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Abstract

This thesis presents an investigation performed in order to improve the sensitiv-
ity of the test of CP-violation in Higgs boson production via interactions of weak
gauge bosons in the vector-boson fusion (VBF) mode using four types of CP-odd
observables in the H → W+W− → eµ2ν final state. The four-momentum vector of
the Higgs boson is reconstructed using fully-connected feed-forward regression neural
networks trained on simulated samples representing the proton-proton collision data
of the full Run 2 data-taking period (2015-2018) of the ATLAS detector at the LHC
with a centre-of-mass energy of

√
s = 13TeV and corresponding to an integrated

luminosity of 139 fb−1. Improvements have been achieved by the neural-network-
based-reconstructions of the Higgs boson compared to an approximated reconstruc-
tion (Eff.H) in which the four-momentum vectors of the Higgs boson final state par-
ticles were added together. The optimal observables OO calculated using the neural
networks improved the OO resolution by 0.25% compared to the OO resolution cal-
culated with the Eff.H reconstruction. Mean values of OOs and two other CP-odd
observable, ∆Φsigned

jj and OReg are used in a gauge curve fit to estimate the sensitivity

of d̃, which parameterises the strength of the CP-violation. The best performing OO
resulted in an expected of d̃ ∈ [−5.089× 10−5, 5.089× 10−5] at a 68% confidence level

(CL), outperforming OReg and OO(Eff.H) by 3.80% and 5.71%, respectively. ∆Φsigned
jj

variable resulted in the weakest constraints with d̃ ∈ [−7.82 × 10−5, 7.82 × 10−5] at
an 68% CL.

Zusammenfassung

Diese Arbeit präsentiert eine Investigation zur Verbesserung des Tests von CP verlet-
zenden Wechselwirkungen des Higgs Bosons mit schwachen Eichbosonen im Higgs Bo-
son Produktionsmodus Vektor-Boson Fusion (VBF) mit dem H → W+W− → eµ2ν
Endzustand, bei der vier verschiedene Typen von CP-ungerade Observablen verwen-
det werden. Die Analyse benutzt “fully-connected feed-forward” Neurale Netze zur
Rekonstruktion des Viererimpulses des Higgs Bosons. Die Netzwerke werden mit
simulierten Ereignissen trainiert die, dem kompletten Run 2 (2015-2018) des AT-
LAS Detektors am LHC bei einer Schwerpunktsenergie von

√
s = 13GeV und einer

integrierten Luminosität von 139fb−1 entsprechen. Verbesserungen beim Vergleich
der durch neuronale Netzwerke rekonstruierten Viererimpules des Higgs Bosons mit
einem genäherten Higgs boson (Eff.H), welches durch das vektorielle aufaddieren der
Viererimpulse der Teilchen des Higgs Boson Endzustandes berechnet wurden, kon-
nten erzielt werden. Die Optimale Observable (OO) die durch neuronale Netzwerke
bestimmt wurde zeigte eine Verbesserung in der Auflösung um 0.25% im Vergleich zu
der OO welche mit Eff.H bestimmt wurde. Die Mittelwerte der OO werden zusam-
men mit denen von zwei weiteren CP-ungeraden Observablen ∆Φsigned

jj und OReg bei

einem Eichkurven Fit genutzt, um die Sensitivität von d̃ zu bestimmen, wobei d̃
die Stärke der CP Verletzung parametrisiert. Die beste OO, resultierte in einem
erwarteten Konfidenzintervall von d̃ ∈ [−5.089× 10−5, 5.089× 10−5] bei einem Kon-
fidenzlevel von 68%. Damit erreicht es eine Verbesserung bezüglich OReg von 3.80%
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und 5.71% bezogen auf OO(Eff.H). ∆Φsigned
jj zeigte die schwächste Beschränkung von

d̃ ∈ [−7.82× 10−5, 7.82× 10−5] bei einem Konfidenzlevel von 68%.
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Introduction

One goal of physics is to expand our understanding of what holds our world together
in its innermost parts. In particle physics, the best-prevailing model is the so-called
Standard Model (SM) of particle physics. The SM describes the fundamental parti-
cles and their interactions which can be split into two groups. Those groups are the
odd-integer spin fermions and integer-spin bosons. The latter act mostly as carriers
for the fundamental forces described by the SM [1–3].

Early versions of the SM did not account for massive bosons. However, experiments
observed non-zero particle masses. Examples of these are the W± bosons mass of
mW± = 80.4GeV and the Z0 boson with mZ0 = 91.2GeV [18]. To solve this and
include mass terms into the SM, the Brout-Englert-Higgs (BEH) mechanism [12–14]
was introduced in 1964. The mechanism introduces a scalar field which causes spon-
taneous symmetry breaking upon interaction for massive particles. This field conse-
quently introduces another massive particle as an excitation of the field called the
Higgs boson.

The Higgs Boson was discovered by the ALTAS, and CMS experiments at the Large
Hadron Collider (LHC) in 2012 [4, 5].

While the SM is a good description of observed data, there are still phenomena unex-
plained by this theory, like the observed baryon asymmetry of the universe [10], which
describes the observation that more baryonic matter than anti-baryonic matter is ob-
served. A process called baryogenesis, which produces baryonic and anti-baryonic
matter at different rates, is introduced to solve this. The process needs to fulfil
three conditions called Sakharov conditions [24]. One is the so-called CP-violation
described in the SM by the Cabibbo-Kobayashi-Maskawa (CKM) matrix. However,
the predicted amount of CP-violating processes is insufficient to explain the observa-
tions fully. Therefore it is instrumental to look for additional sources of CP-violating
processes.

One possible source of CP-violation is presented by the HVV vertex in which a Higgs
boson couples to two vector bosons. The vector boson fusion (VBF) production
mode of the Higgs boson exploiting H → ττ channel was investigated by the ATLAS,
and CSM collaborations in previous analyses [6, 26]. Both studies used a CP-odd
observable called optimal observable (OO), which showed the best sensitivity to CP-
violating processes. No significant deviation from SM predictions was measured.

This thesis focuses on VBF-produced Higgs bosons in the H → W−W+ → eµ2ν
decay channel. The simulated samples correspond to data recorded at a centre-of-
mass energy of

√
s = 13TeV with an integrated luminosity of 139fb−1 by the ATLAS

detector.
Since the OO takes the four-momentum vector of the Higgs boson and the two tag-
ging jets as inputs, these have to be reconstructed and optimised. For the analysis,
neural networks are used to reconstruct the Higgs boson four-momentum vector and
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improve the resolution of its components. The neural networks are optimised using
a bayesian hyperparameter optimisation called OPTUNA [55]. The reconstructed
Higgs boson four-momentum vectors are then used to calculate a OO distribution for
each reconstruction. The OOs and two other CP-odd observables OReg and ∆Φsigned

jj

are used to estimate the sensitivity to constrain measurements of d̃.

This thesis is structured in the following way: In chapter 1, the theoretical back-
ground is given. This includes a description of the SM followed by the properties
of the Higgs boson at the LHC and a discussion of CP-violation. In chapter 2, the
ATLAS experiment at the LHC is introduced. Chapter 3 gives an overview of the ma-
chine learning methods used to reconstruct the Higgs boson four-momentum vector.
Chapter 4 introduces the samples and explains how the events used in the analysis
are selected. Chapter 5 details the reconstruction methods exploiting NN used to
predict the four-momentum vector of the Higgs boson. It is followed by chapter 6,
which estimates expected constraints on d̃. A conclusion is given in chapter 7.
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1 Theoretical Background

This chapter gives a summary of the theoretical background used for this analysis.
The first section presents an overview of the Standard Model (SM) of particle physics.
Section 1.2 describes the properties of the Higgs boson regarding proton-proton (pp)
collisions. The last section describes CP symmetries and how CP-violating processes
can be studied.

1.1 The Standart Model of Particle Physics

The SM is based on gauge-invariant renormalizable quantum field theories (QFT).
Particles arising as excitations of quantum fields and the kinematics are described by
the Lagrangien formalism. The SM had massive success over the years in predicting
the existence of several particles, such as the top-quark [11] or the Higgs boson [4,5],
that were later discovered. Still, it leaves many observations unexplained. Some
examples are the baryon asymmetry of the universe [10], dark matter [7], dark energy
[8] and neutrino masses [9].

1.1.1 Fermions

The Standard Model contains 12 fermions as shown in Table 1. Each has an antipar-
ticle with the same mass but opposite additive quantum numbers. Fermions have
half-integer spin values and obey the Fermi-Dirac statistics. Fermions are split into
two categories: quarks and leptons.
Leptons consist of electrons (e), muons (µ) and taus leptons (τ) with a negative elec-
tromagnetic charge. Each has a corresponding neutrino (νe), (νµ) and (ντ ) which are
el.mag. neutrally charged.
Quarks have fractional el.mag. charges. There are up (u), charm (c), top (t) with
an el.mag. charge of 2

3
and down (d), strange (s) and bottom (b) with a charge of

−1
3
. Quarks also have another property called “colour” or “colour charge”. Particles

with a colour are subject to the strong force. Quarks appear only in colour-neutral
compositions called hadrons. They split into two groups. The first group mesons
are composed of a quark, anti-quark pair. The other group is called baryons and is
composed of three quarks. Two typical examples are neutrons and protons.
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Generation Fermion Q [e] Mass [MeV]

Leptons

1st
e Electron -1 ≈ 0.511

νe Electron neutrino 0 < 460× 10−6

2nd
µ Muon -1 ≈ 105.658

νµ Muon neutrino 0 < 0.19

3rd
τ τ−lepton -1 ≈ 1776.86

ντ τ−lepton neutrino 0 < 18.2

Quarks

1st
u Up 2

3 ≈ 2.16

d Down −1
3 ≈ 4.67

2nd
c Charm 2

3 ≈ 93.4

s Strange −1
3 ≈ 1.27× 103

3rd
t Top 2

3 ≈ 4.18× 103

b Bottom −1
3 ≈ 172.69× 103

Table 1: List of SM fermions with electrical charge and approximate mass with values taken
from [18].

1.1.2 Bosons

Bosons are particles with integer spin, following the Bose-Einstein statistics. Bosons
are classified by their spin values. All SM bosons except the Higgs boson have a spin
of 1 and are called gauge bosons. In Table 2, all gauge bosons are listed. Gauge bosons
are the mediators of fundamental forces and couple to different charges. Gluons (g)
are the mediators of the strong force and couple to the colour charge. Similarly,
photons (γ) couple to el.mag. charge Q and W±/Z0 bosons to the weak isospin IW
and weak hypercharge Y .
The Higgs boson is a scalar boson with a spin of 0. Its corresponding field is needed to
explain the emergence of massive particles in the SM. Further details will be described
in section 2.1.4.

