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Abstract

The standard model of particle physics predicts lepton-�avour conversation in particle decays.
An observation of a lepton-�avour violating decay would be a clear indication for physics beyond
the standard model. In this thesis, the sensitivity of a search for the lepton-�avour violating
decays of the Higgs boson and Z boson into a τe or a τµ pair is determined, considering fully
leptonic decays of the τ -lepton. This analysis uses the full data set of proton-proton collisions
recorded by the ATLAS detector at the LHC in Run 2 at a center-of-mass energy of

√
s = 13TeV,

corresponding to an integrated luminosity of 139 fb−1. Two methods are developed to improve
the sensitivity. Firstly, the so-called fake lepton background is estimated using the fake factor
method and a dedicated extraction region. Secondly, regression neural networks are trained to
improve the mass reconstruction. The neural networks are trained on simulated H → τe events.
A comparison of the neural networks to existing mass reconstruction methods is performed. For
the neural networks, a better mass resolution than for the existing mass reconstruction methods
is observed, but the sensitivity is not improved.

Zusammenfassung

Das Standardmodell der Teilchenphysik sagt eine Erhaltung der Lepton-Flavor-Zahl in Teilchen-
zerfällen vorher. Die Beobachtung eines Lepton-Flavor-verletzenden Zerfalls ist ein klarer Hinweis
auf Physik jenseits des Standardmodells. In dieser Arbeit wird die Sensitivität für eine Suche
nach Lepton-Flavor-verletzenden Zerfällen des Higgs-Bosons und des Z-Bosons in ein τe oder ein
τµ Paar durchgeführt, wobei das τ -Lepton vollständig leptonisch zerfällt. Die Analyse verwendet
den kompletten, vom ATLAS Detektor während Run 2 des LHCs aufgezeichneten Datensatz
an Proton-Proton Kollisionen, mit einer Schwerpunktsenergie von

√
s = 13TeV welcher einer

integrierten Luminosität von 139 fb−1 entspricht. Zwei Methoden werden entwickelt um die Sen-
sitivität zu verbessern. Erstens, der Untergrund, verursacht durch so genannte �Fake�-Leptonen,
wird mit Hilfe der �Fake Faktor�-Methode und einer speziellen Extraktionsregion bestimmt. Zwei-
tens, eine verbesserte Massenrekonstruktion durch regressive neuronale Netze. Die neuronalen
Netze wurden auf simulierte H → τe Ereignisse trainiert. Ein Vergleich der neuronalen Netze
zu existierenden Massenrekonstruktionsmethoden wird durchgeführt. Für die neuronalen Netze
wird, im Vergleich zu den existierenden Massenrekonstruktionsmethoden, eine verbesserte Mas-
senau�ösung beobachtet, jedoch keine Verbesserung der Sensitivität.
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1 Introduction

The standard model of particle physics (SM) describes the properties and interactions of all
known elementary particles and is the most consistent model with respect to the observations.
This model is based on relativistic quantum �eld theories describing the electromagnetic, weak
and strong interactions. Only the gravitational interaction is not described by the SM.

Until 2012, all elementary particles predicted by the SM were experimentally observed, except the
scalar Higgs boson. The Higgs boson is predicted by the Englert-Brout-Higgs-Guralnik-Hagen-
Kibble mechanism [1�6], denoted in the following simply as Higgs mechanism, which allows
the description of massive elementary particles without violating the gauge symmetry of the
SM. In 2012, the ATLAS (A Toroidal LHC ApparatuS) and CMS (Compact Muon Solenoid)
collaboration announced the observation of a Higgs boson [7, 8]. The Higgs boson mass was
determined in a combined analysis as mH = 125.09±0.21(stat.)±0.11(sys.)GeV [9]. Subsequent
measurements, like the production and decay rates [10] or the spin of the Higgs boson [11], were
all in good agreement with the SM predictions.

Models beyond the SM (BSM) predict properties of the Higgs boson and Z boson, which di�er
from the ones in the SM. One of these is the lepton-�avour violating (LFV) decay of those bosons.
Several BSM models predict LFV decays of the Higgs boson [12�27] and Z boson [28�30] and with
the observation of neutrino oscillation [31] it is known that the lepton-�avour is not conserved.
From indirect searches [32,33], the LFV decay H → µe is restricted to a branching ration . 10−8

and is not likely to be observed. The upper limit for the branching ratios of H → τµ and H → τe
are set to 1.43% and 1.04% respectively by direct searches at the LHC [34]. For the LFV decays
of the Z boson into a τe or τµ pair, upper limits of the order of 10−5 are set [34]. These are rates
to which the ATLAS detector is sensitive and a search for BSM physics can be performed in a
well motivated way.

In this thesis, data of proton-proton collisions recorded by the ATLAS detector in Run 2 of the
LHC are used, which covers the data-taking years between 2015 and 2018 at a centre-of-mass
energy of

√
s = 13TeV corresponding to an integrated luminosity of 139 fb−1. The increased

luminosity after Run 1 results in more collisions and hence, enables more precise measurements
of the SM as well as a more detailed search for physics beyond the SM. In this thesis, a sensitivity
study to search for the LFV decays H/Z → τµ and H/Z → τe is performed in a purely leptonic
�nal state. This restricts the τ -lepton decay modes to τ → eν̄eντ and τ → µν̄µντ . Furthermore,
only di�erent-�avour �nal states are considered. Hence, the �nal state is characterized by an
electron, a muon and missing energy, arising from the neutrinos.

There are two main goals of this thesis. The �rst goal is the estimation of the so-called fake
lepton background due to non-prompt leptons and particles misidenti�ed as leptons. For this,
the so-called fake factor method is used in a speci�cally de�ned extraction region. The second
goal is the reconstruction of the Higgs boson and Z boson mass in the LFV decays, using a
regression neural network and comparing its performance to existing methods.

In chapter 2, a theoretical description of the SM is presented, which includes a description of the
individual Lagrangians, the absence of LFV decays in the SM as well as a model independent
SM extension inducing LFV decays of the Higgs boson. Furthermore, the production and decay
modes of the Higgs boson are presented. Chapter 3 provides an overview of the LHC and the
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1 Introduction

ATLAS detector as well as its individual detector parts. In chapter 4, the individual object
reconstruction methods are presented. A fundamental overview of neural networks is presented
in chapter 5, introducing the most important quantities, the training scheme as well as the
optimization of neural networks. This is followed in chapter 6 by an overview of the used analysis
strategy, a description of the so-called symmetry method as well as the importance of a precise
mass reconstruction. In chapter 7, the individual simulated signal and background processes are
described and the applied analysis selection is presented. In chapter 8 the estimation of the
fake lepton background is described, which includes a description of the used extraction region,
the kinematic dependencies and determination of the fake factor as well as a performed closure
test. The mass reconstruction of the Higgs boson and Z boson via a regression neural network
is presented in chapter 9. This covers the simulated events which are used to train the neural
network, the performed optimization as well as a comparison to existing mass reconstruction.
This thesis is summarised in chapter 10.

2



2 Theory

This chapter provides an overview of the theoretical concepts used in this thesis. Firstly, the
Standard Model (SM) of particle physics is introduced, which describes the observed elementary
particles and their interactions. The achievements and limitations are presented as well as a
description of the SM as quantum �eld theory. In section 2.2, an extension of the SM is presented,
inducing LFV Higgs boson decays. This is followed in section 2.3 with a more precise description
of the Higgs boson, its production and decay modes in the SM as well as the induced LFV decays.

2.1 Standard Model of Particle Physics

The Standard Model of particle physics describes the observed elementary particles, their known
interactions and properties. This includes all known fundamental interactions except gravitation.
At the energy scales of present particle accelerators this is su�cient, since the gravitational force
is negligible on the relevant distances of the interactions.

All elementary particles of the SM are classi�ed either as fermions or as bosons, depending on
their intrinsic angular momentum, called spin. The spin quantum number of fermions is a half
integer, while for bosons it is an integer. All elementary fermions have a spin quantum number
of 1/2.

Fermions are separated further into two di�erent classes: quarks and leptons. Quarks are fermions
with a colour charge, while leptons do not have any colour charge. Since the strong interaction
couples to the colour charge, quarks take part in it while leptons do not. Both, quarks and leptons,
are separated further into two types of particles. Quarks with an electric charge of +2/3 e are
called up-type quarks. These are the up (u), charm (c) and top (t) quark. The other three quark
types, with an electric charge of −1/3 e, are called down-type quarks. These are the down (d),
strange (s) and bottom (b) quark. In the SM, the three colour charges red, blue and green are
present. Hence, each quark occurs three times in the SM, once for each colour charge.

Similarly to quarks, leptons are separated by their electric charge, resulting in an electrically
charged lepton sector and an electrically neutral sector. The charged lepton sector contains the
electron (e), muon (µ) and tau (τ) leptons, which have the electric charge −e = −1.602 ·10−19C.
Each charged lepton has a neutral partner, called neutrino. They are denoted as νe, νµ and ντ
respectively. In the SM, the neutrinos are assumed to be massless.

For every fermion in the SM, there exists a corresponding anti-fermion with the same mass, spin
and absolute value of the electric charge. However, the sign of the electric charge is inverted.

All fermions of one certain type, i.e. up-type quarks, down-type quarks, charged leptons and
neutrinos, di�er only in their mass and �avour. This allows to split the SM fermions into three so-
called generations. For each generation, the leptons and quarks have a separate �avour quantum
number, e.g. u and d have a common �avour quantum number. The �avour quantum number
is an additive quantum number. Anti-particles have the same �avour quantum number as the
particle, but with an inverted sign. For the leptons, this results in the three �avour quantum
numbers Le, Lµ and Lτ , where L`− = Lν` = +1 for the respective particles and L`+ = Lν̄` = −1
for the anti-particles. In table 2.1, all SM fermions are summarized.

3



2 Theory

The SM conserves the lepton-�avour quantum number, in both the neutrino sector and the
charged lepton sector. In the electromagnetic and strong interaction, the quark-�avour is con-
served as well. However, the quark-�avour is violated by the charged weak current interactions,
described with the Cabibbo-Kobayashi-Maskawa (CKM) matrix.

Quarks do not exist as free particle, but only in colour neutral bound states. The most common
bound states are the baryons and mesons. Baryons consist of three quarks, whereas mesons are
made up by a quark anti-quark pair. The 'regular' matter we know consists of the two baryons,
the proton (uud) and the neutron (udd), and the electron. Besides the proton and the electron
no other heavy elementary or composed stable particle is known yet.

Table 2.1: Mass and electric charge of all three generations of fermions in the SM [35]. The
uncertainty on the charged lepton masses is at least four orders of magnitude smaller
than the stated mass value.

Generation Electric
1 2 3 charge [e]

Up-type
up (u) charm (c) top (t) +2/3

Quarks
Mass [MeV] 2.2+0.5

−0.4 1275+25
−35 (173± 0.4)× 103

Down-type
down (d) strange (s) bottom (b) −1/3

Quarks
Mass [MeV] 4.7+0.5

−0.3 95+9
−3

(
4.18+0.04

−0.03

)
× 103

Charged
electron (e) muon (µ) tau (τ) −1

Leptons
Mass [MeV] 0.511 106 1.78× 103

Neutrinos electron neutrino (νe) muon neutrino (νµ) tau neutrino (ντ ) 0

Mass [eV]
< 2 < 0.19× 106 < 18.2× 106

(95% CL) (90% CL) (95% CL)

The vector bosons of the SM have spin one and are the mediators of the elementary forces
between the elementary particles. The Higgs boson is the only boson in the SM which does not
have spin one, but spin zero. The massless photon (γ) mediates the electromagnetic force by
coupling to the electric charge. Since it is not electrically charged, the photon does not couple
to itself. It is furthermore neutral with respect to the colour and the weak charge. The strong
interaction is mediated by eight massless gluons (g). These are all electrically neutral but carry
colour charge themselves and hence, do interact with each other.

The massive spin-1 bosons of the SM are the Z, W+ and W− boson. These are the mediators
of the weak interaction and couple to the weak isospin, which is in its absolute value for all
left-handed fermions 1/2 and for all right-handed fermions zero. Both W bosons carry electric
charge and the third component of the weak isospin is in its absolute value unity. The Z boson
is electrically neutral and its third component of the weak isospin is zero. The weak hypercharge
YW is connected, together with the third component of the weak isospin IW,3, to the electric
charge Q by the Gell-Mann-Nishijima relation Q = IW,3 +YW/2. Hence, all three massive bosons
have a weak hypercharge of zero. Furthermore, the massive bosons do interact with each other.
All three massive bosons do not have any colour charge. In table 2.2, the three fundamental
interactions are summarized.

The Higgs boson completes the SM of particle physics. It is neutral with respect to electric and
colour charge, has a spin zero, a third component of the weak isospin of −1/2 and couples to

4



2.1 Standard Model of Particle Physics

Table 2.2: Mediators of the three fundamental SM interactions and their mass and electric
charge [35].

Interaction Mediator Mass [GeV] Electric charge [e]

Strong gluon (g) 0 0
Electromagnetic photon (γ) 0 0

Weak
Z boson (Z) 91.2 0

W boson (W±) 80.4 ±1

all massive elementary particles. In 2012, a candidate for the SM Higgs boson with a mass of
approximately 125GeV was observed by ATLAS [7] and CMS [8] at the LHC. So far, all measured
properties are consistent with the SM predictions, but more precise measurements are needed to
study its nature in more detail.

The SM is a very good model to describe the physics of elementary particles at energies of present
particle colliders, however there are still limitations. The model does neither include gravity nor
any dark matter candidate. Furthermore, it cannot explain, for instance, the existence of exactly
three generations of fermions. Finally, the individual particle masses and parameter constants in
the model must be determined experimentally and are not predicted by the model itself.

In the following, the SM is described on basis of theoretical concepts, which is based on Ref. [36].

2.1.1 The Standard Model Gauge Structure

The SM is described in a theoretical way as a local gauge invariant quantum �eld theory (QFT).
The gauge structure is given as SU(3)C × SU(2)IW × U(1)YW

, with the U(1)YW
group of weak

hypercharge YW, the SU(2)IW group of weak isospin IW and the SU(3)C group of colour charge.
Particles in a quantum �eld theory are described as quantized �elds, which obey the laws of
both, special relativity and quantum mechanics. Any naive mass term in the SM Lagrangian
would break the gauge invariance and is therefore not included. The so-called Higgs mechanism

describes a spontaneous symmetry breaking via the introduction of a scalar �eld, the Higgs �eld,
which leads to the observed massive gauge bosons and fermions.

