

Table 6.20: Hall of fame from symbolic regression targeting the OO distribution as it is
predicted for the d̃ = 0.5 scenario. These results are obtained at truth level.

The distribution obtained from eq. (6.30) when only considering (truth level) signal
events is shown in figure 6.24. For comparison, the targeted truth level OO distribution is
also displayed. Both distributions are shown in the d̃ = 0.5 scenario.
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Figure 6.24: Approximation of truth level OO distribution by applying the analytic expression
eq. (6.26) found through symbolic regression, targeting the truth level OO distribution as
it is predicted in the d̃ = 0.5 scenario. Both results are shown as predicted in the d̃ = 0.5
scenario.

Again, the result found in eq. (6.30) is utilized to approximate the OO distribution at
reconstruction level

OO ⇠ P
T

j0
P

T

j1

h
cos��sgn

jj
+B

i
sin��sgn

jj
, where B = 6.281698. (6.31)

The distribution that results from eq. (6.31), when only considering signal events is shown
in figure 6.25 as predicted for the d̃ = 0.5 scenario. For comparison, the reconstruction level
OO-distribution that is predicted for the d̃ = 0.5 scenario is also displayed. Here, both distribu-
tions are normalized according to eq. (6.28), wit max([P T

j0
P

T

j1
[cos��sgn

jj
+B] sin��sgn

jj
]org) =

286586 and as discussed in section 5.1 max(OOorg) = 15.
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Figure 6.25: Reconstruction level OO distribution compared to distribution resulting from
applying the analytical expression eq. (6.30), found through symbolic regression when target-
ing the truth level OO in the d̃ = 0.5 scenario. Both distributions are shown as predicted for
the d̃ = 0.5 case. Only signal events are considered.

Describing the OO distribution in the BSM scenario with d̃ = 0.5 requires more complex-
ity compared to predicting the SM distribution. However, the result described in eq. (6.30)
also relies solely on information of the final state tagging jets. It allows resembling of the
overall shape of the OO distribution when applied to both the originally targeted truth level
information and the reconstruction level data.

6.5.3 CP-Sensitivities

The distributions following from the analytical expressions eq. (6.27) and eq. (6.31) found in
the previous sections, when considering the full dataset at reconstruction level, are shown in
figure 6.26. Again, the distributions are normalized according to eq. (6.28), using the same
maximum values as discussed in section 6.5.1 and section 6.5.2, since these were observed to
remain the same when including background.

In Figure 6.27, the �NLL curves obtained from these distributions are displayed. The
corresponding confidence-intervals as well as their lengths are presented in table 6.21 for the
case where only signal events are considered and in 6.22 for the case where background events
are included. Both analytical expressions yield observable distributions that allow to extract
confidence interval lengths that are compatible with the results for the Optimal Observable
within the uncertainty on the length of the confidence interval �` = 0.0007. This is true at
both confidence levels, when considering only signal events and when including background
events in the calculations.
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(a) Target: OO distribution as predicted by SM (b) Target: OO distribution predicted for d̃ = 0.5

Figure 6.26: Distributions of the observables constructed from the analytical expressions
found through symbolic regressions targeting the OO distribution that is predicted (a) by
the SM and (b) in the d̃ = 0.5 scenario, shown as predicted by the SM for an integrated
luminosity of

R
Ldt = 139 fb�1. The VBF Higgs-boson signal is presented in red. Background

processes are grouped in processes where a Higgs boson emerges from non VBF production
modes (green) and processes where the detected ⌧ -leptons emerge from the decay of a Z-
boson (blue). The category others (yellow) contains all remaining background contributions,
described in section 2.2. Additionally, distributions predicted for two CP-violating scenarios
with the strengths d̃ = �0.1 and d̃ = 0.2 are presented. These distributions are normalized
to the total number NSM = 69 of expected SM events.

(a) Signal only (b) Including background

Figure 6.27: �NLL-curves obtained from the distributions of the observables constructed
from the analytical expressions found through symbolic regressions targeting the OO dis-
tribution that is predicted by the SM (P T

j0
P

T

j1
sin��sgn

jj ) and in the d̃ = 0.5 scenario
(P T

j0
P

T

j1
[cos��sgn

jj
+B] sin��sgn

jj
). Additionally, the curve for the targeted OO is shown.