Gauge boson Force Q [e] Mass [GeV]

Photon (γ) Electromagnetic 0 0

W± Weak ±1 80.377± 0.012

Z0 Weak 0 91.1876± 0.0021

Gluon (g) Strong 0 0

Table 2: List of the gauge bosons in the SM together with the fundamental interaction they
represent, their electric charge and mass with values taken from [18].
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1.1.3 Fundamental Interactions

Two theories describe the fundamental interactions in SM. The strong interaction
is described by quantum chromodynamics (QCD) with symmetry group SU(3)C . It
couples to particles carrying a colour charge. Quarks have red, green and blue colours
with anti-quarks possessing the corresponding anticolour. Gluons carry eight differ-
ent colour combinations described by the colour octet. One aspect of colour charges
is confinement, meaning particles only appear in colour-neutral bound states such as
baryons and mesons.
The second theory is the electroweak interaction as a unification of quantum electrody-
namics (QED) describing electromagnetism and the theory describing the weak inter-
action called quantum flavourdynamics (QFD). With the symmetry group SU(2)IW ×
U(1)YW

the electroweak interaction introduces the weak isospin IW and hypercharge
YW as two new charges. They are related to the el.mag. charge by the Gell-
Mann–Nishijima formula

Q = Iw3 +
Y

2
. (1)

Due to the requirement of local gauge invariance, all gauge bosons have to be massless.
Experiments show this is not true since W± and Z0 Bosons have a mass as given in
Table 2. The mass terms of the gauge bosons W± and Z0 emerge by spontaneous
symmetry breaking of the SU(2)IW × U(1)YW

symmetry to U(1)Q [2] and the Higgs
Mechanism.

1.1.4 Brout-Englert-Higgs-Mechanism

The Brout-Englert-Higgs-Mechanism (BEH) or short Higgs-Mechanism, was proposed
by F. Englert, R . Brout, P. W. Higgs, G. Guralnik, C. R. Hagen and T. W. B.
Kibble [12–14] in 1964. To include mass terms for gauge bosons into the SM, one
introduces a complex scalar field ϕ with hypercharge Y = 1 and weak isospin IW = 1

2
.

ϕ+ corresponds to an el.mag. positive charged and ϕ0 el.mag. neutral charged field.

ϕ =

(
ϕ+

ϕ0

)
=

1

2

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
(2)

The corresponding Lagrangian density of the field can be written as [14]:

LHiggs = (Dµϕ)
†(Dµϕ)− µ2ϕ†ϕ+ λ(ϕ†ϕ)2 (3)

with the covariant derivatives Dµ. The last two terms describe the Higgs potential:

V (ϕ) = −µ2ϕ†ϕ+ λ(ϕ†ϕ)2 with λ > 0 (4)

here µ is the mass parameter while λ describes the selfcoupling of the Higgs field. By
choosing µ2 < 0, one gets the minimum of the potential with ϕ0 = 0. For µ2 > 0, the
ground state of V (ϕ) is degenerate. The ground state can be written as:

ϕ0 =

√
µ2

2λ
=
v2

2
with v =

√
µ2

λ
(5)
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Re(ϕ) Im(ϕ)

V (ϕ)

Figure 1: Shape of the Higgs potential V (ϕ) with µ2 < 0. The blue ball rolling down
symbolizes breaking symmetry upon choosing a ground state.

where v ≈ 246GeV [18] is the vacuum expectation value (vev) of the Higgs field.
The potential with two degrees of freedom is shown in Figure 1.
Choosing one particular ground state with ϕ1 = ϕ2 = ϕ4 = 0 leads to

ϕ =
1√
2

(
0
v

)
(6)

where the symmetry of the potential is lost. This breaking of the SU(2)IW × U(1)Y
symmetry preserves the U(1)Q symmetry and therefore fulfils the requirement of a
massless photon.
The field

ϕ(x) =
1√
2

(
0

v +H(x)

)
(7)

is acquired by parameterization around the vev and imposing unitary gauge to elim-
inate the resulting massless Goldstone bosons [16, 17]. H(x) is a fluctuation around
the ground state, which results in the scalar boson called Higgs boson.
The mass terms resulting from the breaking of symmetry are:

mW± =
vg

2
, (8)

mz0 =
mW±

cos(θw)
, (9)

mH =
√
2λv2. (10)

Here g (g′) is the coupling constant of the weak isospin (hypercharge). The angle

θw = arctan
(

g′

g

)
is the weak mixing angle angle [15]. The mass mH cannot be

derived directly from Equation 53 and has to be determined experimentally.
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1.2 The Higgs Boson

The Higgs boson, which the Higgs mechanism predicted, is an electrically neutral
particle with a spin of 0. It was discovered in 2012 at CERN1 by the ATLAS
and CMS experiments using the data from pp-collisions provided by the LHC at
the centre-of-mass energies of 7TeV and 8TeV [4, 5]. The mass is measured as
mH = 125.25± 0.17GeV [18]. This section assumes pp-collisions with a Higgs boson
mass of mH = 125GeV and a centre-of-mass energy of

√
s = 13TeV.

Production

The four dominant production modes of Higgs bosons in pp-collision are: gluon-
gluon fusion (ggF), vector-boson fusion (VBF), associated production with a pair of
top quarks (ttH) and Higgs-Strahlung (VH). One example of leading-order Feynman
diagrams for each of these processes is shown in Figure 2.

g

g

t

t

t

H

c) ggF

q1

q2

q3

q4

H

a) VBF

W/Z

W/Z

g

g

t

t

H

b) ttH

q1

q2

W/Z

H

W/Z

d) VH

Figure 2: Leading-order Feynman diagrams of the main Higgs boson production modes at
the LHC with

√
s = 13TeV: a)VBF vector-boson fusion, b)ttH associated production with

a top-anti-top quark pair, c)ggF gluon-gluon fusion, d)VH Higgs-Strahlung.

The left side of Figure 3 shows cross-sections for different Higgs boson production
modes. The production cross-section of the Higgs boson is highest for ggF. In this
process, the Higgs boson couples to the gluons via a loop of heavy quarks. It has a
production cross-section of 48.58 pb [19]. The second highest production cross-section
is that of the VBF production mode, which this thesis focuses on, with 3.8 pb [19].
In this process, the Higgs boson is produced by the fusion of two W or Z bosons.
VBF production is followed by VH and ttH processes with cross-sections of 2.3 pb
and 0.51 pb respectively [19]. In the HV process, a W or Z boson is created from the
annihilation of a quark anti-quark pair, which then radiates a Higgs boson. In the
ttH process, the Higgs boson is created in association with a pair of top quarks.

1Conseil européen pour la recherche nucléaire
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Figure 3: Left: Cross-section of Higgs boson production processes in proton-proton collisions
at a centre-of-mass energy of

√
s = 13TeV as a function of the Higgs boson mass; Right:

Branching ratios for different Higgs boson decay modes as a function of its mass [19].

Decay

The Higgs boson can decay leptonically or hadronically. The branching ratio (BR) is
defined as the ratio of the partial decay width to the total decay width. The branch-
ing ratio of the most common decay processes as a function of the Higgs boson mass
is shown on the right side of Figure 3. A Higgs boson decaying into two bottom
quarks has the highest BR of 58.24 ± 0.65% [19]. The Higgs boson decay into two
W bosons has the second highest BR of 21.37 ± 0.99% [19]. This is followed by the
decay into two gluons (H → gg) and two tau leptons (H → ττ) with 8.19+3.40%

−3.41% [19]

and 6.27+1.17%
−1.16% [19], respectively. This thesis exploits the decay into two W bosons

which can decay leptonically or hadronically. The decay into an electron has a BR
of 10.71 ± 0.16% [18] while the decay into a muon and a tau lepton has a BR of
10.63 ± 0.15% and 11.38 ± 0.21% [18], respectively. The hadronic decay of the W
boson has a total BR of 67.41± 0.27% [18].

Signal Process

The signal process of this analysis is the VBF process. Two partons radiate heavy
bosons which interact and produce a Higgs boson. This boson decays into a positive
and a negatively charged W boson. Due two the high mass of the W bosons, at
least one has to be off shell. Both W bosons decay fully leptonically, exactly one into
an (e, νe) pair and the other into a (µ, νµ) pair. The final state partons are slightly
deflected by the radiation. They are then detected as jets in different hemispheres of
the detector. The leading-order Feynman diagram is shown in Figure 4.
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q1

q2

q3

q4

e

µ

νe

νµ

W/Z

W/Z

H

W

W

Figure 4: A leading-order Feynman diagram of the signal process for this analysis.

This process has a total BR of 0.506%. For the cross-section of 3.8 pd in the VBF
process, one can expect 2661 signal process events at an integrated Luminosity of
139fb−1.

1.3 CP Violation

CP-violating processes are processes in which CP symmetry is not preserved. While
the SM predicts CP-violating processes, their amount is insufficient to explain the
baryon asymmetry, which describes the observed abundance of baryonic matter over
the anti-baryonic matter in the observable universe [10, 24]. In 1967 Sakharov pro-
posed three conditions [24] for baryon-generating interactions to produce matter and
antimatter at different rates. These Sakharov conditions are: violation of baryon
number conversation, interactions out of thermal equilibrium and C and P viola-
tion. The insufficiency of the anti-baryonic matter is the motivation to look for new
CP-violating processes beyond the SM. One such interaction of interest is the HVV
vertex, in which the Higgs boson couples to two weak gauge bosons. To understand
CP-violation, section 1.3.1 describes the C and P symmetries and how CP-violating
processes are included in the SM. Section 1.3.2 and 1.3.3 derives the optimal observ-
able and how CP-odd observables can be used to explore CP-violation.

1.3.1 CP Symmetry

Symmetry is a property of a system to remain unchanged under certain transforma-
tions. Symmetries play an important role in physics since they are associated with
conservation laws as described by Noether’s theorem [20].
The CP symmetry combines two distinct and discrete symmetries called charge con-
jugation and parity symmetry.

The parity transformation is a transformation that changes the sign of spatial co-
ordinates. The parity operator P is a hermitian operator with eigenvalues ±1. Its
eigenfunctions are called even-parity for an eigenvalue of 1. Otherwise, they are odd-
parity.

The charge conjugation symmetry describes the interchanging of a particle by its
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antiparticle. That means reversing the additive quantum numbers of a particle but
leaving its mass, spin, momentum and energy unchanged. The charge conjugation
operator C has eigenvalues of ±1. As such, using it two times on a particle leaves
the particle unchanged. Only particles that are neutral in their additive quantum
numbers are their own antiparticles, such as the photon, the neutral pion π0 or the
Higgs boson.

Parity and charge conjugation are both conserved in all QCD and QED vertices.
In the weak interaction, this is not the case. The Wu-experiment showed in 1956 [21]
that the conservation of parity is violated for the case of β−decays of cobalt. J. H.
Christenson, J. W. Cronin, V. L. Fitch and R. Turlay discovered CP-violation in 1964
for the decay of neutral kaons [22]. In the SM CP-violation can be described by a
single phase in the Cabibbo-Kobayashi-Maskawa-Matrix (CKM-Matrix) [23].