The SM Lagrangian LSM is given by

LSM = LYM + Lferm + LH + LYuk (2.1)

with the individual parts discussed in the following.

The Yang-Mills Lagrangian LYM describes the free propagation and self-interaction of the gauge
�elds. It is given by

LYM = −1

4
W i
µνW

i,µν − 1

4
BµνB

µν − 1

4
GaµνG

a,µν (2.2)

with the �eld-strength tensors

W i
µν = ∂µW

i
ν − ∂νW i

µ − gεijkW j
µW

k
ν , i, j, k = 1, 2, 3

Bµν = ∂µBν − ∂νBµ,
Gaµν = ∂µG

a
ν − ∂νGaµ − gsfabcGbµGcν , a, b, c = 1, . . . , 8 (2.3)

of the respective gauge �elds. The gauge �eld Bµ corresponds to the U(1)YW
group, W i

µ to
the SU(2)IW group and Gaµ the SU(3)C group. The gauge couplings of the individual groups are
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denoted as g′, g and gs. For the non-abelian groups, SU(2)IW and SU(3)C, the structure constants
de�ned by the commutation relations are noted as εijk and fabc respectively.

The second term in equation (2.1) describes the interaction between the gauge �elds and the
fermions, given by

Lferm = iΨ̄L /DΨL + iψ̄`R /Dψ`R + iΨ̄Q /DΨQ + iψ̄uR /DψuR + iψ̄dR /DψdR (2.4)

where ΨL = (ψν`L , ψ`L)ᵀ are the left-handed SU(2)IW spinor doublets of the charged leptons
` = e, µ, τ and the neutrinos ν` = νe, νµ, ντ . The left-handed quark doublet ΨQ = (ψuL , ψdL)ᵀ

contains the spinor of one up-type quark u = u, c, t and one down-type quark d = d, s, b of the
same generation. The respective right-handed SU(2)IW singlets are denoted as `R, uR and dR.
Right-handed neutrinos are not present in the SM and thus no term with ν`R is included.

The interaction between fermions is included in the covariant derivative

Dµ = ∂µ + igIiWW
i
µ + ig′

YW

2
Bµ + igsT

a
CG

a
µ (2.5)

which can be written with the Feynman slash notation as /D = Dµγ
µ. The generators of the

gauge groups are denoted as YW, IiW and T aC. With IiW = σi/2 (σi = Pauli matrices) for the
left-handed SU(2)IW doublets and IiW = 0 for the right-handed singlets it follows that the W
bosons only couple to left-handed fermions and are thus maximally parity violating. Finally,
the generators for the SU(3)C group are T aC = λa/2 for the quark triplets, with the Gell-Mann
matrices λa, and T aC = 0 for leptons.

So far, the stated SU(2)IW × SU(1)YW
gauge �elds are presented in their gauge basis (W i

µ, Bµ)
and not in their mass basis, i.e. W±µ , Zµ, Aµ which correspond to the particles W±, Z and
γ. With the requirement that the coupling structure of the photon is the same as in quantum
electrodynamics, i.e. blind to parity and proportional to Qψ̄ /Aψ, the photon �eld Aµ and the Z
boson �eld Zµ are obtained as(

Zµ
Aµ

)
=

(
cos θW − sin θW
sin θW cos θW

)(
W 3
µ

Bµ

)
(2.6)

which corresponds to a rotation of the basis. The weak mixing angle θW is given by

cos θW = cW =
√

1− s2
W =

g√
g2 + g′2

(2.7)

and the electromagnetic coupling strength e by

e =
gg′√
g2 + g′2

. (2.8)

With this, the remaining two �elds are derived as

W±µ =
(
W 1
µ ∓ iW 2

µ

)
/
√

2 (2.9)

which correspond to the charged gauge bosons W±.

The description of the SM up to here does not allow for mass terms for any of the so far mentioned
particles. Any naive mass term, proportional to W i

µW
i,µ for the W bosons or ψ̄fLψfR + ψ̄fRψfL

for fermions violates the gauge invariance. The introduction of the Higgs �eld allows particle
masses while maintaining the gauge invariance.
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2.1.2 Electroweak Symmetry Breaking

The Lagrangian of the Higgs sector in equation (2.1) is given by

LH = (DµΦ)†(DµΦ)− V (Φ), (2.10)

which introduces a new complex scalar SU(2)IW doublet Φ = (φ+, φ0)ᵀ. This doublet has a weak
hypercharge of YW,Φ = 1, with φ+ carrying the charge +e and φ0 being neutral. The second
term in equation (2.10) describes the self-interaction of Φ by the potential

V (Φ) = −µ2(Φ†Φ) +
λ

4
(Φ†Φ)2 (2.11)

which is constrained such that the model remains gauge invariant and is renormalizable. This
results in the two real free parameters µ2 and λ in V (Φ). The latter is required to be greater zero
to maintain vacuum stability. If µ2 is positive as well, it gives rise to a non-vanishing vacuum
expectation value (VEV) v. Finding the minimum of the potential V (Φ) results in

Φ†0Φ0 = v2/2 (2.12)

where Φ0 is the vacuum state and v2 = 2µ2/λ = 1/
(√

2GF

)
, with the Fermi constant GF. Since

the vacuum is electrically neutral, the upper component of Φ0 must vanish. Hence, Φ0 is �xed
up to a phase and can be chosen as Φ0 = (0, v/

√
2)ᵀ.

The freedom to choose the vacuum state Φ0 re�ects the spontaneous breakdown of the initial
SU(2)IW × U(1)YW

symmetry to the electromagnetic U(1)EM symmetry. Expanding the Higgs
�eld around the vacuum yields

Φ =

(
φ+ = φ1 + iφ2

(v +H + iχ) /
√

2

)
(2.13)

where H is the real and scalar Higgs �eld. The three unphysical Goldstone boson �elds are the
complex �eld φ+ = φ1 + iφ2 and the real �eld χ. These are connected to the vacuum state by
gauge transformations in such a way, that a gauge can be found, known as unitary-gauge, in
which these three �elds vanish.
The covariant derivative in equation (2.10) contains the interaction between the gauge boson
�elds and Φ. With YW,Φ = 1, IiW,Φ = σi/2 and T aC,Φ = 0 the covariant derivative can be
rewritten in the mass basis as

Dµ = ∂µ +
i

2

 g2−g′2√
g2+g′2

Zµ + 2eAµ
√

2gW+
µ√

2gW−µ − g
cW
Zµ

 (2.14)

where equations (2.6-2.9) are used. In the unitary-gauge, the Lagrangian LH can be written as

LH,U =
1

2
∂µH∂

µH +
g2

4
(v +H)2W+

µ W
−µ +

g2

8c2
W

(v +H)2ZµZ
µ

+
µ2

2
(v +H)2 − λ

16
(v +H)4 (2.15)

where the identity W+
µ
†

= W−µ is used in the second term. This Lagrangian contains bilinear
terms in W±µ , Zµ and H. These represent the mass terms for the corresponding gauge bosons
W±, Z and the Higgs boson H. The respective masses are given by

MW =
gv

2
, MZ =

MW

cW
, MH =

√
2µ2 =

√
λv2 (2.16)
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where both W bosons share the same mass MW . With the derived mass terms, µ2, v and λ can
be eliminated from equation (2.15), given as

LH,U =
1

2
∂µH∂

µH +
1

2
M2
HH

2 − gM2
H

4MW
H3 − g2M2

H

32M2
W

H4

+M2
WW

+
µ W

−µ +
1

2
M2
ZZµZ

µ

+ gMWHW
+
µ W

−µ +
g2

4
H2W+

µ W
−µ +

gMZ

2cW
HZµZ

µ +
g2

4c2
W

H2ZµZ
µ, (2.17)

where an irrelevant constant is neglected. The �rst line describes the kinematics and self-
interaction of the Higgs �eld. For this, the electrically neutral, spinless Higgs boson is associated
with a mass MH . This reduces the four degrees of freedom that the doublet Φ initially has by
one. The remaining degrees of freedom are used up by the now massive gauge �elds W±µ and
Zµ, described in the second line of equation (2.17). In the last line, the interaction between the
Higgs boson and the weak gauge bosons W± and Z is described.

The Lagrangian LH,U predicts the massive, scalar Higgs boson, three massive gauge bosons and
the massless electromagnetic photon �eld Aµ. The masses of the W bosons and the Z boson are
connected by the factor cos θW. Furthermore, interactions between one or two Higgs bosons with
the massive gauge bosons are predicted, as well as self-interactions of up to four Higgs bosons.
Despite the massive gauge bosons, the model remains gauge invariant.

Both parameters, µ2 and λ, are �xed by the mass of the Higgs boson and the VEV of v ≈ 246GeV.

2.1.3 Yukawa couplings

Besides the interaction with the massive gauge bosons, the Higgs boson also couples to fermions
called Yukawa couplings. In fact, these couplings give fermions their masses. The Lagrangian of
the coupling of left-handed fermion doublets Ψ with right-handed fermion singlets ψ to the Higgs
doublet Φ is given in the most general form as

LYuk = −Ψ̄LG`ψ`RΦ− Ψ̄QGuψuRΦ̃− Ψ̄QGdψdRΦ + h.c. (2.18)

where h.c. corresponds to the hermitian conjugate and Φ̃ = iσ2Φ∗ is the charge-conjugate Higgs
doublet. Here, Ψ and ψ are three-spinors represented in �avour space. The arbitrary 3×3 matrices
Gf , with f = `, u, d, contain the coupling strengths between the di�erent fermion-�avours. Hence,
the o�-diagonal elements of Gf mix left- and right-handed fermions of di�erent generations.

By transforming the denoted �avour basis (ψfτ,1 , ψfτ,2 , ψfτ,3), with τ = L,R, into a mass basis

(ψ̂fτ,1 , ψ̂fτ,2 , ψ̂fτ,3) the o�-diagonal elements in Gf become zero. This transformation is done by
a unitary matrix U ,

ψ̂fτ,i = Ufτij ψfτ,j , i, j = 1, 2, 3 (2.19)

which also transforms the matrices Gf into their diagonal form

UfLGfU
fR† =

√
2

v
diag (mf1 ,mf2 ,mf3) (2.20)

with the mass mfi of the fermion fi. The unitary matrix for the charged leptons U `τ can also be
used to transform the left-handed neutrino �elds as long as the neutrinos are considered massless.
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With ψ̄fτ =
¯̂
ψUfτ , the Lagrangian in equation (2.18) becomes in the unitary-gauge

LYuk,U = −
∑
f

∑
i

mfi

(
1 +

H

v

)(
ψ̄fiLψfiR + ψ̄fiRψfiL

)
(2.21)

where the �rst sum runs over the three fermion types `, u, d and the second one over the three
generations. This Lagrangian contains two important parts: the �rst one assigns a mass mfi to
each fermion. The second one describes the coupling of the Higgs boson to all massive fermions
with strength mfi/v. Hence, heavy fermions are more likely to interact with the Higgs boson. By
construction, no mixing term remains.

2.1.4 Flavour Violation in the SM

The basis transformation of the fermions in the Yukawa Lagrangian LYuk must also be carried
out in the fermion Lagrangian Lferm, given in equation (2.4). With ΨL = (ψν`L , ψ`L)ᵀ and the
transformation stated in equation (2.19), the Lagrangian can be written as

Lferm =i
(

¯̂
ψν`LU

`L ,
¯̂
ψ`LU

`L
)
/D

(
(U `L)†ψ̂ν`L
(U `L)†ψ̂`L

)
+ i

¯̂
ψ`RU

`R /D(U `R)†ψ̂`R

+ i
(

¯̂
ψuLU

uL ,
¯̂
ψdLU

dL
)
/D

(
(UuL)†ψ̂uL
(UdL)†ψ̂dL

)
+ i

¯̂
ψuRU

uR /D(UuR)†ψ̂uR + i
¯̂
ψdRU

dR /D(UdR)†ψ̂dR , (2.22)

where the neutrinos are transformed with the same unitary matrix as the charged leptons, since
the neutrinos are approximated as being massless in the SM. The up-type quarks and down-type
quarks are transformed separately by the respective matrices.
Equation (2.22) can be simpli�ed by commuting Ufτ and /D. This is possible, since Ufτ is de�ned
in the �avour space and /D is proportional to the identity matrix in the �avour space [37].
Furthermore, the identity of the unitary matrices is used, i.e. Ufτ (Ufτ )† = I, where I is the
identity matrix. With this, the left-handed lepton doublet and the right-handed fermion singlet
terms are simpli�ed. The Lagrangian is given by

Lferm =i
¯̂
ΨL /DΨ̂L + i

¯̂
ψ`R /Dψ̂`R

+ i
(

¯̂
ψuLU

uL ,
¯̂
ψdLU

dL
)
/D

(
(UuL)†ψ̂uL
(UdL)†ψ̂dL

)
+ i

¯̂
ψuR /Dψ̂uR + i

¯̂
ψdR /Dψ̂dR (2.23)

with Ψ̂L = (ψ̂ν`L , ψ̂`L)ᵀ. Only the term of left-handed quarks can not be simpli�ed, since the up-
type and down-type quarks are transformed with two distinct matrices. The o�-diagonal elements
of the covariant derivative /D result in a mixture of ψ̂uL and ψ̂dL which causes bilinear terms in
UuL and UdL . These matrices are in general not identical and hence, the basis transformation has
a non-vanishing e�ect in the quark sector. However, the diagonal elements of /D are not a�ected
by this transformation, but only the o�-diagonal elements. The latter elements originate due to
the charged weak current, i.e. the coupling to the W± bosons.
Separating the interaction of the charged weak current with the left-handed quarks from the
other interactions, the corresponding Lagrangian is given by

Lferm|q↔W± = −1

2

(
¯̂
ψuLU

uL ,
¯̂
ψdLU

dL
)( 0

√
2gW+

µ√
2gW−µ 0

)
γµ
(

(UuL)†ψ̂uL
(UdL)†ψ̂dL

)
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= − 1√
2
g
(

¯̂
ψuLVW

+
µ γ

µψ̂dL +
¯̂
ψdLV

†W−µ γ
µψ̂uL

)
where the matrix V = UuL(UdL)† is the Cabbibo-Kobayashi-Maskawa (CKM) [38, 39] matrix.
In the entire SM, the CKM matrix is the only remaining e�ect from the fermion basis transfor-
mation. However, the elements of the CKM matrix are not predicted by the SM, but must be
derived experimentally. The CKM matrix is found to be non-diagonal. This means that in the
interaction with a charged weak boson, di�erent quark-�avours mix and hence, the quark-�avour
is not a conserved quantity in the SM.
In the lepton sector of the SM, no such non-diagonal matrix is present, since both, charged
leptons and neutrinos are transformed by the same unitary matrix. Hence, no lepton-�avours are
mixed in the weak interaction and therefore no lepton-�avour violation is present. To summarize,
any lepton-�avour violating term in the Yukawa coupling is eliminated by the transformation
of the fermions into the mass basis, which does not result in any new lepton-�avour violating
process in the remaining parts of the SM. The lepton-�avour is a conserved quantity in the SM.