These results are shown separately for the case where (a) only signal events are considered
and (b) background events are included.
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1� CI 1� CI length 2� CI 2� CI length
OO [-0.0109, 0.0109] 0.0218 [-0.0216, 0.0216] 0.0432
P

T

j0
P

j1
T

sin��sgn
jj

[-0.0110, 0.0111] 0.0221 [-0.0218, 0.0219] 0.0437
P

T

j0
P

T

j1

h
cos��sgn

jj +B

i
sin��sgn

jj [-0.0111, 0.0111] 0.0222 [-0.0218, 0.0218] 0.0436

Table 6.21: Signal only: 1� and 2� confidence intervals (CIs), as well as
their lengths, extracted from the distributions of the symbolic regression observables
P

T

j0
P

T

j1
sin��sgn

jj , found when targeting the OO distribution that is predicted by the SM
and P

T

j0
P

T

j1
[cos��sgn

jj
+B] sin��sgn

jj
found when targeting the OO distribution that is pre-

dicted for the d̃ = 0.5 scenario. For comparison, the results obtained with the targeted OO

are also shown. The uncertainties on the interval borders are �b = 0.0005, resulting in
uncertainties on the interval lengths �` = 0.0007.

1� CI 1� CI length 2� CI 2� CI length
OO [-0.0150, 0.0149] 0.0299 [-0.0301, 0.0300] 0.0601
P

T

j0
P

j1
T

sin��sgn
jj

[-0.0150, 0.0151] 0.0301 [-0.0303, 0.0303] 0.0606
P

T

j0
P

T

j1

h
cos��sgn

jj +B

i
sin��sgn

jj [-0.0149, 0.0150] 0.0299 [-0.0300, 0.0301] 0.0601

Table 6.22: Including background: 1� and 2� confidence intervals (CIs), as well
as their lengths, extracted from the distributions of the symbolic regression observables
P

T

j0
P

T

j1
sin��sgn

jj , found when targeting the OO distribution that is predicted by the SM and
P

T

j0
P

T

j1
[cos��sgn

jj
+B] sin��sgn

jj
found when targeting the OO distribution that is predicted

for the d̃ = 0.5 scenario. For comparison, the results obtained with the targeted OO are also
shown. The uncertainties on the interval borders are �b = 0.0005, resulting in uncertainties
on the interval lengths �` = 0.0007.

Figure 6.28 illustrates that in the case of small d̃-values, the mean values of both symbolic
regression observables show a linear dependency on d̃, as it is expected for CP-odd observables
from eq. (4.11).
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(a) Target: OO distribution as predicted by SM (b) Target: OO distribution predicted for d̃ = 0.5

Figure 6.28: Linear dependency between the average values of the symbolic regression
observables and d̃ in case of small d̃-values. Results are shown for (a) the observables
P

T

j0
P

T

j1
sin��sgn

jj , found when targeting the OO distribution that is predicted by the SM
and (b) P

T

j0
P

T

j1
[cos��sgn

jj
+B] sin��sgn

jj
found when targeting the OO distribution that is

predicted for the d̃ = 0.5 scenario. Only signal events are considered.



Chapter 7

Comparison of CP-sensitive
Observables

In this chapter, the CP-sensitivities of the established CP-odd observables OO and ��sgn
jj ,

that were introduced in chapter 5 and the machine learning CP-odd observables that were
constructed in chapter 6 are compared. In chapter 6, several observables have been constructed
with each machine learning method. This comparison considers only one result from each
method.

Among the various classification NN observables obtained in section 6.3, the observable
(O3Class

NN )final is considered. This observable is constructed from a multiclass NN, that is
trained and optimized using the full set of input features defined in section 6.2 and the full
weights defined in eq. (4.19) assuming the d̃ = 1 scenario.

Two observables O
Reg
NN that resemble the OO distribution are obtained in section 6.4

from regression NNs that are trained and optimized with different sets of input features.
Since within the considered uncertainties, the CP-sensitivities of these two observables are
compatible with each other, in principle, it is arbitrary to choose one of them for the final
comparison. However, for potential future applications a tool that requires less input infor-
mation is favored. Thus, the result from the NN that only takes the three momenta ~P of the
tagging jets and the tau-leptons as input features is chosen.