1.3.2 Effective Field Theories

EFTs give a way to describe CP-violating HVV interactions. For this, the SM La-
grangian is augmented by CP-odd operators OB̃B, OW̃W and OB̃ of mass dimension
six to create an effective Lagrangian defined as:

Leff = LSM +
fB̃B

Λ2
OB̃B +

fW̃W

Λ2
OW̃W +

fB̃
Λ2

OB̃ (11)

The coefficients fB̃B, fW̃W and fB̃ are dimensionless Wilson coefficient and Λ is
the energy scale of new physics [25]. The CP-odd operators are constructed from
the Higgs doublet Φ and the electroweak gauge fields Bµ and W a,µ and are given
as [25–27]:

OB̃B = Φ† ˆ̃BµνB̂
µνΦ (12)

OW̃W = Φ† ˆ̃WµνŴ
µνΦ (13)

OB̃ = (DµΦ)
† ˆ̃BµνDνΦ (14)

The last operator OB̃ contributes to triple gauge boson interactions. This CP-
violating coupling is constrained by the LEP experiments [28–30] and thus will not be
considered. The effective Lagrangian density in the mass eigenstate bases of the Higgs
boson, photon (A), W± and Z0 bosons after the electroweak symmetry breaking can
then be expressed as Ref. [26,27]:

Leff = LSM + g̃HAAHÃµνA
µν + g̃HAZHÃµνZ

µν + g̃HZZHZ̃µνZ
µν + g̃HWWHW̃

+
µνW

−µν

(15)
The coupling parameter multiplying the CP-odd operators is given by the coefficients
g̃HV V with V ∈ {H,A,W±, Z}. The coupling strengths g̃HV V can be expressed in

terms of two dimensionless couplings d̃ and d̃B

d̃ = −m
2
W

Λ2
fW̃W (16)

and

d̃B = −m
2
W

Λ2
tan2(θw)fB̃B. (17)
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The contributions from Hγγ, HγZ, HZZ and HWW to the VBF process cannot be
experimentally distinguished. This allows for the arbitrary choice of d̃ = d̃B [26, 27].
After that, the g̃HV V coefficients become:

g̃HAA = g̃HZZ =
1

2
g̃HWW =

g

2mW

d̃, (18)

g̃HAZ = 0. (19)

With this, the d̃ parameter alone quantities the amount of CP-odd contributions to
HVV couplings. This results in the matrix element M

M = MSM + d̃ · MCP-odd. (20)

The SM part is CP-even and the CP-odd part is linear in d̃. The squared matrix
element is then given by

|M|2 = |MSM |2︸ ︷︷ ︸
CP-even

+2d̃ · ℜ(M∗
SMMCP-odd)︸ ︷︷ ︸

CP-odd

+ d̃2 · |MCP-odd|︸ ︷︷ ︸
CP-even

. (21)

The first and last terms in Equation 21 are both CP-even and thus cannot be a source
of CP-violation. The interference term is CP-odd, which constitutes a possible source
of CP-violation. With the quadratic dependence of the third term, changes in event
yields can originate from CP-even operators. As such, increased event yields are not
a reliable way to test CP-symmetry. Instead, one has to exploit differences in the
shape of suitable distributions to search for CP-violation.

1.3.3 CP-odd Observables

A CP-odd observableOCP-odd is one which changes its sign under a CP transformation.

CPOCP-odd = −OCP-odd. (22)

For a CP-symmetric theory, the expectation value of a CP-odd observable vanishes.
As such, it can be used to test for CP symmetry since every deviation from a vanish-
ing expectation value indicates a violation of CP invariance.

The Optimal Observable

The Optimal Observable (OO) [31–33] is defined as the ratio of the interference
and pure SM terms of Equation 21:

OO =
2ℜ(M∗

SMMCP-odd)

|MSM|2
. (23)

The Optimal observable uses the complete phase-space information of the VBF Higgs
boson production mode, which consists of the Higgs boson and two quarks and con-
denses this multidimensional phase-space into a one-dimensional variable. It provides
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the best sensitivity of CP-violation for small deviations from the SM [82]. The mean
of the OO can be calculated by integrating over the cross-section

⟨OO⟩ =
∫
(OOdσSM +OOd̃ dσCP-odd +OOd̃2 dσCP-even)∫

(dσSM + d̃ dσCP-odd + d̃2 dσCP-even)
. (24)

The expectation value for CP-odd observable for CP-even cross-section terms and the
integral over the CP-odd cross-section both vanish. As such, Equation 24 reduces to

⟨OO⟩ =
d̃
∫
OO dσCP-odd∫

(dσSM + d̃2 dσCP-even)
. (25)

Equation 25 shows a linear dependence of the expectation value on d̃ for small values
of d̃. For larger values of d̃, the term quadratic in d̃ dominates and the expectation
value is scaled by 1/d̃. Figure 5 shows the OO distribution for different d̃ values.

While the distribution is symmetric for d̃ = 0, it becomes asymmetric for d̃ ̸= 0.
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Figure 5: Distribution of OO for signal region events defined in chapter 4. It shows the
optimal observable for three different d̃ values. In black, the SM case while the cases d̃ = 0.2
and d̃ = −0.8 are drawn in red and blue, respectively. The distributions are normalized to
139 fb−1. Overflow and underflow bins are included.

Other CP-odd variables

Two other CP-odd variables considered to test for CP-violation are ∆Φsigned
jj [25] and

OReg [34]. The variable ∆Φsigned
jj describes the signed difference between the azimuthal

angles Φ of the VBF vertex tagging jets. It is defined as

∆Φsigned
jj = ϕj1 − ϕj2 , (26)
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with the jets being sorted by their pseudorapidity such that ηj1 > ηj2 .
OReg is constructed using neural networks with the symbolic regression [34] method
to derive a formula directly from matrix-element information. For VBF production,
this formula is given by:

OReg = pj1T p
j2
T sin(∆Φsigned

jj ) (27)

Here pj1T (pj2T ) is the transverse momentum of the leading (subleading) jet of the VBF

final state. Distribution for different values of d̃ for OReg and ∆Φsigned
jj are shown in

Figures 7 and 6 respectively. Both show a symmetric distribution for the SM case of
d̃ = 0 and become asymmetric for d̃ ̸= 0.
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Figure 6: Distribution of ∆Φsigned
jj for signal region events defined in chapter 4. It shows

∆Φsigned
jj for three different values of d̃. In black the SM case while the cases d̃ = 0.2 and

d̃ = −0.8 are drawn in red and blue, respectively. The distributions are normalized to
139 fb−1. Overflow and underflow bins are included.
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Figure 7: Distribution of OReg for signal region events defined in chapter 4. It shows OReg

for three different values of d̃. In black the SM case while the cases d̃ = 0.2 and d̃ = −0.8 are
drawn in red and blue, respectively. The distributions are normalized to 139 fb−1. Overflow
and underflow bins are included.
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2 The ATLAS Experiment

The ATLAS detector is one of the four large experiments at the Large Hadron Collider
(LHC) at CERN2 in Geneva. This chapter gives a brief overview of the LHC and, in
more detail, describes the ATLAS Detector and its components.

2.1 The Large Hadron Collider

The LHC is a circular particle accelerator focusing on pp-collisions. It is located at
CERN, close to Geneva. The particles are accelerated in a 26.7 km long ring travelling
along two beam pipes in opposite directions, kept at ultra-high vacuum. The particles
are split into packets, so-called “bunches” and are brought to collision at four different
points called interaction points, where the main experiments are located.
Two ways to express the performance of the LHC are the centre-of-mass energy (

√
s)

and instantaneous luminosity (L) defined as [35]

L =
fN1N2Nb

4πσxσy
S. (28)

Here, N1 and N2 are the numbers of particles per bunch, while Nb is the number of
bunches. The revolution frequency in which the protons circulate in the accelerator
is f . The parameters σx and σy give the transverse beam width and S is the so-
called luminosity reduction factor to account for the crossing angles of the beams at
the interaction point. Integrating the instantaneous luminosity over a period of time
∆t = t1 − t2 gives the integrated luminosity, defined as

Lint =

∫ t2

t1

Ldt. (29)

This is a useful quantity since it quantifies the amount of recorded data. The design
of the LHC allows for pp-collisions at a centre-of-mass energy of

√
s = 14TeV and an

instantaneous luminosity of L = 1034 cm−2 s−1. During the data-taking period Run 2
(2015-2018), it operated at

√
s = 13TeV and had, in the end, a peak instantaneous

luminosity of 19 × 1033 cm−2 s−1 [36]. The accumulated data of Run 2 is listed in
Table 3 with the years 2015 and 2016 combined.

Year Lint (fb
−1)

2015+2016 36.2± 0.8
2017 44.3± 1.0
2018 58.5± 1.2
Total 139.0± 2.4

Table 3: Integrated luminosity Lint for the different years of Run 2 at the LHC [37].

2Conseil européen pour la recherche nucléaire
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2.2 ATLAS Detector

The ATLAS (AToroidal LHCApparatuS) [38] detector is a general-purpose detector
which is used to explore a wide range of particle physics phenomena. It is cylindrically
shaped with the central axis parallel to the beam pipe. The detector has a length of
44m and a height of 25m. Detector components are placed in two ways. One as barrel
cylindrically around the beam pipe while the so-called end-caps are placed at the end
of the barrel-shaped detectors. Figure 8 shows the main components of the ATLAS
detector. The detector is forward-backwards symmetric around the interaction point
and weighs approximately 7000 tonnes.

Figure 8: Computer generated image of the ATLAS detector with its main components
highlighted [38].

2.2.1 The Coordinate System

The coordinate system describing the detector is right-handed, originating at the
interaction point. The z-axis lies along the beam direction, with the positive z-
axis pointing counterclockwise. The x-y plane lies transverse to the beam axis. The
positive x-axis points to the LHC ring’s centre, and the y-axis upwards. Alternatively,
using the cylindrical coordinates, the polar angle θ is measured from the beam axis,
and the azimuthal angle ϕ is measured around the beam axis. Figure 9 shows the
described coordinate system.
The polar angle is often given in the form of the pseudorapidity η [38] defined as:

η = − ln

[
tan

(
θ

2

)]
. (30)

The transverse energy ET and momentum pT of the particles as projections in the
x-y plane:

ET =
√
E2

x + E2
y , (31)
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pT =
√
p2x + p2y. (32)

To measure the distance in the η − ϕ plane one defines:

∆R =
√

∆η2 +∆ϕ2, (33)

with ∆η and ∆ϕ being the difference in pseudorapidity and azimuthal angle, respec-
tively.

X (LHC Center)

Z

Y

ATLAS Detector 
Coordinate System

Point of 
Interaction

Beam 
Line

Figure 9: Coordinate system of the ATLAS detector with the interaction point as the centre.

2.2.2 Inner Detector

The inner detector (ID) is the innermost layer detecting particle collisions. It has a
length of 6.2m and radius of 1.1m immersed in a magnetic field of 2T created by
the solenoidal magnets. It provides particle trajectory and vertex information for
charged particles. Due to the high track density, the granularity of the detectors in
this region has to be very fine to achieve a high momentum and spatial resolution.
The ID consists of silicon pixel detectors [41] with an Insertable B-layer (IBL) [40],
Semiconductor Trackers (SCT) [38] and Transition Radiation Trackers (TRT) [39].
This design is illustrated in Figure 10. The innermost layer is the IBL at a 33mm
radius. Around it is the pixel detector with three barrels and three end-caps on each
side. It is followed by the SCTs covering a range of |η| < 2.5. It comprises four layers
of silicon strip detectors in the barrel region and nine layers in the end-caps. The
TRT is the outermost part of the ID. It is a straw-tube tracker that also improves
particle identification, e.g. distinguishing between electrons, charged pions and other
charged particles. The ID has a design resolution for σpT of:

σpT
pT

= 0.05%pT ⊕ 1%3. (34)

3The ⊕-notation is defined as a⊕ b =
√
a2 + b2.
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Figure 10: Computer generated image of the ATLAS inner detector with its various com-
ponents highlighted [41].