2.2 Charged Lepton-Flavour Violation

The SM does not predict any charged lepton-�avour violation (LFV). However, several models
beyond the SM (BSM) predict a lepton-�avour violating Higgs boson decay. This includes models
with more than one Higgs doublet [12�15], composite Higgs models [16, 17] and many others
[18�27]. The individual models are not discussed, but an e�ective and model-independent LFV
Lagrangian LLFV is introduced as extension to the SM Lagrangian.
This e�ective Lagrangian contains non-diagonal couplings between the Higgs �eld and the charged
leptons, inducing the LFV Higgs boson decays. It can be written as

LLFV =
cij√

2
H

¯̂
ψ`iL ψ̂`jR , i, j = 1, 2, 3, cii = 0 (2.24)

with the coupling strength cij . The spinors of the left-handed charge leptons of generation i are

denoted as ψ̂`iL and the right-handed ones as ψ̂`iR . Since no �avour diagonal coupling (i = j) is
added to the SM Lagrangian by LLFV, the coupling of the Higgs �eld to same-�avour leptons is
una�ected. However, the non-diagonal elements cause LFV Higgs boson decays. Similarly to the
elements of the CKM matrix, the individual coupling strength must be derived experimentally.
In the SM, lepton-�avour violating terms were eliminated by performing a basis transformation,
i.e. from the �avour basis into the mass basis. This was possible because the matrix describing
the fermion couplings to the Higgs boson is proportional to the corresponding mass matrix
and therefore, both are diagonal in the mass basis. The introduced Lagrangian LLFV only adds
couplings between the fermions and the Higgs boson, but no mass terms. This prevents the
removal of LLFV by changing the fermion basis again. Thus, LLFV enables LFV Higgs boson
decays in the charged lepton sector.

2.3 The Higgs Boson

The Higgs mechanism in the SM explicitly predicts the existence of an additional scalar and
electrically neutral boson, the Higgs boson. In 2012, both the ATLAS and CMS collaboration
announced the discovery of a SM Higgs boson candidate with a mass close to 125GeV [7,8]. For
a given mass of the Higgs boson, the SM predicts all its properties. Investigating these properties
for the 125GeV Higgs boson candidate allows to check if it is indeed the SM Higgs boson or
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one of an extended model. Since the SM does not allow LFV decays of the Higgs boson, the
observation of such decays would indicate that the observed Higgs boson is one of an extended
model and not of the SM.
In this thesis, the LFV Higgs boson is almost identically simulated as the SM Higgs boson. The
production mechanisms, decay modes and rates as well as the kinematics of the LFV Higgs boson
are the same as predicted by the SM, except that in addition LFV decays are allowed. This is
reasonable, since so far all properties of the observed 125GeV Higgs boson are consistent with
the SM predictions.

2.3.1 Production and Decay of the Higgs Boson

The main SM processes that produce a Higgs boson are the gluon-gluon fusion (ggH), the vector
boson fusion (VBF) and the vector boson associatedWH and ZH production. The corresponding
Feynman diagrams are presented in �gure 2.1.

Figure 2.1: Leading order Feynman diagrams for gluon-gluon fusion (a), vector boson fusion (b)
and vector boson associated (c) Higgs boson production [40].

Of the denoted production processes, ggH has the largest cross-section (88.9%). The VBF pro-
duction process has the second largest (6.9%), followed by the associatedWH production (2.5%)
and �nally the corresponding ZH process (1.6%). In table 2.3 the respective total cross-sections
are listed.

Table 2.3: Total cross-section for di�erent Higgs boson production processes at
√
s = 13TeV [41].

Process Cross-section [pb]

ggH 48.58
VBF 3.782
WH 1.373
ZH 0.884

The cross-section of the ggH process is by more than one order of magnitude larger than the
second largest cross-section and hence, dominates the Higgs boson production. Both outgoing
quarks in the VBF process result in jets. In most cases, these jets are separated by a large
pseudorapidity di�erence and the jet system has typically a large invariant mass mjj . In the
vector boson associated Higgs boson production, the vector boson decays either leptonically or
hadronically. In �gure 2.2, the cross-section as function of the Higgs boson mass in the vicinity
of 125GeV is shown for di�erent production processes.
Since the Higgs boson couples to all massive particles, it is able to decay at leading-order into
massive particle and anti-particle pairs. In addition, higher-order contributions allow also decays
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Figure 2.2: SM Higgs boson cross-section at
√
s = 13TeV as function of the Higgs boson mass

in the vicinity of 125GeV [42].

into massless particle pairs or a massive and a massless particle. The respective branching ratios
for the most important decay modes of the Higgs boson candidate with a mass of 125GeV are
presented in table 2.4.

Table 2.4: Branching ratios of the most important Higgs boson decay modes for a Higgs boson
with a mass of 125GeV [42].

H → bb̄ W+W− gg τ+τ− cc̄ ZZ γγ Zγ µ+µ−

Branching ratio [%] 58.24 21.37 8.19 6.27 2.89 2.62 0.23 0.15 0.02

Most of these process are of no further interest in this analysis, since they are suppressed by the
applied selection. However, H → τ+τ− has a signi�cantly large branching ratio and a similar
�nal state as the investigated LFV signal. Thus, this decay mode needs to be considered in the
search for LFV decays of the Higgs boson. The decay process H → W+W− → eµ2ν has also
a similar �nal state as the LFV signal. In �gure 2.3, the SM Higgs boson branching ratio as
function of the Higgs boson mass is presented.

LFV decays of the Higgs boson are possible in three decay modes: H → τe, H → τµ and
H → µe. However, the branching ratio of H → µe is already limited from indirect searches
to . 10−8 [32, 33]. The upper limit on the branching ratio of H → τe is 1.04% and the one
of H → τµ is 1.43% [34]. At the LHC, direct searches for these decays are performed. In the
following, only LFV decays H → τe and H → τµ are considered, where the τ -lepton decays
leptonically resulting in a di�erent �avour �nal state. In �gure 2.4 the decay of a Higgs boson
into a τ -lepton and either an electron or a muon (`0) is shown. The τ -lepton decays further into
two neutrinos and a light lepton (`1). In this thesis, the τ -lepton is required to decay into the light
lepton �avour, which is not the �avour of `0. Hence, an electron, a muon and two neutrinos are
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Figure 2.3: SM Higgs boson branching ratio at
√
s = 13TeV as function of the Higgs boson mass

in the vicinity of 125GeV [42].

present in the �nal state. However, the neutrinos only interact weakly and thus are not detected
directly by the detector, but cause missing transverse energy.

ντ

ν`1
`1

H
`0τ

Figure 2.4: Feynman diagram of LFV Higgs boson decay into a τ lepton and a light charged
lepton `0. The τ -lepton decays further into either an electron or a muon and two
neutrinos.

Since `0 originates directly from the Higgs boson, it has in general a larger momentum than the
lepton from the τ -decay. Furthermore, the τ -lepton and `0 have a high momentum due to the
large mass di�erence to the Higgs boson. This results in approximately the same direction of
�ight of the decay products of the τ -lepton, i.e. `1 and the neutrinos.

2.3.2 The SM Higgs Boson Candidate

Since the discovery of the Higgs boson candidate, the properties of this new particle have been
measured. So far, all measured properties do not show any signi�cant deviation from the SM
predictions.

As the SM predictions of the Higgs boson properties strongly depend on the Higgs boson mass,
a precise measurement of its mass is crucial. Both collaborations presented a combined mea-
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surement of the Higgs boson mass using the complete Run 1 data (2011-2012) of the LHC. A
Higgs boson mass of mH = 125.09 ± 0.21(stat.) ± 0.11(sys.)GeV was obtained [9]. For data of
the 2016 data-taking year of Run 2 of the LHC, the CMS collaboration obtained a Higgs boson
mass of mH = 125.26 ± 0.20(stat.) ± 0.08(sys.)GeV [43]. The ATLAS collaboration derived for
the data-taking years 2015 and 2016 a Higgs boson mass of mH = 124.86± 0.27GeV [44].
Furthermore, a combined measurement of the Higgs boson production and decay rates was
performed. The signal strength for the production process i and decay modes f is de�ned as
µfi = (σi · BRf )obs./(σi · BRf )SM, with the observed cross-section and branching ratio in the
numerator and the ones predicted by the SM in the denominator. The derived best-�t signal
strength values for the production and decay of the Higgs boson are shown in �gure 2.5. Within
the uncertainties, most of the values are in good agreement with the SM predictions. The global
signal strength µ, which is the same for all production processes i and decay modes f (µ = µfi )
was derived as µ = 1.09+0.11

−0.10, being within 1σ of the SM prediction [10].

Parameter value
1− 0.5− 0 0.5 1 1.5 2 2.5 3 3.5 4

µ

ttH
µ

ZH
µ

WH
µ

VBF
µ

ggF
µ

 Run 1LHC
CMS and ATLAS ATLAS+CMS

ATLAS

CMS

σ1±
σ2±

(a) Production

Parameter value
1− 0.5− 0 0.5 1 1.5 2 2.5 3 3.5 4

bbµ

ττµ

WWµ

ZZµ

γγµ

 Run 1LHC
CMS and ATLAS ATLAS+CMS

ATLAS

CMS

σ1±
σ2±

(b) Decay

Figure 2.5: Combined ATLAS and CMS measurements for Higgs boson production (a) and decay
(b) signal strengths. A best �t value of µ = 1 corresponds to the SM prediction [10].

Finally, the spin and parity of the SM Higgs boson candidate were measured. The SM predicts a
spin 0 particle with positive parity. Alternative hypotheses were excluded above a 95% con�dence
level by the ATLAS and CMS collaboration [11,45].
To summarize, all measurements up to now suggest that the observed Higgs boson at 125GeV
is indeed very SM-like. For the possible observation of a LFV decay of the Higgs boson, more
precise measurements are necessary.
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In this chapter, an overview of the experimental setup is presented. The LHC accelerator is
described in section 3.1. In section 3.2, the general purpose detector ATLAS is presented in more
detail. The structure of the detector and its most important detector parts as well as the used
trigger system is described.

3.1 The Large Hadron Collider

The LHC (LargeHadronCollider) [46] at CERN (ConseilEuropéen pour laRechercheNucléaire)
is presently the most powerful particle accelerator for proton-proton or heavy ion collisions. It
consists of two 26.7 km long accelerator rings, which intersect each other at the experimental
facilities, producing particle collisions at centre-of-mass energies

√
s currently up to 13TeV. The

proton beams contain up to 2808 bunches separated by 25 ns and every bunch consists of about
1011 protons. Superconducting magnets with a dipole �eld up to 8.33T force the beam on a
circular path. Quadrupole magnets are used to focus the beams.

The number of collisions is proportional to the luminosity L of the accelerator, which is only
depended on machine parameters. For two equally shaped Gaussian beam bunches, the instan-
taneous luminosity can be written as

L =
N2
b nbfrevγr
4πεnβ∗

F , (3.1)

where Nb is the number of particles per bunch and nb is the number of bunches per beam.
The revolution frequency is noted as frev, the relativistic gamma factor as γr, the normalized
transverse beam emittance as εn and the beta-function at the collision point as β∗. Finally, F
denotes the geometric luminosity reduction factor due to the crossing angle of the beams at the
interaction point [47].

Figure 3.1: Position of the four detectors in the LHC ring [48].
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At each of the four beam crossing points a detector is placed. These are the two general purpose
detectors ATLAS and CMS as well as the ALICE and LHCb detectors. In �gure 3.1 the position
of these detectors in the LHC ring are shown.
In this thesis, data collected by the ATLAS detector from the so-called Run 2 of the LHC are used.
This includes data-taking years from 2015 to 2018 at a center-of-mass energy of

√
s = 13TeV

and a corresponding integrated luminosity for proton-proton collisions of
∫

L = 139 fb−1 [49]. In
�gure 3.2, the respective integrated luminosities for all data-taking years since 2011 are shown.
In Run 2, much higher luminosities than in Run 1 are achieved.
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Figure 3.2: Integrated luminosity of all data-taking years since 2011 [49].

3.2 The ATLAS Detector

The ATLAS (A Toroidal LHC ApparatuS) detector is one of two general purpose detectors
at the LHC. It is designed to perform precision measurements as well as to search for physics
beyond the standard model. The detector is build up cylindrically and consists of several self-
contained sub-detectors, shown in �gure 3.3. The inner most detector part is the inner detector
which is used to track charged particles. It is surrounded by the electromagnetic and hadronic
calorimeters. The most outside parts of the ATLAS detector are the muon spectrometers. Two
magnetic �elds are present in the ATLAS detector, a solenoid �eld in the inner detector and a
toroid �eld in the muon system.
The laboratory system of the ATLAS detector is called ATLAS coordinate system and has its
origin in the nominal interaction point. It is de�ned as a right-handed coordinate system, where
the z-axis is parallel to the beam line. Hence, the transverse plane is spanned by the xy-plane.
The positive x-axis points from the origin of the coordinate system towards the centre of the
LHC ring and the positive y-axis, is pointing upwards. With the right-handed coordinate system,
the positive z-axis is called side-A and the negative one side-C.
The azimuthal angle φ is de�ned as angle around the z-axis in a right-handed way. Instead
of the polar angle θ, de�ned as angle from the positive z-axis to the measured particle, the
pseudorapidity

η = − ln tan
θ

2
(3.2)

16



3.2 The ATLAS Detector

Figure 3.3: Overview of the ALTAS detector [50].

is used. With these angles, the distance in the azimuthal-pseudorapidity space is de�ned as

∆R =
√

∆φ2 + ∆η2, (3.3)

where ∆φ and ∆η are the respective angular di�erences.
The transverse momentum ~pT and transverse Energy ~ET are given as

~pT =

(
px
py

)
, ~ET =

(
Ex
Ey

)
(3.4)

and their magnitude, denoted as pT and ET respectively, is derived with the usual Euclidean
norm.
In following, the individual sub-detectors are described in more detail. More information and
details can be found in Ref. [50].