The symbolic regression observables found in section 6.5 also have compatible CP-
sensitives. Here, P T

j0
P

T

j1
sin��sgn

jj is preferred due to its lower complexity compared to
P

T

j0
P

T

j1
[cos��sgn

jj
+B] sin��sgn

jj
.

As in the previous chapters, the CP-sensitivities are estimated in terms of lengths of the
confidence intervals extracted for d̃ from the �NLL curves that correspond to the respective
distributions. The distributions of all considered CP-odd observables are divided into 20
evenly spaced bins for evaluating the NLL.

Figure 7.1 displays the �NLL curves obtained from all five considered observable distri-
butions (individually displayed in figure 5.3, figure 5.6, figure 6.15, figure 6.20, figure 6.27).
Table 7.1 contains the confidence intervals and corresponding lengths extracted from these
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curves when only considering signal events. Table 6.18 displays the results that are obtained
when also including background events.

As previously mentioned, the OO contains the full information on the seven dimensional
phase space for small d̃-values and is thus expected to yield the optimal sensitivity to new,
CP-violating couplings. Strictly speaking, this optimality only applies at the truth level and
solely to signal events. Therefore, it is noteworthy that even after considering event selection,
detector resolution and background processes, its CP sensitivity still remains unbeaten. How-
ever, within their uncertainties �` = 0.0007, the lengths of the confidence intervals that are
obtained from all machine learning observables are compatible with the results for the OO

when considering only signal events. This is true at both, the 1� and the 2� confidence level.
When including background, this observation remains true for all ML observables, except
for (O3Class

NN )final, whose 2� confidence interval is now wider, compared to the result obtained
with the OO. Specifically, its 2� confidence interval is increased by 2% compared to the 2�

interval obtained with the OO. The observable ��sgn
jj is outperformed by all ML observables.

Remarkably, as demonstrated by P
T

j0
P

T

j1
sin��sgn

jj , only a minimal increase in complexity and
the inclusion of one piece of additional kinematic information per tagging jet is necessary to
significantly enhance the CP-sensitivity. Specifically, in the signal only case, the additional
information stored in P

T

j0
P

T

j1
sin��sgn

jj yields a decrease in interval length by 10% compared
to ��sgn

jj at both confidence levels. When including background, a decrease by 4% is observed
at both confidence levels.
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(a)

(b)

Figure 7.1: �NLL-curves obtained from the distributions of the established CP-odd observ-
ables OO and ��sgn

jj that are introduced in chapter 5 and from the distributions of the
machine learning observables (O3Class

NN )final constructed from the output of a multiclass NN in
section 6.3, OReg

NN constructed using a regression NN in section 6.4 and P
T

j0
P

T

j1
sin��sgn

jj found
through symbolic regression in section 6.5. These results are shown separately for the case
where (a) only signal events are considered and (b) background events are included.
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1� CI 1� CI length 2� CI 2� CI length
OO [-0.0109, 0.0109] 0.0218 [-0.0216, 0.0216] 0.0432
��sgn

jj
[-0.0123, 0.0123] 0.0246 [-0.0243, 0.0243] 0.0486

(O3class
NN )final [-0.0110, 0.0110] 0.0220 [-0.0217, 0.0218] 0.0435

P
T

j0P
T

j1 sin��sgn
jj

[-0.0110, 0.0111] 0.0221 [-0.0218, 0.0219] 0.0437
O

Reg
NN [-0.0109, 0.0109] 0.0218 [-0.0216, 0.0216] 0.0432

Table 7.1: Signal only: 1� and 2� confidence intervals (CIs), as well as their lengths,
extracted from the distributions of the established CP-odd observables OO and ��sgn

jj that
are introduced in chapter 5 and from the distributions of the machine learning observables
(O3Class

NN )final constructed from the output of a multiclass NN in section 6.3, OReg
NN constructed

using a regression NN in section 6.4 and P
T

j0
P

T

j1
sin��sgn

jj found through symbolic regression
in section 6.5. The uncertainties on the interval borders are �b = 0.0005, resulting in
uncertainties on the interval lengths �` = 0.0007.