2.2.3 Calorimeters

Around the inner detector, the calorimeter system is built. It consists of two main
sub-systems. The inner part is the electromagnetic calorimeter (ECal) with the barrel
region covering |η| < 1.475 and end-caps with a range of 1.375 < |η| < 3.2. It gives
information about the direction and energy of electrons and photons. The ECal has a
layered structure alternating between an active part created from liquid argon (LAr)
and an absorber made from lead. The design energy resolution is given as

σET

E
= 10%/

√
E ⊕ 0.7%. (35)

Particles leaving the ECal move into the hadronic calorimeter (HCal) located outside
of the ECal, as shown in Figure 11. They measure the energy deposited by hadrons
and jets. The barrel regions are instrumented with scintillating tiles instead of liquid
argon as active material and use steel as the absorber. It has central and extended
parts covering regions of |η| < 1.0 and 0.8 < |η| < 1.7, respectively. The end-caps
use LAr like the ECal, but the absorber material is copper instead of lead covering
1.5 < |η| < 3.2 region. The design energy resolution of the tile calorimeter and the
end-caps are given by

σET

E
= 50%/

√
E ⊕ 3%. (36)

For more forward η region 3.1 < |η| < 4.9, the forward calorimeter (FCal) is used.
It uses LAr as its active part, while the absorber is made out of copper for the inner
layer, followed by two tungsten-based layers and has a design energy resolution of

σET

E
= 100%/

√
E ⊕ 10%. (37)
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Figure 11: Computer generated image of the ATLAS calorimeter with its components
highlighted [42].

2.2.4 Muon System

The outermost part of the ATLAS detector is occupied by theMuon System (MS). It is
used for precision tracking and momentum measurement of muons. The measurement
is achieved through a combination of toroidal magnetic fields that curve the particle
tracks and high-precision muon chambers that detect them. There are four types
of muon chambers. For momentum resolution, Monitored Drift Tubes (MDT) and
Cathode-Strip Chambers (CSC) are used. MDTs cover a range of |η| < 2.7, where
the CSCs are used in the end-cap regions of 2.0 < |η| < 2.7. Fast trigger chambers
complement these. In the central region at |η| < 1.05 Resitive Plate Chambers (RPCs)
are used and the end-caps 1.05 < |η| < 2.4 use Thin Gap Chambers (TGC). Figure 12
shows the described MS, an essential part of the trigger system. The design resolution
for muons with pT = 1TeV is:

σpT
pT

= 0.05%pT . (38)

2.2.5 Trigger System

The LHC has a collision rate of 40MHz but only a fraction of this can be stored. A
two-level trigger system reduces the incoming events by selecting those of interest.
The first trigger is called level-1 trigger and is a hardware-based trigger. It selects
muons, electrons, photons, jets, hadronically decaying τ leptons with high transverse
momentum and events with a high total energy deposit or high missing transverse
energies. Within 2.5µs for each decision, it reduces the event rate to 75 kHz [43]. It
also defines regions-of-interest (RoI) in the ϕ-η plane. Events selected by the level-
1 trigger are then sent to the High-Level Trigger [44]. This software-based trigger
comprises a level-2 trigger combined with an event filter. It reduces the data rate to
around 1 kHz with an average decision time of 200ms.
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Figure 12: Computer generated image of the ATLAS MS with various components high-
lighted [45].
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3 Neural Networks

The ability of systems to acquire knowledge by extracting patterns from raw data is
known as machine learning [46]. Neural Networks (NN) are part of machine learning
and give a robust framework for supervised learning. Supervised learning is a strategy
using labelled data, where one tries to find a function mapping data to the correct
label [47]. Typical examples of supervised learning are classification and regression
problems. This thesis focuses on fully-connected feed-forward regression networks.
As such, they will be the focus of this chapter. They are implemented in Python
using the open source library Keras [52], which is based on Tensorflow [53]. The first
section 3.1 will give an idea of the general design used to create NNs. The sections 3.2
and 3.3 describe how a network is trained. Section 3.4 describes the Early Stopping
Algorithm, and section 3.5 gives an overview of a method to optimise hyperparameters.

3.1 General Design

The goal of a feed-forward network is to approximate a function y = f ′(x⃗), which
maps some input x⃗ to a target y. By defining a function f(x⃗,θ) and learning the
optimal values for θ the network approximates the real function f ′(x⃗) [46]. The
universal approximation theorem states, that a NN can approximate any function
arbitrarily closely, given the correct values θ, but it gives no information about which
values are optimal [48]. An NN comprises nodes (neurons) ordered in different layers
as basic elements. Each node i contains a weight vector w⃗i and a bias bi to be
optimised. All J layers of a network together, build the composite function f(x⃗) =
(f (J) ◦f (J−1) ◦ ...f (1))(x⃗), where the first layer represented by f (1) is called input layer.
It is followed by the hidden layers while the final layer is called output layer. In a
feed-forward network, each node of layer (j − 1) is connected to every node in layer
j, and no feedback loop is created. This structure can be seen in Figure 13.

Figure 13: Basic feed-forward neural network design with nodes divided into different layers
and the output of one layer feeding into the next [47].

This structure means a node gets a vector x⃗ = (x1, x2, ..., xd), which contains the
outputs of all nodes in the previous layer. The number of input features d defines the
number of nodes in the input layer features, while the output layer is defined by the
number of features the network is trained to predict. To calculate the scalar output
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ai of a node, one uses:
ai = σi(w⃗i · x⃗+ bi) (39)

where σi is a non-linear activation function, the most common is ReLU (rectified
linear unit) [49]:

σReLU(x) = max(0, x) (40)

Regression networks usually use the identity as the output layer since one is interested
in the numerical values.

3.2 Trainings Process

The dataset used to train the NN is split into one for training and one for testing. The
training dataset is used to train and, as such, find the optimal network parameters.
On the other hand, the testing dataset is used to test the network’s performance on
unseen data, giving information about how well the network model generalises.

To find the function f(x⃗, θ), which best approximates f ′(x⃗), the network has to opti-
mise the weights and biases in each node. For this, one has to define a loss function
which describes the differences between true target y and the predicted value of the
target ŷ. A typical loss function for regression networks is Mean Square Error :

L(w⃗) =
1

n

n∑
i

(yi − ŷi(w⃗))
2 (41)

with n the number of data points. The goal now is to minimise the loss function. A
gradient descent [50] based method is chosen to find the optimal values for weights
and bias. For NNs, a technique called backpropagation [51] is used, which leverages
their structure to efficiently calculate the gradients ∂L

∂b
and ∂L

∂w
. The first one defines

the output of the ith neuron in the jth layer as:

aji = σ

(∑
k

wj
ika

j−1
k + bji

)
︸ ︷︷ ︸

:=zji

(42)

Due to the network’s structure, this equation depends on the bias and weights of the
neuron as well as the output of neurons in the layer (j− 1). For the backpropagation
algorithm, one starts by calculating aji and zji for every neuron going through the
network layer by layer, starting with the input layer. At the output layer, one uses:

∆j
i =

∂L

∂zji
=
∂L

∂aji
σ′(zji ) (43)

to calculate the error ∆j
i for each node. In Equation 43 σ′(zji ) denotes the derivative

of the non-linear function. The following equation:

∆j
i =

∂L

∂zji
=

(∑
k

∆j+1
k wj+1

ki

)
σ′(zji ) (44)

29



is what gives the algorithm its name. Knowing the error ∆j
i of the output layer, we

can backpropagate it again layer by layer using Equation 44 to get the error ∆j
i for

every other node. Finally, with the information of the errors, ∆j
i one defines

∂L

∂bji
=
∂L

∂bji

∂bji
∂zji

=
∂L

∂zji
= ∆j

i (45)

and
∂L

∂wj
ik

=
∂L

∂zji

∂zji
∂wj

ik

= ∆j
ia

j−1
k (46)

to calculate the gradients for the bias and weights. This algorithm requires only a
forward and backward pass to calculate all derivatives [47].

3.3 Gradient Decent

To train a NN, one has to combine the backpropagation algorithm with a gradient
descent method to calculate derivatives. The most basic version of this is batch
gradient descent [50]:

w⃗ = w⃗ − η ×∇w⃗L(w⃗) (47)

Here the parameter w⃗ will be updated in the opposite direction of the loss function’s
gradient. This process is done multiple times. The number of these updates is called
epochs. The factor η in Equation 47 is the learning rate, modifying how much the w⃗
changes in each epoch. There are many other ways to implement a gradient descent
method. In this thesis, the Adam-Optimizer is used [54].

3.4 Early Stopping Algorithm

The number of epochs has a significant influence on the network performance. Train-
ing a NN with too few epochs will result in not learning enough patterns from the
data called underfitting. On the other hand, using too many epochs can result in
overfitting. Overfitting describes the effect of a network becoming better at finding
patterns on the training dataset but performing worse regarding the testing dataset.
The Early Stopping Algorithm can be used to choose the number of epochs. This
algorithm stops the training process when the performance on the dataset used for
testing gets worse. The parameter patience decides how many epochs without any
improvements are accepted before the training process is stopped.

3.5 OPTUNA

One problem with training a NN is that many parameters are not changed during the
training process but can affect performance. These parameters are called hyperpa-
rameters. The hyperparameters optimised in this analysis are the learning rate, the
batch size, the number of layers and nodes in each hidden layer. Other hyperparam-
eters not optimised here are the number of epochs, activation functions and gradient
decent method. Finding a good set of hyperparameters that gives a well-performing
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network for a specific task can be difficult.
The python package OPTUNA [55] gives a framework to automate the search for
optimal hyperparameters. For this, OPTUNA uses a bayesian optimisation which
assumes the existence of a mapping between the input hyperparameters and the loss
function called the objective function. The goal is to find the minimum of this func-
tion. While one does not know this function, it can be probed by training NNs with
a set of hyperparameters and sampling points of the objective function. A probabilis-
tic surrogate function which includes uncertainties, is derived based on the sampled
hyperparameter configurations. A third function, the acquisition function, is created
with it. It decides where to sample next to have the highest probability of improving.
Finding an optimal value of the acquisition function is an optimisation problem, but
evaluating the surrogate function is much faster than training a NN model [56]. This
sampling process is done multiple times, and the set of hyperparameters which gave
the lowest objective function value is chosen.
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4 Simulated Event Samples and Event Selection

This chapter introduces the simulated event samples used in this analysis (section 4.1)
and how the generated events are weighted in order to represent best the collected
data (section 4.2). Section 4.3 describes the reconstruction of physical objects and 4.4
defines the region containing the events used in the analysis called the signal region.

4.1 Dataset

The dataset consists of samples corresponding to the full Run 2 data measured at the
ATLAS detector between 2015 and 2018 corresponding to an integrated Luminosity
of 139 fb−1 at

√
s = 13TeV. The samples are created via Monte Carlo (MC) simula-

tions using the POWHEG v2 [68–71] generator. The protons are modelled with par-
ton distribution function (PDF) while the Underlying Event Parton Shower (UEPS)
model of the Pythia 8 [72] generator is used to model the parton shower and hadro-
nisation process. The samples are created from the VBF H → W−W+ → eνeµνµ
signal process for which the Feynman diagram is shown in Figure 4. The analysis
does not consider any background processes. The samples include the true four-
momentum vectors of the Higgs boson and outgoing partons of the VBF production
mode and will be referred to as truth-level information. They are used as target to
train NNs. The four-momentum vectors of the two jets with the highest transverse
momentum pT called leading jets and the muon and the electron are also given at
the reconstruction-level. Reconstruction-level means the reconstructed information
after the detector simulation. The neutrinos cannot be reconstructed since they leave
the detector undetected. However, some information can be accessed by assuming
that the transverse momenta of incoming partons are zero. Since the two neutrinos
are undetected, adding the transverse momenta of all detected particles leads to a
non-zero value. The negative of this value represents the missing transverse energy
Emiss

T

4.2 Event Weights

The MC-generated samples are created in larger numbers than the measured data.
For this reason, the Monte Carlo events have to be rescaled to the number of expected
events NL

Exp in L = 139fb−1. The number of simulated events Nsim is weighted to
calculate the number of expected events

NL
Exp =

Nsim

Nall

· L · xsec ·K · ϵfilter (48)

Here, L, the luminosity of the data. xsec is the cross-section of the signal process is
0.0437%. The filter efficiency ϵfilter is 100% and the K is the so-called K-factor which
encapsulates next to leading-order information is 1. The number of simulated events
and the integrated luminosity depends on the different campaigns of Run two, shown
in Table 4.
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Campaign Nall L [fb−1]

mc16a 71473517.2 36.207

mc16d 9327222.6 44.307

mc16e 9366519.6 58.450

Table 4: List of parameters used to calculate weights which scale the MC events to an
integrated luminosity of 139 fb−1.