3.2.1 Inner Detector

The inner detector is located in the centre of the ATLAS detector. It is used to perform precise
momentum measurements of charged particles, primary and secondary vertex measurements as
well as to measure particle tracks. The central solenoid immerses the inner detector in a 2T
strong magnetic �eld. In �gure 3.4, an overview of the inner detector is shown.
The inner detector is build up by the Pixel detector, the Semiconductor Tracker (SCT) and the
Transition Radiation Tracker (TRT). Both, the Pixel detector and the SCT, cover the pseudora-
pidity of |η| < 2.5 and achieve the highest granularity around the vertex region. The TRT covers
the region |η| < 2.0. All detector parts are split in a barrel region and two end-cap regions. In the
barrel region, the Pixel detector and the SCT are arranged on concentric cylinders around the
beam axis and the TRT straw tubes are ordered parallel to the beam axis, while in the end-cap
regions all parts are ordered perpendicular to the beam axis.
The pixel layers are arranged in such a way, that a track usually crosses three of them. For the
SCT, eight strip layers are typically crossed by one track, resulting in four measured space points
due to the orthogonal orientation of the strips in each layer. The TRT provides about 36 hits
per track, but in contrast to the other two detector parts, it does only provide R − φ position
information, whereas the others also provide information on the z-position.
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Figure 3.4: Overview of the inner detector [50].

The inner detector is designed to achieve the resolution of the transverse momentum

σpT /pT = 0.05% pT ⊕ 1%,

where σpT is the uncertainty of the transverse momentum measurement.

3.2.2 Calorimeters

In �gure 3.5, an overview of the electromagnetic and hadronic calorimeter is displayed. Both
calorimeters are designed to provide a good containment of electromagnetic and hadronic showers.
This is ensured by a total thickness of the calorimeter of > 22 radiation lengths in the barrel
region and > 24 radiation lengths in the end-cap regions. The hadronic calorimeter has a radial
depth of about 7.4 interaction lengths. Both, the electromagnetic and hadronic calorimeter are
sampling calorimeters.
The electromagnetic calorimeter is designed to precisely measure the energy of electrons and
photons. It has a very �ne granularity using lead as absorber and liquid argon as active material.
Similar to the inner detector parts, it is separated in a barrel region and two end-cap regions.
The barrel region covers a pseudorapidity of |η| < 1.475 and is made up of two identical half-
barrels. The end-cap consists of two coaxial wheels, where the outer wheel covers the region
1.375 < |η| < 2.5 and the inner wheel 2.5 < |η| < 3.2.
Over its full range, accordion-shaped electrodes and lead absorber plates build up the calorimeter,
providing a complete symmetry in φ without any azimuthal cracks. In the central region |η| < 1.8,
a presampler, consisting of a liquid argon layer, corrects for energy losses of electrons and photons
prior to the calorimeter.
The electromagnetic calorimeter has a resolution of

σE/E = 10%/
√
E ⊕ 0.7%

for the energy E of electrons and photons.
The hadronic calorimeter consists of a tile calorimeter in the central region, a hadronic liquid
argon end-cap and a liquid argon forward calorimeter for large pseudorapidities. It is used to
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Figure 3.5: Overview of the electromagnetic and hadronic calorimeter [50].

reconstruct jets and the measurement of missing transverse energy. The central tile calorimeter
consists of a barrel part, covering |η| < 1.0, and an extended barrel part for pseudorapidities
between 0.8 and 1.7. Steel is used as absorber material and scintillating tiles as the active material.

The hadronic end-cap calorimeter consists of two independent wheels for each end-cap. Each
wheel is build up by wedge-shaped copper modules with liquid argon as active material. The
end-cap calorimeter covers a region of 1.5 < |η| < 3.2. In each end-cap, three modules are placed,
building up the forward calorimeter, which covers a pseudorapidity region of 3.1 < |η| < 4.9.
The �rst one uses copper as absorber and is optimised for electromagnetic measurements. The
other two measure primarily the energy of hadronic interactions and use tungsten as absorber.
Liquid argon is used as active material for the forward calorimeter.

With

σE/E = 50%/
√
E ⊕ 3%

for the tile and end-cap calorimeters, and

σE/E = 100%/
√
E ⊕ 10%

for the forward calorimeter, the designed resolutions of jets are much larger than the one of the
electromagnetic calorimeter. However, it is su�cient to satisfy the physics requirements.

3.2.3 Muon System

The muon system is designed to measure the momentum of charged particles which cross the
calorimeters. It is located in the very outermost part of the ATLAS detector, as shown in �gure
3.6.

Three di�erent parts build up the muon system. Those parts are the barrel region for |η| < 1.4,
the transition region with 1.4 < |η| < 1.6 and the end-cap region for 1.6 < |η| < 2.7. In the barrel
region, the charged particles are de�ected by the large barrel toroid, providing a bending power
between 1.5Tm and 5.5Tm. Two magnets inserted in both ends of the barrel toroid provide
the magnetic de�ection in the end-cap region, with a bending power of 1Tm to 7.5Tm. In the
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Figure 3.6: Overview of the muon system [50].

transition region, a combination of both magnets de�ects the particles. This results in a magnetic
�eld mostly orthogonal to the particle trajectories.
For the largest part of the muon system, monitored drift tubes (MDT) are used to measure the
particle trajectories. At pseudorapidities of 2.0 < |η| < 2.7, cathode strip chambers (CSC) are
used in addition, which have a higher granularity.
In addition, the muon system is used to trigger particles with pseudorapidities up to 2.4. For
this, resistive plate chambers are used in the barrel region and thin gap chambers in the end-cap
region. The trigger chambers serve three purposes: providing well de�ned pT thresholds, bunch-
crossing identi�cation and measuring the particle coordinate in the direction orthogonal to the
one determined by the MDT's and CSC's.
At a transverse momentum of 1TeV a resolution of

σpT /pT = 10%

is achieved for muons.

3.2.4 Trigger System

The proton bunches in the LHC collide at a crossing rate of about 40MHz. However, the ATLAS
detector is only able to store the collision events at a rate of about 1 kHz. This requires a e�cient
trigger system which decides if a collision event is stored or not. The ATLAS trigger system [51]
is based on two distinct systems. One system is the hardware-based level-1 trigger and the other
the software-based high level trigger (HLT) [52].
The level-1 trigger uses information of the electromagnetic and hadronic calorimeter with a
reduced granularity as well as the muon system. Events with either high transverse momentum
muons, electrons, photons, taus or jets as well as high missing transverse energy are searched for.
It also de�nes Regions-of-Interest (RoIs), which are further investigated by the HLT. The level-1
trigger reduces the initial bunch crossing rate of 40MHz to 100 kHz, with a decision time of less
than 2.5µs.
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Information from the inner detector hits, the full calorimeter information as well as data from
the muon detectors is used by the HLT. The HLT is applied to the RoIs of the event. With the
full event information available for the ROIs, the HLT can apply additional requirements, e.g. a
given isolation requirement or have a transverse momentum above a given threshold. The HLT
reduces the level-1 trigger rate to 1 kHz, with a processing time of 200ms.
In �gure 3.7, an overview of the ATLAS trigger system and data acquisition system is presented.

Figure 3.7: Overview of the ATLAS trigger system and data acquisition system [52].
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The reconstruction of objects detected with the ATLAS detector is described in section 4.1. This
includes electrons, muons, jets and the missing transverse energy. In section 4.2, the used single
lepton and di-lepton triggers are described.

4.1 Object Reconstruction

The ATLAS detector is not able to detect a particle or jet itself, but only its energy deposition
and the hits in the tracking detectors. Several algorithms use this information, to reconstruct the
trajectories and properties of the respective objects. However, this reconstruction is not unique,
but often several objects can be candidates for the reconstruction of the observed detector signals.
Di�erent requirements for the identi�cation and isolation of these reconstructed objects is used,
to select with a high probability the correct particle candidate.

A detailed description of the reconstruction of hadronically decaying τ -leptons can be found in
Ref. [53].

4.1.1 Electrons

In this analysis, only electrons with a pseudorapidity |η| < 2.47 are considered. Because of a
signi�cant worse resolution and identi�cation, electrons are excluded if they are detected in a
transition area between the barrel and the end cap calorimeter, corresponding to a pseudorapidity
of 1.37 ≤ |η| ≤ 1.52, since .

The electrons are reconstructed using the information from the inner detector and the electro-
magnetic calorimeter. First, the clusters of energy deposits are identi�ed in the calorimeter. Then,
tracks of charged particles in the inner detector are matched to those clusters. If several tracks
are matched, the primary electron track is chosen by using the distance in the azimuth angle φ
and pseudorapidity η between the track and the centre of the cluster. Furthermore, tracks are
required to hit the pixel detector and the silicon-strip detector. Finally, the energy of the electron
candidate is calculated using the energy deposition in the calorimeter cluster. Energy loss e�ects
like bremsstrahlung are taken into account.

For the identi�cation of the electrons, a likelihood-based method is used. Three di�erent working
points with increasing likelihood thresholds are de�ned: loose, medium and tight. More back-
ground is rejected by using a higher threshold. However, with an increasing threshold, the iden-
ti�cation e�ciency decreases. The exact identi�cation de�nitions and the used procedures can
be found in Ref. [54].

Electron isolation criteria are applied, to reduce the background due to misidenti�ed hadrons as
well as electrons originating from heavy-�avour decays. These criteria use both the calorimeter-
based isolation and track-based isolation. The isolation quali�es the detector activity in a cone
around the electron candidate. Electron candidates from a heavy particle like the Higgs boson
result only in a little additional detector response in the cone, whereas semileptonic decays of a
heavy quark results in additional jets and thus in a larger detector activity [54].
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4.1 Object Reconstruction

The contribution of electrons resulting from secondary decay processes, so-called non-prompt
electrons, can be reduced by using the longitudinal impact parameter z0 sin θ and the signi�cance
of the transverse impact parameter d0,signif.. The de�nitions of d0, z0 and sin θ are shown in �gure
4.1.

Figure 4.1: De�nitions of d0, z0 and sin θ. The primary vertex is indicated as red dot [55].

The transverse impact parameter d0 is de�ned as the shortest distance of a track to the primary
vertex in the transverse plane, i.e. the x-y-plane. Its signi�cance is derived as

d0,signif. = d0/σd0 (4.1)

with the variance σd0 of the transverse impact parameter. Analogous, z0 is de�ned as distance
in z-direction between the primary vertex and the point on the track, used to evaluate d0. This
distance is multiplied with sin θ, where sin θ = |~pT |/|~p| with the (transverse) momentum ~p (~pT )
of the respective lepton. Events with large impact parameter values are more likely to include
non-prompt electrons.
In this thesis, only electrons of the medium identi�cation working point with a transverse energy
greater 15GeV are used, which corresponds to an identi�cation e�ciency εid > 75 %. In general,
the electron isolation e�ciency is dependent on di�erent kinematic variables. These are mainly
the transverse energy and the pseudorapidity. The used Gradient isolation is constructed in such a
way, that the e�ciency is only dependent on the transverse energy, eliminating the pseudorapidity
dependency, given by εiso = 0.1143 · pT + 92.14 %. Electrons must have a longitudinal impact
parameter |z0 sin θ| < 0.5 and a signi�cance of the transverse impact parameter |d0,signif.| < 10.

4.1.2 Muons

Only muons with a pseudorapidity |η| < 2.5 are considered. The reconstruction and identi�cation
of muons is based on information of the inner detector and the muon spectrometer as well as the
calorimeters.
Muons are at �rst reconstructed independently in the inner detector and the muon spectrometer.
Inside each muon chamber of the spectrometer, hit patterns are searched to form segments. These
segments are obtained by performing a straight-line �t to the hits which are aligned in the bending
plane of the detector. A muon track candidate is constructed by �tting the hits from segments in
di�erent layers. Since this can result in several track candidates sharing the same segments, an
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overlap removal between the di�erent tracks is performed. This selects the best matching single
track or allows that the segment is shared by two tracks.
The muon candidates in the muon spectrometer are combined with those in the inner detector.
This is done in most cases by an outside-in pattern recognition, where the candidates in the
spectrometer are extrapolated inwards to be matched with an inner detector track. This global
�t results in a combined muon candidate. The inside-out recognition is also used. However, due
to the muon identi�cation discussed in the following, their contribution is below 1%.
Also for the muon identi�cation, the three working points loose, medium and tight are used. The
loose identi�cation is designed to maximize the muon reconstruction e�ciency, whereas the tight
identi�cation maximizes the purity of the reconstructed muons, by reducing the contamination
due to pion and kaon decays. With the medium identi�cation, the systematic uncertainties are
minimized. The exact de�nitions are found in Ref. [56].
The impact parameters d0,signif. and z0 sin θ can be used to suppress the contribution of the
cosmic muon background.
In this thesis, only medium identi�ed muons with a transverse momentum greater 10GeV are
used, which corresponds to an identi�cation e�ciency εid > 98 %. For the muon isolation, the
track-based criterion FCTightTrackOnly_FixedRad is applied. This isolation compares the trans-
verse momentum of the muon candidate to the sum of transverse momenta of all tracks in a cone
around it and rejects background processes with additional particles or jets. The cone size is �xed
for a transverse momentum of the muon candidate larger than 50GeV, which ensures a high iso-
lation e�ciency. Below this threshold, the cone size is inverse proportional to the transverse
momentum, improving the isolation performance for muons produced in the decay of particles
with a large transverse momentum. The isolation e�ciency εiso is above 93% [56]. The same
requirements on z0 sin θ and d0,signif. as for the electrons are applied for the muons.

4.1.3 Jets

The reconstruction of jets is performed by the so-called anti-kt algorithm using a radius parameter
of R = 0.4 [57]. This algorithm uses topologically-grouped clusters of the calorimeter cells, where
the individual calorimeter cells must exceed four times the expected average electronic and pile-
up noise in the cell. In addition, the so-called particle �ow algorithm is applied. This is a cell-
based energy subtraction algorithm, which removes overlaps between the energy and momentum
measurements in the inner detector and the calorimeters, respectively [58]. Jets are required to
have a transverse momentum greater 20GeV and to be within the η-range of |η| < 4.5.
The jets containing b-quarks are tagged using the MV2c10 algorithm at the FixedCutBE�_85
working point. This algorithm utilises a boosted decision tree with several training variables like
the pT and η of the jets. A more detailed description of the algorithm with all used training
variables can be found in Ref. [59].
In the central pseudorapidity range (|η| < 2.4), another requirement is added, to reduce jets
originating from additional beam interactions. For this, the jet-vertex-tagger (JVT) is introduced,
which is a two dimensional likelihood discriminant. Both dimensions are based on variables, which
are calculated in terms of the transverse momenta of tracks associated with the respective jet
as well as tracks originating from additional beam interactions [60]. Jets in this pseudorapidity
region which have a transverse momentum smaller than 60GeV are required to have a JVT > 0.2.