1� CI 1� CI length 2� CI 2� CI length
OO [-0.0150, 0.0149] 0.0299 [-0.0301, 0.0300] 0.0601
��sgn

jj
[-0.0158, 0.0157] 0.0315 [-0.0318, 0.0316] 0.0634

(O3class
NN )final [-0.0152, 0.0152] 0.0304 [-0.0306, 0.0306] 0.0612

P
T

j0P
T

j1 sin��sgn
jj

[-0.0150, 0.0151] 0.0301 [-0.0303, 0.0303] 0.0606
O

Reg
NN [-0.0149, 0.0149] 0.0298 [-0.0301, 0.0300] 0.0601

Table 7.2: Including background: 1� and 2� confidence intervals (CIs), as well as their
lengths, extracted from the distributions of the established CP-odd observables OO and
��sgn

jj that are introduced in chapter 5 and from the distributions of the machine learning
observables (O3Class

NN )final constructed from the output of a multiclass NN in section 6.3, OReg
NN

constructed using a regression NN in section 6.4 and P
T

j0
P

T

j1
sin��sgn

jj found through symbolic
regression in section 6.5.The uncertainties on the interval borders are �b = 0.0005, resulting
in uncertainties on the interval lengths �` = 0.0007.



Chapter 8

Conclusion and Outlook

This thesis presents a comparison of the sensitivities of both established CP-odd observables
and newly constructed machine learning based CP-odd observables, to constrain CP-violating
couplings in the HVV-vertex of the Higgs-boson production via VBF in the H ! ⌧had⌧had
decay channel. For this, simulated event samples, corresponding to the data recorded during
the full Run2 of the ATLAS experiment with an integrated luminosity of 139 fb�1 at a center
of mass energy of ps = 13 TeV are used.

Firstly, an event selection process was conducted following a three staged approach, which
involved applying the following sets of requirements: The preselection cut, which specifically
exploits kinematic differences between the signal and background processes and considers
detector limitations, the VBF cut, which allows selecting events that show kinematic and
topological features that are specific for the VBF process, and finally the NN cut which
chooses events based on the probability a neural network assigns to them for resulting from
the signal process. The additional requirements imposed through the VBF and NN cuts
allowed to enhance the signal significance by a factor of 2.43 compared to only requiring the
preselection criteria. The signal to background ratio was enhanced by a factor of 69.

Next, NLL scans were employed to estimate the sensitivity of the established CP-odd
observables OO and ��sgn

jj to CP-violating contributions in the HVV vertex, by constraining
the parameter d̃ through the construction of 1� and 2� confidence intervals. The expected
sensitivity of the OO, using the full Run2 dataset, is d̃ 2[-0.0150(5), 0.0149(5)] at 1� confidence
level and d̃ 2[-0.0301(5),0.0300(5)] at 2� confidence level. With ��sgn

jj , d̃ could be constrained
to the interval [-0.0158(5), 0.0157(5)] at 1� confidence level and to [-0.0318(5), 0.0316(5)] at
2� confidence level. The OO provides an increase in CP-sensitivity by 5% at both confidence
levels, compared to ��sgn

jj . This difference in CP-sensitivity is expected, considering that
��sgn

jj only carries the (signed) angular information of the two outgoing tagging jets, whereas
the OO contains the full information about the seven dimensional phase space.

Various machine learning based CP-odd observables have been constructed. When
introducing additional CP-odd couplings in the EFT approach, their contribution appears in
the corresponding matrix elements as a CP-odd interference term. A binary NN was employed
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to trained to learn kinematic differences between events that have a positive and negative
interference term, respectively. Its output was then used to construct a CP-odd observable
O

2Class
NN , whose distribution allowed to constrain d̃ to [-0.0163(5), 0.0163(5)] at 1� confidence

level and to [-0.0328(5), 0.0328(5)] at 2� confidence level, when considering the full Run2
dataset.

The next step was to expand this NN by an additional class, allowing the NN to also
learn features that are specific for SM events. The central confidence intervals constructed
from the resulting observable O

3Class
NN are [-0.0155(5), 0.0155(5)] at 1� confidence level and

[-0.0313(5), 0.0313(5)] at 2� confidence level, implying an increase in CP-sensitivity by 5%
compared to O

2Class
NN , when considering the full Run2 dataset.