4.3 Object Selection

From the raw data recorded by the ATLAS experiment, physics objects like electrons,
muons and jets are reconstructed and identified using specific algorithms.
Electrons are reconstructed by matching the inner detector tracks with the energy
deposits in the ECal [73].Electron are required to fulfill pT > 15GeV and |η| < 2.47.
Events where electrons are reconstructed in the transition region of 1.37 < |η| < 1.52
are excluded. Furthermore, electrons are required to fulfil the criteria for FCLoose [57]
working point that uses a combination of calorimeter- and track-based isolation
variables. The particle identification is done using a likelihood-based identification
method [57] with electrons having to pass the Medium identification working point
defined by it.
The muon reconstruction is done by matching muon tracks in the ID to the sig-
nals from the MS [74]. Muons with |η| < 2.5 and pT > 10GeV are selected. For
identification and isolation, they are required to satisfy the Loose [58], and FCTight-
TrackOnly [64] working points, respectively.
Jet objects are created with a particle-flow algorithm [60]. The anti-kt algorithm [59]
is then applied to reconstruct jets with a radius parameter of R = 0.4. In addition,
the Jet Vertex Tagger (JVT) [61] and Forward Jet Vertex Tagger (fJVT) [62] tools
are employed. JVT removes pile-up jets with pT < 60GeV and |η| < 2.5 while fJVT
does the same for jets in the forward region of |η| > 2.5. Jets with pT > 20GeV,
|η| < 4.5 and passing the LooseBad [65] quality criterion are used. Since hadrons
stemming from the hadronisation bottom quarks have a relatively long lifetime, jets
originating from them can be traced back to a secondary vertex relative to the pp-
collision interaction point. Using the DL1r b-tagging algorithm [63], these jets are
identified. This analysis uses a fixed 85% efficiency working point to veto b-tagged
jets.

4.4 Event Selection

The event selection requirements define the signal region. It is split into two parts:
The more general Preselection tightens some object definitions and suppresses the
background processes. The VBF Topology criteria select events closely resembling
the signal process. The signal region selection is based on the previous publications
investigating Higgs boson productions via VBF in the H → WW [66] and H → ττ
[67] decay modes. In Table 5, all applied criteria are listed.
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Region Requirements

Preselection 1 electron (e) & 1 muon (µ) with opposite charge

pT(e) > 15 to 27GeV

pT(µ) > 10 to 27.3GeV

Electron Id.: pT(e) < 25 Medium, pT(e) > 25 Tight

Muon Id.: Tight

Electron Iso.: FCLoose

Muon Iso.: Tight

mcoll
ττ > |mZ − 25GeV|

Meµ > 10GeV

b-Jet veto: DL1r with 85% efficiency working point

Emiss
T > 20GeV

JVT > 0.5 and fJVT < 0.5

Leading (Subleading) jet pT > 40 (30)GeV

VBF Topology Njets ≥ 2

Mjj > 350GeV

Lead(Sublead) lepton pT > 22(15)GeV

Outside lepton veto

Table 5: Summary of signal region selection split into Preselection and VBF topology
categories.

4.4.1 Preselection

The Preselection starts by requiring two leptons of different flavours, i.e. one electron
and one muon. Due to the Higgs boson having a neutral charge, the leptons are
required to have an opposite charge. A combination of single lepton and dilepton
triggers are used. Each event must pass at least one of these triggers to be included.
Leptons must pass a pT threshold depending on the trigger response. For electrons,
this threshold lies in the range of 15 to 27GeV and 10 to 27.3GeV for muons. Elec-
trons identification is tightened to the Tight working point only for pT > 25. Muons
require FCTight for isolation and Tight for identification. To reduce Z → ττ back-
ground, events within the Z boson mass window mcoll

ττ > |mZ −25GeV| are excluded.
With mcoll

ττ being the missing invariant mass calculated with a collinear approxima-
tion. The dilepton invariant mass Meµ must be higher than 10GeV to suppress
background processes originating from resonances such as J/ψ and Y mesons. A b-
jet veto is applied to reduce background processes involving top quarks. The leading
(subleading) jets are required to have pT > 40 (30)GeV. For the missing transverse
energy Emiss

T > 20GeV is required.
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4.4.2 VBF Topology Cuts

Each event is required to have at least two jets since the two outgoing partons from
VBF production mode are hadronised into jets. The jets are also required to have an
invariant mass of Mjj > 350GeV. For the leading (subleading) lepton a selection of
pT > 22 (15)GeV and an Outside Lepton Veto (OLV) is applied. The OLV is defined
as

OLV = 2 ·
∣∣∣∣ ηl − η

ηj1 − ηj2

∣∣∣∣ , (49)

where η = (ηj2+ηj1 )/2 is the average pseudorapidity of the two leading jets and ηl is the
pseudorapidity of the leptons. As such, leptons are required to have rapidities that
fall into the rapidity gap between the two jets.

After all, cuts are applied, the number of expected events is reduced to 47.26 from
451.33 correspondingly, the number of simulated events is reduced from 2599185 to
270748 (see Table 6).

Region Nsim Nexp

All Events 2599185 451.33

Signal Region 270748 47.26

Table 6: Number of simulated and expected events before and after applying the signal
region selection.

35



5 Reconstruction of the Higgs Boson Four-Momentum Vec-
tor

The four-momentum vectors of the VBF tagging jets and the Higgs boson are needed
to calculate the optimal observable. In order to improve on the resolution of the
optimal observable, in this thesis, one of its inputs, the reconstruction of the Higgs
boson four-momentum, is investigated. This chapter explores how neural networks
can be used to reconstruct the Higgs boson four-momentum. The resolutions of
the four-momentum vector components are compared to the resolution of the Higgs
boson reconstruction following the approximation described in section 5.1. Section
5.2 gives details of the NN setups. In section 5.3, training and optimisation of the
fully connected feed-forward networks are described. In section 5.4, the resolutions
of the components of the Higgs boson four-momentum vector are reconstructed using
different methods are compared.

5.1 Higgs Boson Approximation

One way to reconstruct the Higgs boson is to add the four-momentum vectors of
particles coming from the Higgs boson decay. While the neutrino momentum in the
z-axis cannot be accessed, the Higgs boson can still be approximated by adding the
remaining four-momentum vectors together:

pµ(H) = pµ(µ) + pµ(e) + pµ(Emiss
T ) (50)

Here pµ(µ), pµ(e) are the four-momentum vectors of the leptons. The four-momentum
vector of the missing transverse energy pµ(Emiss

T ) is created by using its magnitude
and azimuthal angle. At the same time, the pseudorapidity component is set to zero.
This approximated reconstruction of the Higgs boson will be referred to as effective
Higgs boson (Eff.H) reconstruction.

5.2 The Network Setups

In addition to the effective Higgs boson, eight combinations of networks will be used
to reconstruct the Higgs boson four-momentum vector or its individual components.

5.2.1 Neural Network 1

The first neural network (NN1) calculates the Higgs bosons four-momentum vector
using the same information as the Eff.H reconstruction. That means it used the full
four-momentum vectors of the electron and muon as input variables in spherical coor-
dinates pT, η, ϕ and E. Since the sum of the neutrinos cannot be fully reconstructed,
the missing transverse energy’s magnitude and azimuthal angle components are used.
The ϕ component are given to the network as cos(ϕ) and sin(ϕ). The input variables
are shown in Figure 14-16. The targets are the Higgs bosons four-momentum vector’s
components in cartesian coordinates px, py, pz and E. The loss function used for this
network is Mean Square Error (MSE), defined as:

MSE(w⃗) =
1

n

n∑
i

(pix− p̂ix(w⃗))
2+(piy − p̂iy(w⃗))

2+(piz − p̂iz(w⃗))
2+(Ei− Êi(w⃗))2. (51)
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Here n is the number of events. The variable with a hat in each term of the sum
represents the prediction of the network. The corresponding variable without a hat
is the true target. The network setup for NN1 is shown in Table 7

Neural Network Input Variables Target Variables Loss Function

NN1

Electron: pT, η, ϕ, E
px(H, truth)

MSEMuon: pT, η, ϕ, E
py(H, truth)

Emiss
T : pT, ϕ

pz(H, truth)

E(H, truth)

Table 7: List of input variables, targets and loss function defining NN1.
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Figure 14: Signal region distributions of Emiss
T input variables. All distributions are nor-

malised to 139 fb−1. Underflow and overflow bins are included.
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Figure 15: Signal region distributions of input variables. The plots a), b), c) and d) show
the distributions for the electron while e), f), g) and h) show them for the muon. All
distributions are normalised to 139 fb−1. Underflow and overflow bins are included.
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Figure 16: Signal region distributions of input variables. The plots a), b), c) and d) show
the distributions for the leading jet while e), f), g) and h) show them for the subleading jet.
All distributions are normalised to 139 fb−1. Underflow and overflow bins are included.
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5.2.2 Neural Network 2

In addition to the variables used by NN1, the second network (NN2) also uses infor-
mation from the leading and subleading jets. They are also provided to the network
as spherical coordinates pT, η, ϕ and E. The targets and loss function remains un-
changed. The setting used in NN2 is shown in Table 8.

Neural Network Input Variables Target Variables Loss Function

NN2

Electron: pT, η, ϕ, E px(H, truth)

MSE
Muon: pT, η, ϕ, E py(H, truth)

(Sub)Lead Jet: pT, η, ϕ, E pz(H, truth)

Emiss
T : pT, ϕ E(H, truth)

Table 8: List of input variables, targets and loss function used in NN2.