4.1.4 Missing Transverse Energy

The ATLAS detector is not interacting directly with neutrinos. Thus, no individual reconstruc-
tion of those is possible, but some information can be obtained, using the information gained
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from the measurement of all detectable particles. The accelerated protons in the LHC do not have
any momentum perpendicular to the beam axis. Due to momentum conservation, this is also true
for the �nal state of the produced particles. In case of an ideal detector, the negative of all mea-
sured transverse momenta corresponds to the combined transverse neutrino momentum, noted
as missing transverse energy ~Emiss

T . However, detector resolution e�ects are also contributing as
well as further undetected particles.
The absolute value of the missing transverse energy is given as

| ~Emiss
T | = Emiss

T =
√
Emiss
T,x

2
+ Emiss

T,y
2

(4.2)

with the components Emiss
T,x along the x-axis and Emiss

T,y along the y-axis. Each component of the
missing transverse energy is reconstructed using hard-event and soft-event signals. The hard-
event signals consist of all reconstructed jets and particles, i.e. electrons, muons, photons and
hadronically decaying τ -leptons. Each of these objects must ful�l the respective reconstruction
quality requirements as well as the kinematic thresholds. The soft-event signals are de�ned as all
charged-particle detector signals of one event, which are not included in the hard-event signals.
This includes, inter alia, independent pile-up interactions as well as particles and jets which do
not ful�l the quality requirements.
The respective components are derived as

Emiss
T,x(y) = −peT,x(y) − p

µ
T,x(y) − p

γ
T,x(y) − p

τhad
T,x(y) − p

jet
T,x(y) − p

soft
T,x(y) (4.3)

using the transverse momenta of the hard-event and soft-event contributions. Since all detector
subsystems are used, the reconstruction of the missing transverse energy is very challenging.
A detailed description of the missing transverse momentum and its performance can be found in
Ref. [61].

4.1.5 Overlap Removal

Two reconstructed objects are not allowed to be arbitrary close to each other, since this would
cause ambiguity about the object identities. This is accomplished by an overlap removal. A
scheme is used, eliminating one of two reconstructed objects by using in most cases the quantity
∆R =

√
∆φ2 + ∆η2, with the angular di�erences ∆φ and ∆η between the two objects.

In case of an electron and a jet with ∆R < 0.2, the jet is removed. The remaining jets are
categorized into pile-up and non-pile-up jets, where pile-up jets have a transverse momentum
smaller 60GeV, are within |η| < 2.4 and have a JVT < 0.59. The electron is removed, if the
di�erence ∆R is smaller than 0.4 to a remaining non-pile-up jet.
For a muon and a jet, two criteria must be ful�lled by the jet to be removed. The �rst criterion
is ∆R < 0.2. Simultaneously, the jet must have less than three tracks or the transverse momen-
tum requirements pT (µ)/pT (jet) > 0.5 and pT (µ)/

∑
k p

trackk
T (jet) > 0.7 must be ful�lled. The∑

k p
trackk
T (jet) is the scalar transverse momentum sum of tracks associated with the jet. The

muon is removed, if ∆R < 0.4 to a remaining non-pile-up jet.
Any calorimeter-tagged muon that shares an inner detector track with an electron is removed.
Electrons are removed, if an inner detector track is shared with any remaining muon.

4.2 Triggers

Events are only used, if at least one lepton �res a single lepton trigger or a di-lepton trigger
is �red. The trigger strategy is based on logical OR combinations of di�erent single lepton and
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di-lepton triggers. For every trigger, a pT threshold requirement for the respective lepton is set.
However, to avoid turn-on e�ciency e�ects of the triggers in the low pT -range, this threshold
is increased by an additional o�ine pT threshold. The used single lepton triggers as well as the
corresponding o�ine pT requirements are shown in table 4.1 for electrons and in table 4.2 for
muons and the respective di-lepton triggers are presented in table 4.3.

Table 4.1: Electron trigger requirements. The electron transverse momentum is required to sur-
pass both trigger and o�ine pT requirements.

Year Single lepton trigger Trigger pT /GeV O�ine pT /GeV

2015
HLT_e24_lhmedium_L1EM20VH 24

HLT_e60_lhmedium 60 25
HLT_e120_lhloose 120

2016, 2017, 2018
HLT_e26_lhtight_nod0_ivarloose 26

HLT_e60_lhmedium_nod0 60 27
HLT_e140_lhloose_nod0 140

The data-taking years 2016, 2017 and 2018 have common single lepton and di-lepton triggers.
For leptons passing the single lepton trigger, the o�ine pT requirement is raised to 25 (27)GeV
for electrons in 2015 (2016-2018) and 21 (27.3)GeV for muons. In case of the di-lepton triggers,
the electron is required to have a higher transverse momentum than the muon. For the individual
triggers for the 2015 data-taking year and the 2016-2018 data-taking years, the electron pT is
required to be larger than 18GeV and the muon pT larger than 14.7GeV. In case of the trigger
used in all data-taking years, these thresholds are modi�ed to 27GeV and 10GeV.

Table 4.2: Muon trigger requirements. The muon transverse momentum is required to surpass
both trigger and o�ine pT requirements.

Year Single lepton trigger Trigger pT /GeV O�ine pT /GeV

2015
HLT_mu20_iloose_L1MU15 20

21
HLT_mu50 50

2016, 2017, 2018
HLT_mu26_ivarmedium 26

27.3
HLT_mu50 50

Table 4.3: Di-lepton trigger requirements. The electron and muon transverse momenta are re-
quired to surpass both trigger and o�ine pT requirements.

Year Di-lepton trigger Trigger pT /GeV O�ine pT /GeV

2015 HLT_e17_lhloose_mu14
peT > 17 peT > 18.0
pµT > 14 pµT > 14.7

2016, 2017, 2018 HLT_e17_lhloose_nod0_mu14
peT > 17 peT > 18.0
pµT > 14 pµT > 14.7

All
HLT_e26_lhmedium_nod0_ peT > 26 peT > 27.0
L1EM22VHI_mu8noL1 pµT > 80 pµT > 10.0
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Machine learning (ML) techniques are widely used in particle physics analyses. The di�erent ML
techniques are enabled to exploit the underlying scheme by the large amount of produced data.
Thus, the experimental sensitivity can be improved by applying ML with respect to traditional
cut-based concepts [62]. One of these techniques are Neural Networks (NN) or more modern
Deep Neural Networks (DNN). Two techniques are typically used: supervised and unsupervised
learning. In latter, the algorithm tries to �nd unknown patterns within data, whereas for su-
pervised learning it learns to reproduce known pattern. Hence, the target value in the case of
supervised learning is known, whereas in unsupervised learning it is not. Only supervised learning
is considered in the following.

In section 5.1, an introduction to NNs is presented. This includes the most important quantities,
the two DNN tasks regression and classi�cation, the description of hyper-parameters as well as
regularization of NNs and the important concept of error back propagation. In section 5.2, the
training process of NNs is described. The challenges of optimizing NNs are discussed in section
5.3.

5.1 Introduction to neural networks

In high energy particle physics (HEP), the separation between background processes and the
signal process is a main challenge to perform precision measurements or to �nd physics beyond
the SM. A better separation or separating a resonant signal process can be achieved by an
improved mass reconstruction. NNs and DNNs provide a new technique, which bene�ts from the
large amount of produced data in HEP.

5.1.1 Important quantities of neural networks

The aim of any NN is to map some input features on one or more output values. Input features
are not chosen by the NN itself, but are de�ned in advance. In case of HEP, this can be the
energy of a particle or its direction of �ight. At best, these are important quantities, which have
a signi�cant in�uence on the desired output. They are then propagated through the NN to derive
the output(s), denoted as L.

The fundamental constituents of any NN are the so-called nodes. For each node, all input values
are combined into one output value. In the following, each input value is given as xi, with the
total number of inputs N . Further, wi are the corresponding weights. With this, the output y
per node can be derived as

y = f (~w · ~x+ b) (5.1)

with the transposed vectors ~x = (x1, . . . , xN )ᵀ and ~w = (w1, . . . , wN )ᵀ. The bias b is an individual
constant for each node.

The function f (~z), with z = ~w · ~x + b, is called activation function or simply activation. The
recti�ed linear function (ReLu) is one of the most used activation functions [63,64]. It is de�ned
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as

f (z) =

{
z z ≥ 0

0 otherwise
(5.2)

The function has two linear parts which enables easy computations of the derivatives. For super-
vised learning with large amounts of data, a superior performance to other activation functions
was shown Ref. [64].

An important property of the output y in equation (5.1) is its smoothness. For any small change
of the initial weights ∆~w and the bias ∆b,

∆y ≈
N∑
i

∂y

∂wi
∆wi +

∂y

∂b
∆b (5.3)

is a good approximation of the resulting output change ∆y. The change of the output ∆y is linear
in the weight change ∆~w and bias change ∆b. Hence, a small ∆~w or ∆b results in a similarly
small ∆y.

With this knowledge, one layer of a NN is de�ned as a set of M nodes. In general, each layer of
a NN can have a di�erent number of nodes and the bias and weights of each node are di�erent
with respect to the others. The output for every node is derived with equation (5.1).

The total NN can be split into three regions: input layer, hidden layers and output layer as
displayed in �gure 5.1. The input layer lists the N input features that were chosen. The last
layer is the output layer, consisting of L nodes. The hidden layers include all layers, which are
neither an input nor an output layer.

In general, DNNs have many hidden layers, whereas NNs only have a few or even only one. There
is no sharp de�nition separating DNNs and NNs by their respective number of hidden layers.
Thus, both terms are used to describe a NN with the general structure described previously.

Figure 5.1: Architecture of a neural network. The network is typically split into an input layer, an
output layer and hidden layers in between, indicated by the vertical dashed lines [65].

In feedforward NNs, the output of one layer is the input of the next layer. The information is
only process into the direction of the output layer. In contrast to this, recurrent NNs allow loops
within the NN. This means, that after a de�ned delay the output of one layer can be used as
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input for a previous layer or the same layer [66]. In the following, only feedforward networks are
considered.

To quantify how good the NN predicts the desired output, a so-called loss function or cost

function is de�ned. Let the NN have L nodes in the output layer, than the respective outputs
can be combined to ~y(~x,w,~b) = (y0, . . . , yL)ᵀ as NN output, where the weight matrix is given as
w = (~w0 · · · ~wL). With K nodes in the last hidden layer, the dimensionality of the weight matrix
is K · L. The vector ~d (~x) is the true known output corresponding to the input event ~x. Then,
the mean squared error loss function is de�ned as

C(w,~b) =
1

N
N∑
i

|~y − ~d|2 (5.4)

where the sum runs over all present input events N . The closer this function gets to zero, the
better the NN predicts the output for all input events. Hence, a set of weights and biases is
sought, which minimizes the loss function. For this purpose, a so called optimizer is introduced.

The gradient descent optimizer is a widely used ML technique to minimize the loss function.
This method calculates the gradient of the loss function with respect to all weights and biases.
The weights of the output node n are given as ~wn and the respective bias as bn. To simplify,
these are combined into the variable ~un = (~wn, bn)ᵀ. By calculating

un,i → u′n,i = un,i − α
∂C

∂un,i
(5.5)

with a �xed constant α > 0, a new set of weights and biases ~u′n = (~w′n, b
′
n)ᵀ is obtained. The

change of the loss function is then approximated as

∆C = C
(
~u′
)
− C (~u) ≈ ~∇~uC ·∆~u = −α · (~∇~uC)2 (5.6)

where ~∇~u is the gradient with respect to ~u = (~u0, . . . , ~uL)ᵀ. As α is per de�nition greater than
zero, this method results by construction in a decreasing loss function in this approximation. For
each weights and bias update, the average over all input events N is derived. Thus, this method
becomes very time consuming for large data sets.

A more time e�cient method with a better performance is the stochastic gradient descent (SGD).
For each update, only a small randomly chosen subset of the input data is used. Hence, the
average over this subset is much faster calculated than over the total data set. With this method,
the NN can achieve a faster learning process, but the exact gradient of the loss function is lost.
However, an approximation of the gradient is su�cient to obtain values close enough to the actual
minimum of the loss function. However, SGD does need much time to escape local minima or
saddle points [67].

A more modern optimizer is the adaptive moment (Adam) optimizer, which is based on the SGD.
This method updates exponentially the mean ~m (1st moment) and the uncentered variance ~v
(2nd moment) of the gradient of the loss function. Both moments have the same dimensionality
as the variable ~u in equation 5.6. The exponential decay rate of the 1st moment is de�ned by the
parameter β1 = 0.9 and the one of the 2nd moment by the parameter β2 = 0.999. Both moments
are initialized as vectors of zeros, resulting in a bias in the beginning of the training. However,
the Adam optimizer uses both decay parameters to correct this bias. Thus, for node n and the
tth parameter update, the 1st and 2nd moments are given by

mn,i(t) = [β1 ·mn,i(t− 1) + (1− β1) · gn,i(t)] /
(
1− βt1

)
(5.7)

29



5 Neural Networks

vn,i(t) =
[
β2 · vn,i(t− 1) + (1− β2) · g2

n,i(t)
]
/
(
1− βt2

)
(5.8)

where gn,i(t) = ∂C/∂un,i is the gradient of the loss function and βti the respective decay param-
eter to the power of t. The denominator performs the described bias correction.
The tth updated weights and biases are calculated as

un,i(t) = un,i(t− 1)− α ·mn,i(t)/(
√
vn,i(t) + ε) (5.9)

with a constant ε = 10−7 to avoid a zero division in case of a vanishing 2nd moment. Thus, the
actual updated stepsize of the weights and biases are limited by the �xed constant α. Furthermore,
this method works well with only a small set of the total input data as well as with sparse
gradients and is thus capable to escape much faster saddle points of the loss function than purely
the SGD. With the performed bias-correction, more stability in the early training process is
gained however, after su�cient many updates, this bias correction becomes close to unity [68].
To summarize, optimizers enable the NN to obtain a set of weights and biases which minimize
the loss function. This corresponds to a NN, which predicts the output for all input data best.
Thus, the loss function is used as the quantity separating good working NNs from bad ones.