Studies on the impact of the specific d̃ value used for calculating the weights w
d̃

that
are considered in the loss function during training showed no clear dependency between
NN performance and the considered d̃-scenario. This is true for both, the binary and the
multiclass case. However, for d̃ > 0.1, the multiclass NN outperformed the binary NN, which
is why the analysis proceeded with a multiclass NN , trained in the d̃ = 1 scenario.

Furthermore, increasing the quantity and complexity of the input features was found to
yield no further improvement in the NN performance compared to only considering low level
kinematic features of the final state constituents. Presenting topological information on the
VBF process to the NN during training, by rotating all �-components, such that �Higgs = 0,
also yields no improvement in the NN performance.

A further study, where the multiclass NN was trained while only considering the interfer-
ence information during training by removing the CP-even terms in the weights w

d̃
used in

the loss function, yields an observable (O3Class
NN )lin, that constrains d̃ to [-0.0156(5), 0.0156(5)]

at 1� confidence level and to [-0.0315(5), 0.0313(5)] at 2� confidence level, compatible with
the results obtained when using the full weights w

d̃
. This implies, that the additional CP-even

contribution, does not bias the NN.
To investigate, whether further enhancement in CP-sensitivity could be achieved, a final

multiclass NN was trained in the d̃ = 1 scenario, using the full set of input features and the
full weights w

d̃
and optimized over more trials using a search space, that that was expanded

compared to the search space used in the optimization of the previous NNs. The resulting CP-
odd observable (O3Class

NN )final allowed constraining d̃ to [-0.0152(5), 0.0152(5)] at 1� confidence
level and to [-0.0306(5), 0.0306(5)] at 2� confidence level, providing an improvement of 2%,
compared to previous results. A study on the importance of different input features on the
NN performance revealed that the high level input feature P

T

j0
P

T

j1
sin��sgn

jj plays the most
crucial role in the learning process.

A regression neural network was employed to resemble the distribution of the OO, as
predicted by the SM. Studies on the impact of the set of input features chosen in training
revealed that only the simple kinematic information contained in the three momenta of the
final state tagging jets and ⌧ -leptons are necessary to obtain an observable O

Reg
NN , whose CP-

sensitivity is compatible with the sensitivity of the OO. Including additional information and
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high level features does not yield a significant improvement. The observable O
Reg
NN , resulting

from a regression NN trained with only this simple kinematic information, constrains d̃ to
[-0.0149(5),0.0150(5)] at 1� confidence level and to [-0.0301(5),0.0301(5)] at 2� confidence
level, whereas the observable that is obtained when considering the full set of input features
defined in table 6.1 yields the compatible intervals [-0.0149(5),0.0149(5)] at 1� confidence
level and [-0.0301(5),0.0300(5)] at 2� confidence level.

Furthermore, the OO distribution was approximated through analytical expressions
obtained via the method of symbolic regression. When targeting the OO distribution pre-
dicted by the SM, the expression P

T

j0
P

T

j1
sin��sgn

jj was found, verifying the result obtained
in [19]. The distribution that results from applying this expression allows constraining d̃

to [-0.0150(5), 0.0151(5)] at 1� confidence level and to [-0.0303(5), 0.0303(5)] at 2� confi-
dence level. When targeting the OO distribution in the d̃ = 0.5 scenario, the more complex
expression P

j0
T
P

j1
T
[cos��sgn

jj + B] sin��sgn
jj was found. Applying this expression yields a

distribution that allows to constrain d̃ to [-0.0149(5), 0.0150(5)] at 1� confidence level and to
[-0.0300(5), 0.0301(5)] at 2� confidence level.