5.2.3 Neural Network 3 and 4

The third network (NN3) and fourth network (NN4) use the same input and target
variables as NN1 and NN2, respectively; however, the loss function is a modified
version of MSE. An additional term is added, leading to the new loss function:

MSEMass = MSE +
1

n

n∑
i

(125− M̂ i
Higgs(w⃗))

2 (52)

Since the mass of the Higgs boson is reliably well measured, this network is incen-
tivised to predict a Higgs boson four-momentum vector corresponding to the observed
Higgs boson mass of 125GeV. The variable M̂ i

Higgs is the Higgs boson invariant mass
predicted by the NN. It is calculated from its prediction for the four-momentum
components by using the following:

M̂ i
Higgs =

√
(Êi)2 − (p̂ix)

2 − (p̂iy)
2 − (p̂iz)

2. (53)

The Higgs boson four-momentum vector reconstruction using NN1 (NN2) will be re-
ferred to as NN3 (NN4). Both network setup parameters are shown in Table 9.
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Neural Network Input Variables Target Variables Loss Function

NN3

Electron: pT, η, ϕ, E
px(H, truth)

MSEMassMuon: pT, η, ϕ, E
py(H, truth)

Emiss
T : pT, ϕ

pz(H, truth)

E(H, truth)

NN4

Electron: pT, η, ϕ, E px(H, truth)

MSEMass

Muon: pT, η, ϕ, E py(H, truth)

(Sub)Lead Jets: pT, η, ϕ, E pz(H, truth)

Emiss
T : pT, ϕ E(H, truth)

Table 9: List of input variables, targets and loss function defining NN3 and NN4.

5.2.4 Neural Networks 5 to 10

The four NN already discussed each predicted the complete four-momentum vector
of the Higgs boson. The following six networks only predict parts of the Higgs boson
four-momentum vector. Their predictions will be combined to give four complete sets
of the Higgs boson four-momentum vector’s components.

The networks 4 to 8 are called NN5, NN6, NN7 and NN8 and correspond to for-
mer networks setups NN1, NN2, NN3 and NN4, respectively. The difference lies in
the target variables since only the pz and E components will be predicted by the four
networks.
The missing component px (py) is instead reconstructed using the network NN9 (NN10).
The input features of NN9 and NN10 are the four-momentum vectors of the leptons,
leading (subleading) jet and Emiss

T . The ϕ components are given as cos(ϕ) and sin(ϕ)
like for the networks above. NN9 and NN10 use the loss function MSE as defined in
Equation 51. The setups for the network 5 to 10 are shown in Table 10
To make this approach work for the modified loss function MSEmass used by NN7 and
NN8, one has to modify the calculation of M̂ i

Higgs. The reason is that NN7 (NN8) does
not provide any predictions for px (py) to be used in the calculation. Instead, the
predictions of NN9 and NN10 are input to the loss function.

The predictions of these six networks are combined to reconstruct the following four
complete Higgs boson four-momentum vectors: NN(5,9,10), NN(6,9,10), NN(7,9,10) and
NN(8,9,10), where the numbers represent the number of the networks used in the re-
construction.
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Neural Network Input Variables Target Variables Loss Function

NN5

Electron: pT, η, ϕ, E
pz(H, truth)

MSEMuon: pT, η, ϕ, E
E(H, truth)

Emiss
T : pT, ϕ

NN6

Electron: pT, η, ϕ, E

MSE
Muon: pT, η, ϕ, E pz(H, truth)

(Sub)Lead Jets: pT, η, ϕ, E E(H, truth)

Emiss
T : pT, ϕ

NN7

Electron: pT, η, ϕ, E
pz(H, truth)

MSEMassMuon: pT, η, ϕ, E
E(H, truth)

Emiss
T : pT, ϕ

NN8

Electron: pT, η, ϕ, E

MSEMass

Muon: pT, η, ϕ, E pz(H, truth)

(Sub)Lead Jets: pT, η, ϕ, E E(H, truth)

Emiss
T : pT, ϕ

NN9

Electron: pT, η, ϕ, E

MSE
Muon: pT, η, ϕ, E pz(H, truth)

(Sub)Lead Jets: pT, η, ϕ, E E(H, truth)

Emiss
T : pT, ϕ

NN10

Electron: pT, η, ϕ, E

MSE
Muon: pT, η, ϕ, E pz(H, truth)

(Sub)Lead Jets: pT, η, ϕ, E E(H, truth)

Emiss
T : pT, ϕ

Table 10: List of input variables, targets and loss function defining the networks NN5, NN6,
NN7, NN8, NN9 and NN10.
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5.3 Hyperparameter Optimization with OPTUNA

With the ten network setups defined, one has to specify the hyperparameters. While
the network optimisation is done for each network individual, the search space and
other hyperparameters are fixed.
All networks use 400 epochs and the early stopping algorithm with a patience of
5 to prevent overfitting. Adam-optimiser [54] is used as a gradient descent method.
The activation function of the hidden layers is ReLU [49] while the output layer uses
the identity. The learning rate, batch size, number of layers and number of layers
in each individual layer are optimised by OPTUNA [55]. For this, the search space
of each hyperparameter is defined as follows: The learning rate is set to be between
10−5 and 10−1. The batch size is set to be between 400 and 2400 in steps of 200. The
number of hidden layers is between 2 and 7; each hidden layer can have 20 to 100
nodes in steps of 10. The hyperparameters to be optimised are listed in Table 11. For

Hyperparameter Range

learning rate 10−5 to 10−1

batch size 400 to 2400 in steps of 200

layers 2 to 7

nodes per layer 20 to 100 in steps of 10

Table 11: List of hyperparameters optimised with OPTUNA and the ranges from which
OPTUNA can choose.

the training and optimisation, simulated samples are split into 70% of total events for
the training and the remaining 30% for testing. The input features are standardised
to a mean of zero and a variance of one. Standardising the input features to a similar
range is done so that the network does not prioritise inputs with a more extensive
range due to their larger effect on the loss function. The loss calculated on the testing
samples was chosen as an objective function, which OPTUNA tries to estimate. The
networks are optimised in 100 iterations called trials, where each trial represents a
sampling of the objective function. To illustrate this, Figure 17 shows the optimisa-
tion process of NN2. Blue dots represent each trial’s validation loss or objective value,
while the red line shows the best objective value throughout the optimisation. Most
of the improvement takes place during the first 20 trials. Afterwards, the number of
improvements gradually decline. This implies that the choice of 100 trials is enough
to optimise the network. Figures for the optimisation process of the other networks
are shown in Appendix A.

After the optimisation, the model with the set of hyperparameters resulting in the best
objective value is used to predict the components of the Higgs boson four-momentum
vector. The hyperparameters determined for each network are summarised in Table
12.
The learning rate for all networks is in a similar range, with NN1 having the largest
learning rate of 0.0036 and NN9 having the lowest learning rate of 0.0002. The batch
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sizes vary strongly among networks, with NN8 hitting the search space’s upper and
NN2 and NN10 the lower limit. Similarly, the number of nodes varies, with the largest
node located mostly in the first layer. The exceptions are NN4 and NN10. These two
networks also have the largest number of hidden layers, with NN10 reaching the upper
limit of 7 layers.
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Figure 17: OPTUNA optimisation process of NN2. The x-axis shows the number of trials
(#Trials), and the y-axis is the objective value. Blue dots represent the objective value
in each trial, while the red curve shows the best objective value. Some trial numbers are
missing since their objective value is too large and outside the range.

Hyperparameter NN1 NN2 NN3 NN4 NN5 NN6 NN7 NN8 NN9 NN10

Batch Size 1200 400 600 600 2000 1000 1800 2400 600 400

Learning Rate 0.0036 0.0010 0.0007 0.0003 0.0013 0.0005 0.0006 0.0015 0.0002 0.0010

Layers 4 3 2 6 2 5 3 2 3 7

Nodes in Layer:

1 100 80 60 20 90 90 50 100 90 90

2 70 70 20 90 80 80 20 60 80 100

3 40 30 - 70 - 70 30 - 60 30

4 70 - - 40 - 30 - - - 20

5 - - - 20 - 60 - - - 70

6 - - - 40 - - - - - 100

7 - - - - - - - - - 20

Table 12: List of the optimised hyperparameter for each NN used in the analysis.
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5.4 Comparison of Resolutions for Components of the Higgs Boson Four-
Momentum Vectors

After training, the ten networks are used to predict the Higgs boson four-momentum
vector’s components. This results in eight different versions of the Higgs boson four-
momentum vector. Their performance is compared by calculating the resolution
according to Equation 54.

Res((pµH,NNi
)j) = (pµH,truth)j − (pµH,NNi

)j (54)

Here (pµH,NNi
)j corresponds to the Higgs boson four-momentum vector’s component

j predicted by Network NNi and (pµH,truth)j to its truth-level counterpart. The res-
olution of the Eff.H (see section 5.1) is calculated analogue to this. In addition to
the resolutions of the Higgs boson vector’s components px, py, pz and E, the resolu-
tion for the Higgs boson mass M is also calculated using Equation 53. Resolutions
of predicted variables for NN1, NN6, NN9 and NN10 are shown in Figure 18-20, the
remaining resolutions are shown in Appendix B. For each component, the standard
deviation of the resolution is listed in Table 13.
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(b) Resolution of E
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(c) Resolution of M

Figure 18: Resolution of different components of the Higgs boson four-momentum vector
reconstructed with NN6 in blue and red the resolution of the Eff.H reconstruction compo-
nents. All resolutions are normalised to 139fb−1. Overflow and underflow bins are included.
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(b) Resolution of py
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(c) Resolution of pz
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(d) Resolution of E
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(e) Resolution of M

Figure 19: Resolutions of different components of the Higgs boson four-momentum vector
reconstructed with NN1 in blue and red the resolution of the Eff.H reconstruction compo-
nents. All resolutions are normalised to 139fb−1. Overflow and underflow bins are included.
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(a) Resolution of px predicted by NN9
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(b) Resolution of py predicted by NN10

Figure 20: Resolution of the px and py components of the Higgs boson four-momentum
vector reconstructed with NN9 and NN10 in blue and red the resolution of the Eff.H recon-
struction components. All resolutions are normalised to 139fb−1. Overflow and underflow
bins are included.

By comparing the standard deviations of NN1 to the Eff.H reconstruction, one can see
that the resolution of all parameters improved. Especially pz, M and E components
improved by 39.37%, 28.21% and 21.28%, respectively. Relatively small improvements
on px and py are expected since the Eff.H reconstruction possesses all the needed
information regarding the transversal plane. In NN2 adding jet information leads to
further improvements of around ≈ 1.5% for pz and E while M improved by 11.34%
compared to NN1. Changing the loss function to MSEmass (NN3 and NN4) worsened
the resolution in all parameters except pz and M compared to Eff.H, with pz still
performing worse than for NN1 and NN2. The predicted mass M , on the other
hand, outperformed all the predictions and gained 99.61% compared to the Eff.H
reconstruction. This is because the loss calculated by the additional term in Equation
52 is much larger than the loss for MSE. As such, the network prioritised minimising
the loss function for the added term and neglected the MSE term. The networks
which only predicted the pz and E components (NN5, NN6, NN7 and NN8) did not
gain any significant improvements compared to NN2, but the trend of networks using
jet information gaining≈ 1.5% in pz and E compared to their counterpart without jets
continued. The network NN9 (NN10) improved px (py) by 11.92% (14.49%) compared
to NN2. The best-performing reconstruction method is NN(6,9,10). It reached σpx =
16.92GeV and σpy = 16.64GeV via NN9 and NN10, respectively. The E and pz
components predicted by NN6 achieved a standard deviation of σE = 88.24GeV
and σpz = 103.25GeV. Using them to predict M achieved a standard deviation of
σM = 28.14GeV.
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Reconstruction σpx [GeV] σpy [GeV] σpz [GeV] σE [GeV] σM [GeV]

Eff.H 19.84 21.64 172.94 113.87 50.96

NN1 19.45 19.44 104.86 89.46 36.58

NN2 19.21 19.46 103.27 88.27 32.43

NN3 109.97 109.16 164.74 151.82 0.20

NN4 111.21 113.77 185.62 158.27 0.20

NN(5,9,10) 16.92 16.64 104.78 89.81 46.24

NN(6,9,10) 16.92 16.64 103.25 88.24 28.14

NN(7,9,10) 16.92 16.64 104.99 90.00 32.23

NN(8,9,10) 16.92 16.64 103.29 88.51 41.60

Table 13: Standard deviations of the different Higgs boson four-momentum vector’s com-
ponent resolutions for the different reconstruction methods.
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6 Estimation of the Sensitivity to Constrain d̃

The mean value of the distribution of a CP-odd observable can be used to constrain
d̃, which parameterises the strength CP-violation in the HVV vertex. By calculating
the mean value of a CP-odd observable for the different assumed values of d̃, one can
derive a gauge curve. In the approximate linear regime of the SM case (d̃ = 0), the

gauge curve can be approximated by the linear relationship ⟨CP-odd Obs.⟩ = a+b · d̃.
d̃ can then be estimated from the measured value of ⟨CP-odd Obs.⟩. Section 6.1
details how to calculate the different CP-odd observables. Section 6.2 explains how
BSM distributions can be predicted by reweighting events. Section 6.3 describes how
gauge curve fits are used to estimate the sensitivity of d̃ for the CP-odd observables.