5.1.2 Regression DNN in Contrast to Classi�cation DNN

Regression and classi�cation are two fundamental important tasks for supervised DNNs. In the
case of classi�cation, the network is meant to decide which category a respective input corre-
sponds to. For instance, the input events are split into signal like events and background like
events. To do so, each output node corresponds to exactly one category and the NN predicts a
probability for every input event to correspond to the respective category. The target values are
restricted to 0 and 1, where a 0 indicates that this event does not correspond to the respective
category. Hence, the activation functions in the output layer are restricted to an interval of [0, 1]
and values close to 1 predict an agreement to the corresponding category. Widely used activation
functions, ful�lling this requirement are the sigmoid and the softmax function.
In case of regression, one numerical or several values are predicted for each input event. For HEP,
the predicted numerical value can be the invariant mass of a decayed particle. The target values
are real numbers and so are the ones of the NN. Thus, a linear activation function is used for
the nodes in the output layer.
The main di�erence between these two cases is the output. Whereas classi�cation-based problems
require probabilities and thus values between 0 and 1, regression needs real values. Thus, di�erent
activation functions are needed in the output layer [67].

5.1.3 Hyper-parameters of Neural Networks

Every neural network has speci�c parameters, which are not and can not be adapted by the
network itself in the training process. They are prede�ned before any learning process is started.
These parameters are called hyper-parameters and their setting is of high importance for good
training results.
The number of epochs determines how many times the neural network trains on the total set of
training examples. A too small number of epochs will prevent the neural network from learning
all features correctly. After some number of epochs however, the NN will not improve further.
Thus, a reasonably large value is the best choice for this hyper-parameter. A number of epochs
greater than 100 is in many cases su�cient, but with di�erent techniques the value can be raised
much higher without worsening the NN performance [63].
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Related to this is the so called mini-batch or batch size. Most NNs do not use all training events
for each weight and bias update, but only a subset. The size of this subset is de�ned by the batch
size. Large values estimate the gradient of the loss function more precisely, but also require more
memory during the computation. Small batch sizes introduce stochastic noise, which potentially
helps the NN to adapt better to the underlying scheme within the training events. In most cases,
a small batch size is better than a large one [69]. In general, a value around 30 up to a few
hundred is used [63].

The single most important hyper-parameter is the learning rate. It is the �xed constant α intro-
duced in equation (5.5). Consequently, the learning rate de�nes how large the steps are, which
the NN takes, when it updates its weights and biases. As the update of weights and biases is
the main challenge of any NN, a well chosen learning rate is essential. Large learning rates will
lead to a fast minimization of the loss function, but also to large jumps during the determination
in the weights and biases. Thus, the actual minimum of the loss function is more likely to be
missed. If the prede�ned value for α is too small, the training will take much longer, and the
minimization can get stuck in a local minimum without a way to escape. Common values for the
learning rate are between 10−6 and 1.

Strongly connected to this hyper-parameter is the decay. The decay parameter reduces the ini-
tially �xed learning rate. In each parameter update, the learning rate gets smaller, enabling the
network to �nd the actual minimum of the loss function more easily. The updated learning rate
after t iterations is given as α′ = α/(1 + decay × t), where the decay is usually chosen to be
smaller unity.

Finally, the number of nodes in each layer as well as the number of hidden layers must be de�ned
in advance. In each layer, di�erent number of nodes can be used. There is no general scheme
what relation between the di�erent number of nodes in each layer is to be preferred. However,
it is important, that the �rst hidden layer has more nodes than there exist input features to
ensure that no information of the input features is lost. The actual number of nodes depend on
the number of input features however, more nodes are more preferential than less [63]. Similar
to number of nodes, there is no general rule, describing how many hidden layers are performing
best. It is expected, that a NN with more layers is able to solve more complex tasks, but only
one hidden layer with enough nodes is su�cient for most tasks [67].

5.1.4 Regularization of a Neural Network

An important concern is the one of regularization. While training, NNs can adapt too strong to
the used input data, which is called over�tting, resulting in a loss of generalization. The aim of
regularization is to prevent the NN from over�tting. Thus, the NN is modi�ed during its learning
process in such a way that its generalization improves. This means, that a more general model is
learned by the NN instead of the speci�c one that matches the training data best. Regularization
results almost always in a worse training loss function than unregularized training, but this is
intended to prevent the acquisition of intrinsic features of the particular training set resulting in
better generalization properties of the NN [67].

One way of regularization is the so called dropout method. This method eliminates temporarily
speci�c nodes with a given probability p. For those nodes, all connections to previous or following
nodes are eliminated for one update of weights and biases through the optimizer. For each update
of the weights and biases, a new set of nodes is chosen. After the completion of the training, all
nodes are set as active, but their outgoing weights are scaled by (1− p). This approximates the
average over all neural networks during training. A typical value of the dropout probability is
0.5 [70].
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Another common regularization method is early stopping. For this, an additional hyper-parameter
called patience is introduced. In general, the NN trains until it reaches the maximum number
of epochs. With early stopping, the training can be stopped earlier. During training, the loss
function is monitored. If its value does not shrink for a given number of epochs, the training is
stopped. The patience �xes the number of epochs within the loss function must reduce [63].
Both methods are meant to prevent over�tting of the NN which deteriorates its performance
during training, but improves its generalization.

5.1.5 Error Back Propagation

The method of back propagation is used to update the weights and biases in the NN. For this,
the updated weights and biases in the output layer are calculated at �rst and these are than
used, to update the previous layer. Thus, the weights and biases update is propagated backwards
through the NN.
The gradient of the loss function in equation (5.6) is derived by the so-called backpropagation

algorithm. For this, lets de�ne wljk as the weight, connecting the k
th neuron of layer (l − 1), with

the jth neuron of layer l. The bias of the jth neuron in the lth layer is denoted as blj and the

respective node output as ylj .
Similar to equation (5.1)

ylj = f

(∑
k

wljky
l−1
k + blj

)
(5.10)

connects the output of the jth neuron in layer l to the previous layer using the activation function
f . The error of neuron j in layer l is de�ned as

δlj ≡
∂C

∂zlj
(5.11)

with zlj =
∑

k w
l
jky

l−1
k + blj . The error describes how good the weights and bias of the respective

node are optimized. An error close to zero corresponds to a very good optimized node.
With these de�nitions, the error in the output layer M is given as

δMj =
∂C

∂yMj

∂yMj

∂zMj
=

∂C

∂yMj

∂f(zMj )

∂zMj
(5.12)

Since both the loss function and the activation are known, their derivatives with respect to the
given parameters can be calculated fast. The error of any node j in layer l is derived as

δlj =
∑
k

wl+1
kj δ

l+1
k

∂f(zlj)

∂zlj
(5.13)

by applying the chain rule to equation (5.11). The errors are now connected to the derivatives
of the loss function with respect to the weights and biases. This is achieved by applying again
the chain rule to equation (5.11). The derivatives are given as

∂C

∂wljk
= yl−1

k δlj (5.14)

∂C

∂b
= δlj (5.15)
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and enable the calculation of the gradient in equation (5.6). Thus, by propagating the error δlj
backwards through the network, weights and biases can be updated and the NN is able to adjust
to the given task [66].

5.2 Training of a Neural Network

A NN needs to be trained, validated and tested on data before it can be applied.

5.2.1 Importance of Train-, Validation- and Test-Sets

To obtain a well performing NN, the initial data set is split into three categories: a training, a
validation and a test set. The training set is the largest one in order to provide the NN with as
much statistics as possible during the training. It is used to let the NN learn a speci�c model.
Thus, the loss function of the training set is optimized to obtain the best weights and biases.

The validation set is used to quantify the generalization of the trained NN. After each epoch,
the NN is evaluated on the validation set by calculating the loss function. As this data set is
completely independent of the training set, so is its loss function. Hence, a small validation loss
function veri�es that the NN is well generalized and is not over�tted. The early stopping regu-
larization is only applied on the validation loss function and not on the training loss function.
Furthermore, the validation loss function is used to de�ne the optimal hyper-parameters, de-
scribed in more detail in section 5.3. In addition, the validation set can be used to correct the
trained NN in hindsight. If there is, for instance, a systematic o�set, a constant can be added to
the output to adjust the NN prediction.

At the end, the NN is tested on the test set. The performance of the trained NN is examined by
comparing the true target values with the ones predicted by the NN. No more modi�cations or
optimizations of the NN are carried out.

5.2.2 Preprocessing of the Data-Set

Preprocessing is done prior to the training of the NN and is applied to all of the data. The
data set is processed in such a way, that the NN bene�ts from it. One useful procedure is the
standardization of the input features. This means, that based on all events of the three sets, all
input features are shifted by their respective mean towards zero and divided by their standard
deviation. Thus, for all input features, the mean value is zero and the variance unity. This
basically corresponds to a shifted and rescaled axis and helps the NN to learn faster [71].

Furthermore, the used coordinate system can be shifted or rotated in order to eliminate one or
more input features. By rotating, for instance, the azimuth angle of a given detected particle
always to φ = 0, this input feature can be eliminated without loosing information about the
event. This reduces the complexity of the dependencies the NN needs to learn and simpli�es the
learning process. The same purpose is ful�lled by a decorrelation of the input features, e.g. with
a principle component analysis, as explained in more detail in section 5.3.3.

Finally, before the training starts, the data set events are shu�ed randomly. This prevents that
events which have very similar properties are combined in the same batch and helps the NN to
adjust to a more general model [71].
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5.3 Optimizing the Neural Network Architecture,

Hyper-parameters and Input Features

The best con�guration of a NN for a speci�c task is not obvious. For each architecture, the best
hyper-parameters must be determined and the input features must be chosen. A decorrelation
of the latter is possible and can be performed with the principle component analysis.

5.3.1 Determining the Best Hyper-parameter Con�guration

The best trained NN for a particular task requires a speci�c value for each hyper-parameter.
However, these values are not known in advance. Thus, some kind of search must be performed. As
several hyper-parameters are tested, this can become very extensive. Many distinct con�gurations
must be examined and compared to each other.

In general, the validation loss is used to determine how well a NN is trained. For each hyper-
parameter con�guration, the validation loss must be determined, requiring several trainings and
thus a signi�cant amount of computing memory and time.

So called hyper-parameter searches are a speci�c approach to �nd appropriate values. The con-
sidered searches are described in the following.

5.3.2 Grid-, Random- and Grid-Random-Hyper-parameter Search

One approach to �nd the optimal hyper-parameters is the so-called grid-search. For the hyper-
parameters a set of prede�ned values is chosen and all possible combinations are used to train
a NN. All obtained validation losses are compared after training. In �gure 5.2, the resulting
minimization of the validation loss is displayed. All hyper-parameters except the learning rate
are �xed. The actual values are at this point of no interest as later on several hyper-parameters
are optimized simultaneously. The optimal learning rate obtained with the grid-search for this
generic con�guration is located at the minimum of the validation loss function.
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Figure 5.2: Concept of validation loss minimization using grid-search. For a �xed con�guration,
di�erent learning rates are used to train the NN. As a result, the optimal value is
located at the minimum of the validation loss, here 10−2.

The general idea of the grid-search can be seen in �gure 5.3. This method is very straight forward,
but has also a few drawbacks. First, several combinations of hyper-parameters will not result in
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a well trained NN, for instance, a high learning rate in combination with a low decay. Second, all
hyper-parameters are on a prede�ned grid. Thus, all information in the vicinity of the grid points
is unknown. This is especially problematic for important hyper-parameters as the optimal value
is more likely missed which results in a signi�cant worse performance of the NN. In addition,
it is very time consuming for higher dimensional searches, since each hyper-parameter is tested
several times with the exact same value [72].

An alternative to the grid-search is a random-search. Here, for each hyper-parameter, instead of
speci�c values rather an allowed parameter range is speci�ed. Then, for each iteration, random
values are chosen within these ranges. This is also displayed in �gure 5.3. As the values are chosen
randomly in each training, the hyper-parameters are assigned di�erent values each time. Thus,
hyper-parameters are more likely to �nd their optimal value. However, there is no prevention
against clustering of the hyper-parameter values in a region far from the optimal value. This may
result in an incomplete coverage of the possible parameter space [72].

Figure 5.3: Schematics for grid and random hyper-parameter search. Each black dot repre-
sents a speci�c hyper-parameter con�guration. The in�uence of an important hyper-
parameter on the validation loss is shown on the top side fo the box, where a higher
value corresponds to a better optimization. An unimportant parameter is displayed
on the left side of the box. Random search is able to �nd a better con�guration than
grid search [72].

In this thesis, a combination of both, a grid-random-search, is tested which provides a much
more reliable result. As in the grid-search optimization, speci�c values are prede�ned for all
hyper-parameters. For each grid point however, all hyper-parameters are separately shifted by a
random value. Thus, no value is used twice and a more precise optimization is performed. This
method combines the advantages of both grid and random searches. Unreasonable con�gurations
are still possible, but a reasonable coverage of the full parameter space is ensured.

The time consumption of the training can be shortened by means of parallelizations for all
hyper-parameter searches.

5.3.3 Description of the Principle Component Analysis

The NN is expected to learn the correlation between di�erent input features as well as their
individual importance for the output. In case of many input features, this is not always the case.
The NN can be helped by decorrelating the input features and eliminating the least important
ones. A common way to do so is the principle component analysis (PCA).
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The PCA can be used for two tasks: transform the input features into orthogonal variables and
reduce the total number of input features. To do so, the initial input features ~X = (X0, . . . , XN )ᵀ

are standardized as described in section 5.2.2. A element of the Pearson correlation matrix ρi,j
is calculated as

ρi,j =
E[Xi ·Xj ]− E[Xi] · E[Xj ]

σXi · σXj

for the input features Xi and Xj with the standard deviation denoted as σXi and σXj . E[. . . ]
indicates the expectation value of the respective input features or input feature product [73].
By de�nition, the matrix is symmetric and hence an orthonormal basis of eigenvectors of this
matrix can be found. Transforming the initial inputs into this new basis, results in a new set of
uncorrelated input features. The eigenvalues λi and eigenvectors ~vi of the correlation matrix are
calculated by solving the equation

ρ · ~vi = λi~vi

The transformation matrix is then constructed from the eigenvectors: Each column is one eigen-
vector. If the number of eigenvectors is smaller than the rank of the matrix ρ, orthonormal
vectors are added to the transformation matrix with eigenvalues of zero. Thus, it is ensured that
the transformation matrix has as many columns as initial input features exist. Every event is
transformed by multiplying the transformation matrix from the right to the initial input feature
vector

~X → ~X ′ = ~Xᵀ · (~v0 · · ·~vN )

Hence, the obtained uncorrelated input features are a linear combination of the initial input
features [74].
In addition, a number of transformed input features can be eliminated. As the initial input
features are standardized, the eigenvalue describes how many initial input features the corre-
sponding eigenvector represents. Thus, an eigenvector with an eigenvalue greater than unity
contains information of more than one initial input feature and the corresponding transformed
input feature should be used in all cases. To eliminate an eigenvector and thus a transformed
input feature, it has to be veri�ed, that the eigenvalue is small compared to the sum over all
eigenvalues [74].
Furthermore, the transformation matrix can be used to reduce the number of initial input features
~X. As the transformation matrix is multiplied from the right to the initial input features, each
initial input feature corresponds to exactly one row of the transformation matrix. By deriving
some kind of norm of this row, an importance of the initial input feature is obtained. A reasonable
threshold is de�ned eliminating all initial input features which have a norm smaller than this
threshold. Thus, the complexity of the NN can be reduced without transforming the events.
Furthermore, the meaning of the individual input features remains clear, whereas by performing
the PCA transformation this clarity is lost.
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H → τ` and Z → τ` decays

The standard model of particle physics predicts the conservation of lepton-�avour number. In
the non-charged lepton sector, however, this concept is questioned by the observation of neutrino
oscillation. This means, that after some distance of �ight, a neutrino of one �avour can be
observed as a neutrino of another �avour, violating the predicted conservation [31]. Thus, the
predicted lepton-�avour conservation does not hold in all cases, which is predicted by several
extensions of the standard model [12�27]. Furthermore, these extensions predict also the violation
of this conservation in the charged lepton sector. The charged lepton-�avour violation (LFV) is
predicted to be induced by the Higgs boson and the Z boson, decaying into a lepton pair of two
di�erent �avours. However, the branching ratio for H(Z)→ e±µ∓ decays is limited indirectly to
. 10−8 [32, 33] and is not likely to be observed. Hence, only H(Z)→ τ±e∓ and H(Z)→ τ±µ∓

decays are studied. At a con�dence level of 95%, an upper limit on the branching ratio for
H → τe from direct searches for LFV in Run 1 of the LHC was set to 1.04% and for H → τµ to
1.43% [34]. The upper limits on LFV decays of the Z boson into a τe or τµ pair are of the order
of 10−5 [34].