Finally, the CP-sensitivities of OO,��sgn
jj , (O3Class

NN )final,O
Reg
NN and P

T

j0
P

T

j1
sin��sgn

jj were
compared. It is worth noting that the CP-sensitivity of the OO has not been exceeded. As
previously mentioned, this is expected, since the OO contains the full information on the
seven dimensional phase space for small d̃-values. The observable ��sgn

jj was outperformed by
all other observables. The CP-sensitives of all machine learning based observables were found
to be consistent with the sensitivity of the OO at 1� confidence level,. At 2� confidence level,
(O3Class

NN )final is outperformed by the other ML observables.
To conclude, machine learning observables were found to be a promising alternative

to established observables such as ��sgn
jj and the OO for future analyses concerning the

CP-properties of the HVV-vertex in VBF. While they may not surpass the performance of
the current best observable - the OO, they offer the advantage of not relying on specialized
tools like HAWK, thus enhancing accessibility for potential applications. ML approaches
represent a powerful tool capable of learning CP-properties of the HVV vertex solely from
information about the final state constituents. O

Reg
NN and P

T

j0
P

T

j1
sin��sgn

jj can even achieve
sufficient results without the need for reconstructing the Higgs boson or calculating high-level
features for training - they rely solely on the visible ⌧ -leptons information and the kinematics
of the tagging jets.
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Appendix A

Figures

(a) d̃ = 0.01 (b) d̃ = 0.05 (c) d̃ = 0.1

(d) d̃ = 0.25 (e) d̃ = 0.5 (f) d̃ = 1

Figure A.1: Distribution of of the CP-sensitive observables O
2Class
NN constructed from the

prediction on the full dataset by binary neural networks that were trained and optimized
while assuming different d̃-scenarios, as predicted by the SM for an integrated luminosity ofR

Ldt = 139 fb�1. The VBF Higgs-boson signal is presented in red. Background processes are
grouped in processes where a Higgs boson emerges from non VBF production modes (green)
and processes where the detected ⌧ -leptons emerge from the decay of a Z-boson (blue).
The category others (yellow) contains all remaining background contributions, described in
section 2.2. Additionally, distributions predicted for two CP-violating scenarios with the
strengths d̃ = �0.1 and d̃ = 0.2 are presented. These distributions are normalized to the total
number NSM = 69 of expected SM events.
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(a) d̃ = 0.01 (b) d̃ = 0.05 (c) d̃ = 0.1

(d) d̃ = 0.25 (e) d̃ = 0.5 (f) d̃ = 1

Figure A.2: Distributions the CP-sensitive observables O3Class
NN constructed from the prediction

on the full dataset by multiclass neural networks that were trained and optimized while
assuming different d̃-scenarios, as predicted by the SM for an integrated luminosity of

R
Ldt =

139 fb�1. The VBF Higgs-boson signal is presented in red. Background processes are
grouped in processes where a Higgs boson emerges from non VBF production modes (green)
and processes where the detected ⌧ -leptons emerge from the decay of a Z-boson (blue).
The category others (yellow) contains all remaining background contributions, described in
section 2.2. Additionally, distributions predicted for two CP-violating scenarios with the
strengths d̃ = �0.1 and d̃ = 0.2 are presented. These distributions are normalized to the total
number NSM = 69 of expected SM events.
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(a) (O2Class
NN )d̃, signal only (b) (O2Class

NN )d̃, including background

(c) (O3Class
NN )d̃, signal only (d) (O3Class

NN )d̃, including background

Figure A.3: �NLL curves, obtained from the CP-sensitive observables constructed from the
prediction on the full dataset by neural networks that were trained and optimized while as-
suming different d̃-scenarios. Results are shown for both the binary NN observables (O2Class

NN )
d̃

and the multiclass NN observables (O3Class
NN )

d̃
, separately with and without considering back-

ground events.
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(a) Input:{~Pj0,1 , ~P⌧0,1} (b) Input:{~Pj0,1 , ~P⌧0,1 ,
~PHiggs}

(c) Input:{~Pj0,1 , ~P⌧0,1 ,
~PHiggs}�Higgs⌘0

Figure A.4: Distributions of the CP-sensitive observables O
3Class
NN constructed from the pre-

diction on the full dataset by multiclass neural networks that were trained and optimized
using different subsets of the initial input dataset defined in section 6.2, as predicted by
the SM for an integrated luminosity of

R
Ldt = 139 fb�1. The VBF Higgs-boson signal is

presented in red. Background processes are grouped in processes where a Higgs boson emerges
from non VBF production modes (green) and processes where the detected ⌧ -leptons emerge
from the decay of a Z-boson (blue). The category others (yellow) contains all remaining
background contributions, described in section 2.2. Additionally, distributions predicted for
two CP-violating scenarios with the strengths d̃ = �0.1 and d̃ = 0.2 are presented. These
distributions are normalized to the total number NSM = 69 of expected SM events.. ~P denote
the three momenta of the respective final state constituents that are used as NN inputs.
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Tables