6.1 CP-odd Observables

The optimal observableOO is calculated using the Python module vbfcprw [75], which
uses Fortran routines extracted from HAWK [76–80]. HAWK is a MC-generator for
the Higgs boson production channels VFB and VH. The module requires the four-
momentum vectors of the VBF tagging jets and the Higgs boson. As jets, the two
leading jets given in the samples are used, while the Higgs boson four-momentum
vectors are estimated in chapter 5. As such, nine OOs can be calculated. One using
the Eff.H reconstruction OOEff.H and one for each NN reconstruction labelled OOi

with i the network used for the reconstruction. The truth-level observable OOtruth is
also used. At truth-level, access to the parton information is possible. As such, these
partons are used instead of jets for OOtruth. Only events with −12 < OO < 12 are
considered in this analysis to reduce the effect of outliers. This requirement is applied
individually to each OO distribution. Consequently, the number of expected events
differs slightly for each choice of calculated OO.
Resolution are calculated by subtracting OOtruth from each OO. For the resolutions,
the requirement of −12 < OO < 12 is only applied to the reconstruction-level OO.
As an example, Figure 21 shows the resolutions for OO(6,9,10) and OOEff. Similar
plots for the other observables are provided in Appendix C. The standard deviations
for all OO resolutions are listed in Table 14. The resolution of the OOEff.H could
be improved by 0.25% using OO(8,9,10) with a standard deviation of 3.5709 regarding
the resolution. The networks using the modified MSE (NN3 and NN4) had the worst
resolutions.

Resolution of OOEff.H OO1 OO2 OO3 OO4 OO(5,9,10) OO(6,9,10) OO(7,9,10) OO(8,9,10)

St. Dev. 3.5797 3.5764 3.5779 3.6931 3.6117 3.5770 3.5760 3.5729 3.5709

Table 14: List of standard deviations of the resolution corresponding to different OOs.
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Figure 21: Resolutions of OOEff and OO(6,9,10). The reference value for both distributions

is the truth-level OO. Distributions are normalized to 139 fb−1. Overflow and underflow
bins are included.

In addition to the OO, ∆Φsigned
jj and OReg are also compared. ∆Φsigned

jj is defined in
Equation 26 and requires the ϕ components of the leading and subleading jets. The
symbolic regression observable OReg is defined in Equation 27 and uses ∆Φsigned

jj and
the transverse momenta of the jets. To align them closer to the event numbers of
the OOs, they are required to fulfil the −12 < OOEff.H < 12 requirement. Details of
CP-odd observables are discussed in section 1.3.3.

6.2 Prediction for BSM Distributions

In order to create gauge curves, simulated distributions of the CP-odd observables
have to be produced for the BSM cases (d̃ ̸= 0). The Monte Carlo simulated samples

are generated only for SM (d̃ = 0) case and thus cannot be used for this purpose.
The BSM samples are produced by reweighting the events of the SM samples. The
weights w used for reweighting are calculated by dividing the squared matrix element
given in Equation 21 by |MSM|2:

w(d̃) =
|M|2

|MSM|2
(55)

= 1 + d̃ · 2ℜ (M∗
SMMCP-odd)

|MSM|2
+ d̃2 · |MCP-odd|2

|MSM|2
(56)

= 1 + d̃ · wlin + d̃2 · wquad (57)

The wlin and wquad are the linear and quadratic weights terms, repsectievely. They
are calculated similarly to OO, using the vbfcprw module for every event.
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6.3 Gauge Curves

This section describes the gauge curve fit setup for the OO. It is done analogue for the
other CP-odd observables ∆Φsigned

jj and OReg mentioned above. As such, following this
description, results are provided for all the CP-odd observables in the end. The gauge
curves show the mean of the observables as a function of d̃. Since the distributions
are weighted, the weighted mean for n events

⟨OO⟩ =
∑n

i=1wi · OOi∑n
i=1wi

(58)

is used. The error is given by the standard error of the mean:

s⟨OO⟩ =
σOO√
Neff

with Neff =
(
∑n

i=1wi)
2∑n

i=1w
2
i

. (59)

Here, Neff is the effective number of events and σOO is the standard deviation of
the distribution of the OO. Figure 22 shows the gauge curve for OO(6,9,10). The
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Figure 22: Gauge Curve for OO(6,9,10) in the range of [−1, 1]. Error bars represent the
standard error of weighted mean on ⟨OO⟩.

reweighting with d̃ ̸= 0 leads to a weighted mean value different from zero. For values
close to d̃ = 0, an approximately linear relation between ⟨OO⟩ and d̃ is visible. The

region d̃ = [−0.05, 0.05] is used to perform a linear fit using

⟨OO⟩ = a · d̃+ b, (60)

where a is the slope and b is the y-intercept. Since one expects the gauge curve to be
zero for d̃ = 0, the y-intercept should be compatible with zero. Solving Equation 60
results in the following expression for d̃:

d̃ =
⟨OO⟩ − b

a
. (61)
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Here, ⟨OO⟩ is the weighted mean for (d̃). The error σd̃ of d̃ is calculated using
Gaussian error propagation:

σd̃ =

√√√√(∂d̃
∂a

)2

s2a +

(
∂d̃

∂b

)2

s2b +

(
∂d̃

∂⟨OO⟩

)2

s2⟨OO⟩ (62)

=
1

|a|

√
d̃2s2a + s2b + s2⟨OO⟩. (63)

Here, sa and sb are the uncertainties of the fit parameters while s⟨OO⟩ is the standard
error of the SM distributions. By assuming that the standard error s⟨OO⟩ is dominant
this can be further simplified to

σd̃ =
s⟨OO⟩

|a|
(64)

To better compare the uncertainties of d̃, the standard error of σd̃ is estimated and
denoted ∆σd̃. For this, the estimator for the variance of the sample variance [81]

V [s2] =
1

n

(
µ4 −

n− 3

n− 1
µ2
2

)
, (65)

is used. Here, µk is the kth central moment. Assuming a Gaussian distribution, i.e.
µ4 = 3µ2

2 and n≫ 3, the estimator for the error on the standard error is given by

∆σd̃ =
sd̃√
2neff

. (66)

Figure 23 shows fits to the gauge curve for OO1, OOtruth, ∆Φsigned
jj and OReg in the

range of d̃ = [−0.05, 0.05]. The fits of the remaining observables are provided in
Appendix D.
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Figure 23: Gauge curves of ⟨CP-odd Obs.⟩ against d̃ using different CP-odd observables.
The fit is performed in the d̃ = [−0.05, 0.05] range. The parameters of the fits are shown in
the box in the bottom left corner of each figure.

The parameters used to calculate d̃ and their uncertainties are given in Table 15
together with the results. The last column shows the number of expected events
(Nexp), which slightly differs between the observables.

All estimated values for d̃ are compatible with zero. However, it is unexpected that b is
incompatible with zero. The error on the weighted mean of the CP-odd observables is
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Observables a b [10−2] ⟨CP-odd Variable⟩ d̃ [10−5] σd̃ [10
−5] ∆σd̃ [10

−5] Nexp

OOtruth 11.968± 0.024 −1.488± 0.066 −0.0111± 0.0064 3.1668 5.3832 0.0085 46.67

OReg 29424.2± 57.6 −2107.1± 160.4 −23.65± 15.48 -0.8774 5.2893 0.0084 46.22

∆Φjj 5.444± 0.016 0.10± 0.06 0.0006± 0.0042 -0.5863 7.8231 0.0124 46.22

OOEff.H 12.783± 0.025 −0.965± 0.071 −0.0112± 0.0069 -1.2556 5.3968 0.0085 46.22

OO1 12.947± 0.026 −0.621± 0.072 −0.0080± 0.0070 -1.3851 5.4063 0.0085 46.21

OO2 12.911± 0.026 −0.584± 0.072 −0.0078± 0.0070 -1.5025 5.4198 0.0086 46.19

OO3 12.617± 0.024 −1.211± 0.066 −0.0130± 0.0064 -0.7059 5.0921 0.0081 46.66

OO4 12.579± 0.024 −1.458± 0.066 −0.0153± 0.0064 -0.6066 5.0885 0.0080 46.67

OO(5,9,10) 12.957± 0.026 −0.765± 0.072 −0.0094± 0.0070 -1.3541 5.4071 0.0085 46.20

OO(6,9,10) 12.894± 0.026 −0.609± 0.072 −0.0079± 0.0070 -1.4422 5.4078 0.0086 46.20

OO(7,9,10) 12.854± 0.026 −0.628± 0.071 −0.0081± 0.0069 -1.4177 5.3640 0.0085 46.27

OO(8,9,10) 12.782± 0.025 −0.735± 0.070 −0.0092± 0.0068 -1.4423 5.3561 0.0085 46.28

Table 15: List of fits parameters a and b, weighted mean of the CP-odd observables for
d̃ = 0, Nexp and estimation of d̃ including σd̃ and ∆σd̃ for each observable.

the dominant contribution to the overall uncertainty. Due to Equation 64, larger slope
values and smaller errors on the observable weighted mean yield a higher sensitivity
for d̃.

The best result is achieved by OO4 constraining d̃ at a expected 68% confidence
level (CL) to a confidence interval of d̃ ∈ [−5.089× 10−5, 5.089× 10−5]. It improved
by 0.07% compared to the second best performing observable OO3. The smallest
sensitivity to d̃ was obtained from ∆Φsigned

jj with the confidence interval d̃ ∈ [−7.82×
10−5, 7.82 × 10−5]. This is expected since it is not as sensitive to CP-violation as

OO and OReg [34, 83]. OReg limited d̃ with an expected CL of 68% to a confidence

interval of d̃ ∈ [−5.289 × 10−5, 5.289 × 10−5]. As such OO4 performed 3.79% better
than OReg. The OO with the worst sensitivity is OO2 performing 6.11% worse than
OO4. The sensitivities of OO(5,9,10), OO(6,9,10), OO1, OOEff.H and OOtruth are all
compatible with each other. The reconstruction-level observables are not expected to
perform poorer than the truth-level OOtruth. Still, all observables reconstructed with
the networks using the modified loss function OO3, OO4, OO(7,9,10) and OO(8,9,10)

outperformed OOtruth. With OO4 gaining 5.47% on OOtruth.
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7 Conclusion

In this thesis, the sensitivity of several CP-odd observables to constrain d̃, which
parameterises the strength of CP-violation in the HVV vertex, is investigated. The
Higgs boson production via VFB with a subsequent decayH → WW− → eµ2ν is con-
sidered. The simulated signal corresponds to the full Run 2 data-taking period by the
ATLAS detector at a centre-of-mass energy of

√
s = 13TeV with an integrated lumi-

nosity of 139 fb−1. The investigation exploits fully-connected feed-forward regression
networks to reconstruct the Higgs boson four-momentum vector to construct the OO.