To become sensitive to this signal, a good SM background estimation is crucial. However, a
Monte-Carlo (MC) simulated background may result in large systematic uncertainties. This can
be avoided by using the fully data driven symmetry method [75]. An overview of the general
analysis strategy is given in section 6.1, followed by a description of the symmetry method
in section 6.2. Further, the maximum likelihood method is presented, used to determine the
signi�cance of a signal excess over the SM background. Finally, existing mass reconstruction
methods are described.

6.1 Analysis Strategy

The aim of this analysis is the observation of lepton-�avour violating decays of the Higgs boson
and Z boson. For this decays into τ±e∓ and τ±µ∓ lepton pairs are considered, with the τ lepton
decaying further into a lepton and two neutrinos. However, the neutrinos escape the detector
without any interaction. Hence, the signal consists of exactly two leptons of di�erent �avours
and opposite charge as well as missing energy.

A main assumption of this analysis is, that the SM processes are symmetric with respect to the
exchange of electrons by muons and vice versa. The mass di�erence between the electron and the
muon can be neglected at the energy scales of the LHC. This symmetry is used to split all data
into two samples, one where the electron has a larger transverse momentum than the muon (eµ
sample) and one where it has a smaller one (µe sample). Since all SM processes are expected to
be equally distributed in both samples, the eµ sample is used as SM background estimation of
the µe sample and vice versa. In case of a lepton-�avour violating H → τ±µ∓ decay, the event
is more likely to end up in the µe sample than in the eµ one, resulting in a signal excess. Thus,
a fully data-driven analysis can be carried out.

However, due to detector e�ects and reconstruction algorithms, this symmetry can be broken
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without actual LFV processes. One e�ect are the detector e�ciencies for electrons and muons
which are unequal and must be corrected. Furthermore, electrons and muons are detected com-
pletely di�erent, which produces di�erent contributions to the fake background due to other
objects being misidenti�ed as leptons. Thus, the fake background estimation must be performed
separately in a data driven way, described in chapter 8.
With a performed background estimation, the signal excess is looked for in the reconstructed
mass distribution of the Higgs boson and the Z boson respectively. The signal signi�cance is
derived using the maximum-likelihood method. An enhanced mass reconstruction is important
to separate signal and background processes. This can be achieved by using a regression neural
network with various input features of the measured objects, described in chapter 9.

6.2 The Symmetry Method

Monte-Carlo simulations are used in many analyses for the SM background estimation. However,
to do so several theory and simulation uncertainties are propagated, which can result in large
systematic uncertainties in the analysis. This can be avoided by using the fully data driven
symmetry method for the background estimation [75]. Two assumptions are used for this method:

1. Lepton universality for SM background processes, which means that electrons and muons
have approximately the same kinematic distributions for su�ciently high energies as those
present at the LHC. Thus, the prediction from SM processes are approximately the same
when replacing an electron with a muon and vice versa.

2. The signal processes H → τe or H → τµ break this symmetry, since in the H → τe
process, the electron has in general a larger transverse momentum than the muon which
originates from the τ -lepton decay. Analogous, in the H → τµ process the muon has in
general a larger transverse momentum than the electron.

This method is sensitive to the branching ratio of both symmetry breaking Higgs boson decays,
but only if these are not of equal size. In the case of BR (H → τe) ≈ BR (H → τµ), the method
will provide no sensitivity to any lepton-�avour violating decay. However, previous limits indicate
a non-equal branching ratio [34].
The leptonic τ -lepton decay induces a hierarchy of the electron and muon with respect to the
transverse momentum. Since the τ -lepton decays in three particles, the resulting lepton has in
general a softer transverse momentum than the one originating directly from the Higgs boson
decay. This hierarchy is used to split the data into two distinct samples.
To do so, the leading and sub-leading lepton of each event are de�ned, as the lepton with the
highest and second highest transverse momentum pT in the �nal state, respectively. The data is
then split into two exclusive samples:

• µe sample: pµT ≥ peT
• eµ sample: peT > pµT

In case of LFV decays, the leading lepton is assumed to originate directly from the Higgs boson
decay and the sub-leading lepton from the τ -lepton decay. With the �rst assumption, the SM
background of a H → τµ decay can therefore be estimated from the inverted lepton sample eµ
and for a H → τe decay vice versa, i.e. the µe sample.
In a study performed by Bressler et al. (2014) the symmetry method was tested the �rst time,
displayed in �gure 6.1 [75]. The collinear mass distributions of MC simulated events at a centre of
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mass energy of 8TeV are shown for the eµ and µe sample. A branching ratio of 2% is assumed for
the H → τµ decay and zero for the H → τe decay. In the mass range between 100 and 150GeV, a
signal peak is visible, inducing an asymmetry as assumed. Furthermore, no additional deviation
between the two samples in all other mass ranges is visible, supporting the �rst assumption.

Figure 6.1: Collinear mass for the eµ and µe sample. A branching ratio of 2% is for H → τµ
assumed and zero for H → τe. Both distributions are determined from Monte Carlo
based predictions at a centre of mass energy of 8TeV [75].

Since electrons and muons are detected by di�erent parts of the ATLAS detector, there are several
detector e�ects resulting in a broken symmetry without any lepton-�avour violating process being
present. One e�ect are the di�erent trigger, reconstruction, isolation and identi�cation e�ciencies
for electrons and muons. All these e�ciencies are combined to one common e�ciency for each
sample, noted as εeµ and εµe respectively. The combined e�ciency is derived as

εeµ(µe) = εtrigger · εe · εµ, (6.1)

where the e�ciency of the electron εe and muon εµ contain the reconstruction, isolation and
identi�cation e�ciency. Both e�ciencies εe and εµ are dependent on the transverse momentum
and pseudorapidity of the respective lepton. For a eµ event, εeµ is derived by equation (6.1),
whereas the e�ciency εµe is obtained from a 'virtual' event, where the kinematic properties of
the electron and muon are exchanged. The detected data yield N eµ in the eµ sample is scaled by

Ñµe =
εµe

εeµ
·N eµ, (6.2)

where Ñµe is than used as the SM background estimate for the µe sample. For the estimation of
Ñ eµ, all indices are switched, i.e. eµ↔ µe.
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Electrons and muons are di�erently misidenti�ed, resulting in di�erent fake backgrounds. This
is taken into account, by performing separate fake background estimations, with a dependency
of the fake background contribution on the transverse momentum and pseudorapidity of the
misidenti�ed lepton. The contributions are respectively subtracted from the data to restore the
symmetry between the electron and the muon. With this, equation (6.2) gets modi�ed to

Ñµe =
εµe

εeµ
· (N eµ − feµ) + fµe (6.3)

where feµ and fµe are the respective fake background contributions. The estimation of the fake
background is described in more detail in chapter 8.
The symmetry method was used by ATLAS in Run 1 of the LHC [34].

6.3 Extracting the Signal with the Maximum Likelihood Method

The observation of a signal in the data for physics beyond the standard model requires some
kind of statistical signi�cance for the signal above the SM background.
For this, two hypotheses are formulated. One is the null-hypothesis, which states, that only the
SM processes are present and the data is fully described by those. The other one is the signal
plus background hypothesis, which assumes a signal above the SM processes and states, that the
data is described by the sum of both [76].
The observed data is tested against a stated hypothesis by calculating the p-value. This is
the probability, that the observed data, under assumption of the hypothesis, is equal or more
incompatible with the actual data observed. Thus, a su�cient small p-value excludes the stated
hypothesis. An equivalent value is the Gaussian signi�cance Z. It is connected to the p-value
in such a way, that a Gaussian distributed variable located Z standard deviations above its
mean, has an upper-tail probability half as large as the p-value. Is a signi�cance of Z ≥ 3
(p ≤ 2.7 ·10−3) observed in the data with respect to the null hypothesis, it is called evidence and
for Z ≥ 5 (p ≤ 5.7 · 10−7) an observation.
The p-value and the signi�cance Z can be estimated by the maximum-likelihood method (ML-
method) described in the following.
The measurements for observable O per event are �lled into a histogram with N bins, with
~n = (n1, . . . , nN ) being the number of events per bin observed in the data. The expectation
value from signal and background in bin i is given as

E[ni] = µsi + bi (6.4)

with the number of signal events si and background events bi. The parameter µ describes the
signal strength, where µ = 1 corresponds to the signal plus background hypothesis and µ = 0 to
the null-hypothesis. Since all bins are assumed to be independent of each other and each event
is randomly distributed, the number of events in each bin is Poisson distributed, given as

PE[ni](k) =
E[ni]

k

k!
e−E[ni] (6.5)

with the mean and variance E[ni].
The likelihood function is de�ned as function of a parameter of P for a given k, i.e. L(κ|k) =
Lk(κ), where κ is a parameter of P. In one bin, the likelihood function is obtained as

Lni(µ) =
E[ni]

ni

ni!
e−E[ni] (6.6)
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6.3 Extracting the Signal with the Maximum Likelihood Method

with a dependency on the strength parameter µ and a �xed parameter k = ni. Thus, the
likelihood function speci�es the probability of ni events for a given µ. Taking the product of the
probabilities of all bins, the likelihood function can be written as

L(µ, θ) =
N∏
j=1

(E[nj ])
nj

nj !
e−E[nj ] · g (θ) (6.7)

where any dependency on nuisance parameters is accounted for in the function g (θ), which is
in many cases a Gaussian distribution. These parameters are additional dependencies which are
not of direct interest, but their in�uence on the likelihood function must be taken into account.
In general, there are several nuisance parameters and thus θ is a vector.
Maximizing this function provides the respective unconditional estimators µ̂ and θ̂, which describe
the observed data best. In addition, the likelihood function is maximized for one speci�c signal

strength, which is given by the stated hypothesis. This results in the conditional estimator
ˆ̂
θ,

which describes the observed data best for the given signal strength.
Minimizing the negative logarithm of equation (6.7)

lnL (µ, θ) =

N∑
j=1

nj lnE[nj ]− E[nj ]− nj + ln g (θ) (6.8)

is equivalent to the maximization of the likelihood function. However, minimizing sums is com-
putational much more e�cient than products. Furthermore, any term without a dependency on
µ or θ can be neglected in the minimization process.
The Neyman-Pearson lemma states that in the absence of unknown parameters the optimal
test statistic for the test of the background-only hypothesis against the signal plus background
hypothesis is the likelihood ratio L(µ = 0)/L(µ = 1) [77]. In the presence of unknown parameters,
the pro�le likelihood ratio is empirically a very good test statistic, given as

λ(µ) =
L(µ,

ˆ̂
θ)

L(µ̂, θ̂)
(6.9)

with the conditional likelihood function in the numerator and the unconditional one in the
denominator. The unconditional likelihood function is always greater equal than the conditional
likelihood function, since both µ and θ are optimized simultaneously, resulting the maximal
likelihood value. Furthermore, all expectation values in equation (6.4) are non-negative and
thus the pro�le likelihood ratio is restricted to λ ∈ [0, 1]. The proposed hypothesis has a good
agreement with the data if λ is close to unity. Thus, assuming the background-only hypothesis,
λ(µ = 0)→ 0 suggests processes not covered by the background-only hypothesis.
The test statistic can be de�ned as

tµ = −2 lnλ(µ) (6.10)

where incompatibility between the hypothesis and the data is described by higher values of tµ.
In the case of µ = 0

Z0 =
√
t0 (6.11)

provides the searched Gaussian signi�cance assuming that the Wilks' approximation is valid [76].
A larger Gaussian signi�cance indicates the existence of a process not covered in the background-
only hypothesis.

41



6 Searches for Lepton-Flavour Violation in H → τ` and Z → τ` decays

The so-called Asimov dataset is de�ned in such a way, that when it is used to evaluate the esti-
mators µ and θ of the likelihood function, the true parameter values are obtained. This means,
that assuming a signal strength µ′ for simulated events, the maximization of the likelihood func-
tion for an Asimov dataset will return µ̂ = µ′. Thus, this dataset can only be constructed by
simulated signal and background events, but not by actually measured data. Neglecting all pos-
sible nuisance parameters, the pro�le likelihood ratio assuming the background-only hypothesis
is given by

λ(µ = 0) =
L(0)

L(µ̂)
(6.12)

with a signal strength of µ̂ = 1 in case of an Asimov dataset. This dataset allows a fast estimation
of the expected signi�cance of a signal process and thus of the expected sensitivity.
Evaluating equation 6.11 for the background-only hypothesis without any nuisance parameters
and a assumed signal strength of µ̂ = 1 results in

Z =

√√√√−2
N∑
j=1

nj · ln
(

bj
sj + bj

)
− 2 · sj . (6.13)

In this analysis, a signal excess is searched in the mass distribution and the ML-method is
applied to this distribution. Thus, a higher signal signi�cance is derived with a better mass
reconstruction.