Optimized hyperparameter d̃ = 0.01 d̃ = 0.05 d̃ = 0.1 d̃ = 0.25 d̃ = 0.5 d̃ = 1

Number of hidden layers 2 1 5 2 5 4

Number of nodes in hidden layer 1 100 350 25 300 150 350

Number of nodes in hidden layer 2 150 - 300 200 200 400

Number of nodes in hidden layer 3 - - 90 - 350 5

Number of nodes in hidden layer 4 - - 5 - 150 150

Number of nodes in hidden layer 5 - - 400 - 200 -

L2 regularization strength 1.6·10�3 1.2·10�5 1.6·10�4 3.7·10�5 6.1·10�4 2.9·10�3

Initial learning rate 1.0·10�3 1.6·10�5 2.0·10�4 4.6·10�5 2.8·10�5 1.8·10�3

Learning rate decay steps 7371.4 5997.6 3157.3 9940.9 7727.3 634.3

Learning rate decay rate 1.9·10�2 3.0·10�3 9.2·10�2 0.1 0.6 0.2

Batch size 128 96 64 128 64 128

Table B.1: Architecture and hyperparameters of the binary neural networks trained and opti-
mized while assuming different d̃-scenarios. These results are the outcome of hyperparameter
optimization studies performed using optimization framework OPTUNA [56].

Optimized hyperparameter d̃ = 0.01 d̃ = 0.05 d̃ = 0.1 d̃ = 0.25 d̃ = 0.5 d̃ = 1

Number of hidden layers 1 2 1 2 2 2

Number of node in hidden layer 1 200 150 100 90 25 350

Number of nodes in hidden layer 2 - 150 - 100 5 400

L2 regularization strength 1.9·10�3 2.5·10�4 6.6·10�3 1.7·10�4 1.7·10�5 1.7·10�5

Initial learning rate 5.5·10�5 1.1·10�4 1.3·10�3 9.6·10�4 1.9·10�3 8.2·10�4

Learning rate decay steps 3860.3 9584.2 7351.6 4111.6 4804.5 7849.9

Learning rate decay rate 0.2 0.1 0.6 0.7 0.7 0.3

Batch size 64 128 96 32 64 128

Table B.2: Architecture and hyperparameters of the multiclass neural networks trained and
optimized while assuming different d̃-scenarios. These results are the outcome of hyperpa-
rameter optimization studies performed using the optimization framework OPTUNA [56].
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Optimized hyperparameter {~Pj0,1 , ~P⌧0,1} {~Pj0,1 , ~P⌧0,1 ,
~PHiggs} {~Pj0,1 , ~P⌧0,1 ,

~PHiggs}�Higgs⌘0

Number of hidden layers 2 2 4

Number of nodes in hidden layer 1 400 300 150

Number of nodes in hidden layer 2 400 300 250

Number of nodes in hidden layer 3 - - 90

Number of nodes in hidden layer 4 - - 150

L2 regularization strength 2.1·10�5 1.2·10�5 7.4·10�7

Initial learning rate 3.5·10�4 1.7·10�4 9.0·10�5

Learning rate decay steps 1669.1 9096.8 10000

Learning rate decay rate 0.2 3.6·10�2 0.6

Batch size 128 32 64

Table B.3: Architecture and hyperparameters of the multiclass neural networks trained
and optimized with different subsets of input features. These results are the outcome of
hyperparameter optimization studies performed using the optimization framework OPTUNA
[56].

Optimized hyperparameter Study outcome

Number of hidden layers 3

Number of nodes in hidden layer 1 400

Number of nodes in hidden layer 2 250

Number of nodes in hidden layer 3 300

L2 regularization strength 1.0·10�5

Initial learning rate 4.6·10�3

Learning rate decay steps 5833.4

Learning rate decay rate 2.4·10�3

Batch size 96

Table B.4: Architecture and hyperparameters of the multiclass neural network that was
trained and optimized using only the term in the event weights in eq. (4.19) that is linear in
d̃. These results are the outcome of a hyperparameter optimization study performed using
the optimization framework OPTUNA [56].
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