The Higgs boson four-momentum vector is reconstructed with nine different meth-
ods. The first method approximates the Higgs bosons four-momentum vector from
the lepton four-momenta and the missing transverse energy. This method is labelled
as Eff.H. The other Higgs boson four-momentum vector reconstructions are done via
neural networks, with the first four targeting the complete four-momentum vector of
the Higgs bosons. The first network (NN1) used the same input vectors as the Eff.H
reconstruction and is trained with the mean-square-error loss function to predict all
four-momentum vector components of the Higgs boson. The second network (NN2)
added the four-momentum vectors of the leading and subleading jets to the list of in-
put variables. The third and fourth networks (NN3 and NN4) used a modified version
of mean-square-error, constraining the reconstructed mass to the measured value of
125GeV. The target and input features of NN3 (NN4) are same as that of NN1 (NN2).
The last four reconstructions of the Higgs boson use multiple networks to predict dif-
ferent components of the Higgs boson four-momentum vector. These reconstruction
methods are labelled NN(5,9,10), NN(6,9,10), NN(7,9,10) and NN(8,9,10) with the numbers
referring to the networks used in each method. The common networks setups NN9

and NN10 predict the px and py components, respectively. The other two components
pz and E were predicted simultaneasly with NN5, NN6, NN7 and NN8 which used the
loss function and input features of NN1, NN2, NN3 and NN4, respectively.

The hyperparameters of each network are optimised with OPTUNA [55]. The opti-
mised hyperparameters are the learning rate, the batch size, the number of layers and
the number of nodes in each hidden layer. The networks are trained using the opti-
mal set of hyperparameters and utilised to predict the Higgs boson four-momentum
vector’s components. Their resolutions are compared to the resolution of the four-
momentum vector of the Eff.H reconstruction. In this comparison NN9 (NN10) im-
proved the resolution of px (py) by 14.72% (23.11%). With NN6, the resolutions for
pz and E could be improved by 22.51% and 40.30%, respectively. The networks NN3

and NN4, while improving M by 99.61%, performed worse on px, py, pz and E com-
ponents in comparison to the Eff.H reconstruction. The best performance is given by
a combination of NN6, NN9 and NN10. The E and pz components predicted by NN6

achieved a standard deviation of σE = 88.24GeV and σpz = 103.25GeV while NN9

and NN10 achieved a standard deviation of σpx = 16.92GeV and σpy = 16.64GeV,
respectively.

The OOs are calculated for every reconstructed four-momentum vector of the Higgs
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boson. Only events in the range of −12 < OO < 12 were considered. Comparing
the OO resolutions using Eff.H reconstruction to the ones using NNs, the largest
improvement of 0.25% was achieved with NN8.

A gauge curve method was utilised to estimate the sensitivity on d̃. The method
assumes a linear regime between the mean of the CP-odd observable and d̃ for small
values of d̃. Using a linear fit in the range of d̃ = [−0.05, 0.05], the sensitivity of d̃ was
estimated. In addition to the reconstruction-level OO calculated with Eff.H and the
NN predictions, the OOtruth using truth-level information, the signed azimuthal angle
difference between the tagging jets ∆Φsigned

jj and the symbolic regression observable
OReg were considered.

The best sensitivity for d̃ was achived by OO4 limiting d̃ to an interval of d̃ ∈
[−5.089× 10−5, 5.089× 10−5], outperforming the use of OReg by 3.80% and the use of

OOEff.H of the Eff.H reconstruction by 5.71%. The smallest sensitivity to d̃ was ob-
tained from ∆Φsigned

jj with the expected 68% CL limiting d̃ to the confidence interval

of d̃ ∈ [−7.82 × 10−5, 7.82 × 10−5]. The constrains of d̃ for OOtruth are compatible
with the constrains achieved by OOEff.H. It is unclear why the OO on truth-level gets
outperformed by reconstruction-level OO calculated by the predictions of networks
using the modified MSE loss function.
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Appendix

A Optimisation Process of NNs
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Figure 24: OPTUNA optimisation process of a) NN1 and b) NN3. The x-axis shows the
number of trials (#Trials) and the y-axis the objective value corresponding to the network’s
loss function. Blue dots represent the objective value in each trial, while the red curve shows
the best objective value. Some trial numbers are missing since their objective value is too
large and outside the range.
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Figure 25: OPTUNA optimisation process of a) NN4 and b) NN5. The x-axis shows the
number of trials (#Trials) and the y-axis the objective value corresponding to the network’s
loss function. Blue dots represent the objective value in each trial, while the red curve shows
the best objective value. Some trial numbers are missing since their objective value is too
large and outside the range.
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Figure 26: OPTUNA optimisation process of a) NN6 and b) NN7. The x-axis shows the
number of trials (#Trials) and the y-axis the objective value corresponding to the network’s
loss function. Blue dots represent the objective value in each trial, while the red curve shows
the best objective value. Some trial numbers are missing since their objective value is too
large and outside the range.
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Figure 27: OPTUNA optimisation process of a) NN8 and b) NN9. The x-axis shows the
number of trials (#Trials) and the y-axis the objective value corresponding to the network’s
loss function. Blue dots represent the objective value in each trial, while the red curve shows
the best objective value. Some trial numbers are missing since their objective value is too
large and outside the range.
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Figure 28: OPTUNA optimisation process NN10. The x-axis shows the number of trials
(#Trials) and the y-axis the objective value corresponding to the network’s loss function.
Blue dots represent the objective value in each trial, while the red curve shows the best
objective value. Some trial numbers are missing since their objective value is too large and
outside the range.
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B Resolutions of Higgs Reconstructions

B.1 Network 2

80− 60− 40− 20− 0 20 40 60 80
) [GeV]

x
Reso(p

0

1

2

3

4

5E
ve

nt
s/

4

     Eff. Higgs
Mean    = -0.12
Std Dev = 19.84
     Network 2
Mean    = 1.13
Std Dev = 19.21

Signal Region
νµνe→WW→VBF in H

-1 = 13 TeV, L = 139 fbs

(a) Resolution of px

80− 60− 40− 20− 0 20 40 60 80
) [GeV]

y
Reso(p

0

1

2

3

4

5E
ve

nt
s/

4

     Eff. Higgs
Mean    = 0.2
Std Dev = 21.64
     Network 2
Mean    = 0.82
Std Dev = 19.46

Signal Region
νµνe→WW→VBF in H

-1 = 13 TeV, L = 139 fbs

(b) Resolution of py

500− 400− 300− 200− 100− 0 100 200 300 400 500
) [GeV]

z
Reso(p

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

E
ve

nt
s/

20      Eff. Higgs
Mean    = 0.01
Std Dev = 172.94
     Network 2
Mean    = -3.45
Std Dev = 103.27

Signal Region
νµνe→WW→VBF in H

-1 = 13 TeV, L = 139 fbs

(c) Resolution of pz

200− 100− 0 100 200 300
Reso(E) [GeV]

0

0.5

1

1.5

2

2.5

3

3.5

4

E
ve

nt
s/

8

     Eff. Higgs
Mean    = 78.19
Std Dev = 113.87
     Network 2
Mean    = -2.78
Std Dev = 88.27

Signal Region
νµνe→WW→VBF in H

-1 = 13 TeV, L = 139 fbs

(d) Resolution of E

100− 80− 60− 40− 20− 0 20 40 60 80 100
Reso(M) [GeV]

0

1

2

3

4

5

6E
ve

nt
s/

4

     Eff. Higgs
Mean    = -4.84
Std Dev = 50.96
     Network 2
Mean    = -15.35
Std Dev = 32.43

Signal Region
νµνe→WW→VBF in H

-1 = 13 TeV, L = 139 fbs

(e) Resolution of M

Figure 29: Resolutions of different components of the Higgs boson four-momentum vector
reconstructed with NN2 in blue and red the resolution of the Eff. H reconstruction compo-
nents. All resolutions are normalised to 139fb−1. Overflow and underflow bins are included.

62



B.2 Network 3
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Figure 30: Resolutions of different components of the Higgs boson four-momentum vector
reconstructed with NN3 in blue and red the resolution of the Eff. H reconstruction compo-
nents. All resolutions are normalised to 139fb−1. Overflow and underflow bins are included.
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B.3 Network 4
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Figure 31: Resolutions of different components of the Higgs boson four-momentum vector
reconstructed with NN4 in blue and red the resolution of the Eff. H reconstruction compo-
nents. All resolutions are normalised to 139fb−1. Overflow and underflow bins are included.
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B.4 Network 5
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Figure 32: Resolutions of different components of the Higgs boson four-momentum vector
reconstructed with NN5 in blue and red the resolution of the Eff. H reconstruction compo-
nents. All resolutions are normalised to 139fb−1. Overflow and underflow bins are included.
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B.5 Network 7
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Figure 33: Resolutions of different components of the Higgs boson four-momentum vector
reconstructed with NN7 in blue and red the resolution of the Eff. H reconstruction compo-
nents. All resolutions are normalised to 139fb−1. Overflow and underflow bins are included.
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B.6 Network 8
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Figure 34: Resolutions of different components of the Higgs boson four-momentum vector
reconstructed with NN8 in blue and red the resolution of the Eff. H reconstruction compo-
nents. All resolutions are normalised to 139fb−1. Overflow and underflow bins are included.
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C OO Resolutions
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(a) Resolution of OO1

5− 4− 3− 2− 1− 0 1 2 3 4 5
Res(OO)

0

2

4

6

8

10

E
ve

nt
s/

0.
2

 Effective Higgs
Mean    = 0.0001
Std Dev = 3.5797
    Network 2
Mean    = -0.0014
Std Dev = 3.5779

Signal Region
νµνe→WW→VBF in H

-1 = 13 TeV, L = 139 fbs

(b) Resolution of OO2
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(c) Resolution of OO3
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(d) Resolution of OO4

Figure 35: Resolutions of a) OO1, b) OO2, c) OO3 and OO4, all are compared to OOEff.
The reference value for the resolutions is the truth-level OO. Resolutions are normalised
to 139 fb−1. Overflow and underflow bins are included.
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(a) Resolution of OO(5,9,10)
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(b) Resolution of OO(7,9,10)
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(c) Resolution of OO(8,9,10)

Figure 36: Resolutions of a) OO(5,9,10), b) OO(7,9,10) and c) OO(8,9,10), all are compared
to OOEff. The reference value for the resolutions is the truth-level OO. Resolutions are
normalised to 139 fb−1. Overflow and underflow bins are included.
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D CP-odd Observable Fits
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(f) Fit for OO(8,9,10)

Figure 37: Gauge curves of ⟨CP-odd Variable⟩ against d̃ using different CP-odd observables.
The fit is performed in the range of d̃ = [−0.05, 0.05]. The parameters of the fits are shown
in the box in the bottom left corner of each figure.
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