6.4 Mass Reconstruction of the Higgs Boson and Z Boson

Candidate

The LFV signal processes consist of a Higgs or Z boson, which decays into a τ -lepton and either
an electron or a muon, with the τ -lepton decaying further into a light lepton and two neutrinos.
Thus, an electron, a muon and two neutrinos are present in the �nal state. However, the neutrinos
escape the detector undetected, resulting in missing transverse energy. The individual momenta
of the neutrinos are unknown. In general, the mass of the Higgs boson is reconstructed by using
the detected leptons and the missing transverse energy.
One way to reconstruct the mass of the Higgs boson relies on the collinear mass approximation
[78]. The large mass di�erence between the Higgs-boson and the �nal leptons results in a large
Lorentz boost of the decay leptons. This allows to neglect the respective lepton masses for the
Higgs-mass reconstruction and leads to a collinear �ight direction of the decay products of the
τ -lepton.
In the transverse plane of the detector, the momentum of the τ -lepton (~pT,τ ) can be written as

~pT,τ =
~pT,`1
x
≈ ~pT,`1 + ~Emiss

T (6.14)

with the momentum fraction x of the sub-leading lepton (~pT,`1), stemming from the τ -decay,

with respect to the initial τ -lepton. It is assumed that the missing transverse energy ~Emiss
T

consist only of neutrino contributions. However, in general additional detector e�ects result in a
missing transverse energy as well.
The invariant mass of the Higgs boson is given as

m2
H = (pµτ + pµ`0)2 (6.15)
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6.4 Mass Reconstruction of the Higgs Boson and Z Boson Candidate

where pµi denotes the respective four-momentum. Neglecting the lepton masses and approximat-
ing pµτ ≈ pµ`1/x, the mass of the Higgs boson is approximated as

m2
H ≈ 2

pµ`1 · p
µ
`0

x
(6.16)

Multiplying equation (6.14) with ~pT,`1 , the equation can be solved for the momentum fraction

x =
~p2
T,`1

~p2
T,`1

+ ~pT,`1 · ~Emiss
T

(6.17)

With the collinear approximation of the τ -lepton decay products, equation (6.17) is simpli�ed
to x = |~pT,`1 |/(|~pT,`1 |+ | ~Emiss

T |).
The pseudorapidity is given as η = − ln tan(θ/2) with the polar angle θ. Using this and neglecting
the masses of the leptons, the collinear mass can be derived from equation (6.16)to

m2
coll = 2|~pT,`0 |

(
|~pT,`1 |+ | ~Emiss

T |
)

(cosh ∆η − cos ∆φ) (6.18)

with ∆φ being the azimuth di�erence between leading and sub-leading lepton and ∆η the corre-
sponding pseudorapidity di�erence. However, the missing transverse energy and the sub-leading
lepton are not aligned in general. In case of an H → τe decay, the azimuth di�erence is shown
in �gure 6.2. The majority of the events are not perfectly aligned impairing the approximation.
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Figure 6.2: Azimuth angle di�erence between the missing transverse energy and the sub-leading
lepton in the H → τe decay process. In many cases, they are not perfectly aligned
to each other which impairs the collinear approximation.

Furthermore, this method is very sensitive to the resolution of the missing transverse energy,
which results in most cases in an overestimation of the reconstructed mass [79]. This broadened
resolution results in a worse LFV signal sensitivity Z, as discussed in equation (6.13).

An alternative mass reconstruction method is the missing mass calculator (MMC) [79]. The
invariant τ mass is derived as

m2
τ =

(
pµ2ν + pµ`1

)2
(6.19)
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with the combined neutrino four-momentum pµ2ν . The mass of the neutrino system is derived as

m2
2ν = E2

2ν − ~p2
2ν = E2

2ν − p2
2ν,z − Emiss

T
2

(6.20)

where the relation Emiss
T

2
= p2

2ν,x + p2
2ν,y is used, stating that all missing energy is due to the

neutrinos. Thus, two equations are obtained

~p2ν · ~p`1 =
(
m2

2ν +m2
`1 + 2E2νE`1 −m2

τ

)
/2 (6.21)

p2
2ν,z = E2

2ν −m2
2ν − Emiss

T
2

(6.22)

where p2ν,z, E2ν and m2ν are unknown parameters. This is an under-determined system of
equations, which allows one unknown parameter to be freely chosen.
The idea of the MMC is to perform a scan, for which the system of equations can be solved.
This is done, by a scan over the x- and y-component of the neutrino momentum and eliminating
E2ν in the equations. For both components, 40 equidistant scan points are used. However, taking
detector e�ects into account, the values are smeared out corresponding to the respective resolu-
tions. The scan allows to calculate for each point a new mass for the neutrino system by setting
the mass of the individual neutrinos to zero. Thus, p2ν,z and E2ν can be derived by solving the
equations (6.21) and (6.22). This completes the reconstruction of the neutrino system and thus
of the τ -lepton. For each scan point, the invariant mass of the τ`0-lepton system mτ`0 is calcu-
lated by equation (6.15). The weight of each scan point is calculated by probability distribution
functions obtained with simulated events. For all three objects, separate probabilities are derived
and multiplied to obtain the combined weight.
Over all scan points, a reconstructed mass distribution mτ`0 is produced, where every point is
weighted by its probability. Now the MMC mass value can be extracted in two di�erent ways. The
mass value, which is the most probable of the distribution, i.e. the bin containing the maximum,
is chosen as �nal estimator and is noted as MMCmlm. Another version of the MMC, noted as
MMCmaxw, takes as reconstructed mass the scan point with the largest individual weight.
In the process of the parameter scan, it is possible that no parameter value provides a solution
for the system of equations, since only a speci�c parameter space is scanned. Events with no
solution of the system of equations, lacking a mass reconstruction of the Higgs or Z boson, must
be eliminated from the data set, if the MMC is used.
This method improves signi�cantly the mass resolution with respect to the collinear mass ap-
proximation. Fewer assumptions and approximations are necessary, allowing a more reliable mass
reconstruction. However, a major drawback is a more complicated and time intensive calculation.
Thus, new mass reconstruction methods are of great interest.
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7 Signal and Background Processes and

Analysis Selection

This chapter presents the signal and background processes, considered for the LFV analysis and
the applied analysis selection. The individual signal and background contributions are described
and their impact is discussed. All signal and background events are simulated with Monte-Carlo
(MC) methods. For the particle propagation through the ATLAS detector and simulation of its
response, GEANT4 [80] is used. The in�uence of several proton-proton collisions in the same
bunch crossing is simulated by overlaying the produced hits by several types of events and
weighting the simulated events with a so-called pile-up weight, such that the average number of
interactions match the data best. Furthermore, the MC simulation is modi�ed to �t the data best
by various e�ciency correction factors. For instance, events with su�cient low properties like the
energy or transverse momentum are eliminated on generator level by the generator �lter. Hence
the monitored cross-section is lower than the initially generated one and must be adjusted by the
�lter e�ciency. Further e�ciency factors are the trigger, isolation and identi�cation e�ciencies
[81].

A summary of the respective generators and cross-sections for the individual processes are pre-
sented in this chapter, followed by the applied analysis selection.

7.1 Signal Processes

All considered LFV signal processes contain a Higgs boson decaying into a τ` pair, where the
lepton ` is either an electron or a muon. This results in the four major signal production pro-
cesses: gluon-gluon fusion (ggH), vector boson fusion (VBF) and the associated WH and ZH
production. For all of the Higgs LFV decay processes, a branching ratio of 1% is assumed. The
τ -lepton decays are simulated with PYTHIA8 and leptonic decays to eνeντ and µνµντ as well as
hadronic decays are considered in the production.

The ggH and VBF processes are simulated at next-to-leading-order (NLO) in perturbative
quantum chromodynamics (pQCD) using the POWHEG [82] event generator in combination with
PYTHIA8 [83] for the hadronisation and parton showering. For ggH processes the parton distribu-
tion function set PDF4LHC15 NNLO [84] is used, whereas for the VBF production PDF4LHC15
NLO is used. The underlying event is tuned with AZNLO_CTEQ6L1 [85, 86].

The LFV decay of the Higgs boson is modelled with PYTHIA8. A precision up to next-to-next-
to-leading-order (NNLO) in pQCD is achieved by a reweighting of the NLO cross-section with a
k-factor [87]. The NLO cross-section is derived with MiNLO [88]. A cross-section times branching
ratio of 485.8 fb is used for the ggH signal process. In case of H → τe a generator �lter e�ciency
of 0.640 is used and for H → τµ of 0.638. The VBF events are generated with a cross-section
times branching ratio of 37.8 fb and for both decay modes the �lter e�ciency is 0.672 [41].

Feynman diagrams for ggH and VBF Higgs boson production are shown in �gure 7.1. In the
VBF production mode, two jets are produced in addition to the Higgs boson.

For the signal processes WH and ZH, POWHEG in combination with PYTHIA8 is used in the same
way as before, with the parton distribution function set PDF4LHC15 NLO. A matrix element
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(a) ggH (b) VBF

Figure 7.1: Feynman diagrams for ggH (a) and VBF (b) Higgs boson production [35].

rescaling is performed with MiNLO to account for next-to-leading order e�ects [88]. All decay
modes of the W and Z bosons are considered. For the WH → τ` process, a cross-section times
branching ratio of 8.5 fb is assumed and for ZH → τ` 8.4 fb respectively [41]. A �lter e�ciency
of unity is used for both signal processes WH and ZH.

A Feynman diagram for the WH and ZH Higgs boson production is displayed in �gure 7.2.

Figure 7.2: Feynman diagram for W/Z associated Higgs boson production [35].

Any heavy �avour decay is simulated with EvtGen [89].

7.2 Background Processes

All background processes are simulated with MC methods, except the contribution due to fake
leptons. The latter is described in detail in chapter 8.

The leading SM background process is the production of a Z boson or a virtual photon γ∗

decaying into two τ -leptons, which decay further as Z/γ∗ → τ±τ∓ → e±µ∓+ νe + νµ + 2ντ . The
kinematics of the �nal state are very similar to the LFV signal process, so that Z/γ∗ production
is an irreducible background. The cross-section of Z/γ∗ → ττ production is by four orders of
magnitude larger than the cross-section of the signal process [90]. Hence, a good separation
between this SM background and the LFV signal is crucial for the observation of a signal excess.
The Z/γ∗ → ττ production is simulated using Sherpa(v2.2.1) [91] and the parton distribution
function NNPDF30NNLO [92]. Processes with less than three jets are simulated up to NLO in
pQCD and processes with more than three jets at LO precision. Sherpa uses its own model for
hadronisation and parton showering.

The second largest contribution results from diboson processes, i.e. the production of WW , ZZ
and WZ. The diboson systems decaying into ``+ 2ν have the largest contribution of all diboson
processes to the measurement backgrounds. Processes, with one boson decaying into quarks are
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simulated with Sherpa (2.2.1). The parton distribution function NNPDF30NNLO is used and a
precision up to NLO in pQCD is achieved for processes with zero or one jet and LO in pQCD if
more than one jet is present. For leptonic decays of both bosons Sherpa (2.2.2) is used, with the
parton distribution function NNPDF30NNLO. This production is split in events with at least
one same �avour opposite charge lepton pair with an invariant mass below four GeV and events
where the invariant mass of all lepton pairs is above four GeV. The �rst one is called in the
following 'lowMll' and the latter 'highMll'. In case of the lowMll production, events without jets
are simulated at NLO in pQCD and otherwise at LO. The highMll production has a similar
precision, but in addition events with one jet are simulated up to NLO in pQCD as well.
The SM top quark background contribution is about the same size as the diboson contribution,
displaying a similar invariant dilepton mass distribution. The tt̄ production is considered as
well as the single top quark production Wt. All decay modes of the tt̄ and Wt production are
considered in the simulation. The tt̄ contribution is after the event selection about four times
larger than the Wt contribution. Both, tt̄ and single top productions are simulated with POWHEG

in combination with PYTHIA8 for the parton showering and hadronisation. For both top quark
productions the parton distribution function NNPDF30NLO is used. Heavy �avour decays are
simulated using EvtGen and the underlying event is tuned with A14_NNPDF23LO.
The SM background contributions due to Z/γ∗ → e±e∓ and Z/γ∗ → µ±µ∓ are also produced
and are simulated in the same way as Z/γ∗ → ττ .
Contributions through gluon-gluon fusion and vector boson fusion H → ττ productions are also
considered. Leptonic or semi-leptonic decays of the τ -leptons are taken into account. The Higgs
boson in association with a tt̄-pair results mostly in events with many jets. Inclusive ZH and
WH processes are also considered. Events are simulated using the event generator POWHEG and
PYTHIA8 for the particle showering. For all SM Higgs boson processes, the parton distribution
function NNPDF30NLO is used. The EvtGen is used for heavy �avour decays and MiNLO to derive
the NLO cross-section precision in pQCD. The underlying event is tuned with AZNLO_CTEQ6L1.
In table 7.1 the generators of the signal and background processes are summarized, together with
the corresponding cross-section times branching ratio.

7.3 Analysis Selection

The analysis selection is optimized to reduce backgrounds to the LFV signal process and to select
candidate events from LFV H → eτ → eµ2ν or H → µτ → µe2ν decays. A summary of the
selection criteria is given in table 7.2.
Events are selected in shich at least one reconstructed vertex is present, containing at least two
tracks [93]. Exactly one electron and one muon are required for each event, including a veto
against hadronically decaying τ -leptons.
The leading lepton, with the highest pT , and sub-leading lepton are required to be of opposite
sign charge and must ful�l the identi�cation and isolation criteria speci�ed in section 4.1.
The events are assigned to the eµ channel if the electron has the higher transverse momentum
and to the µe channel otherwise. It is ensured that at least on trigger is �red as described in
section 4.2. Events are eliminated, if a lepton is outside the pseudorapidity range which is covered
by the inner detector or within the transition area of the barrel and the end caps of the detector.
This is applied to both electrons and muons, to ensure a symmetry between both.
The minimal transverse momentum threshold of the leading and sub-leading lepton are used to
reduce mainly the Z → ττ background and to avoid unreliable measurements since the detector
is not sensitive to arbitrary low momenta. These two requirements reduce the signal by about
13%, whereas Z → ττ contributions are reduced by over 50%.
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Table 7.1: Cross-section times branching ratio and generators of simulated signal and background
processes. For the cross-section calculation, generator �lter e�ciencies are included.
The processes are ordered by their contribution in the signal region after the analysis
selection.

Process Generator Cross-section × branching ratio [pb]

Signal

ggH → τe(τµ) POWHEG+PYTHIA8 0.311 (0.310)
VBF→ τe(τµ) POWHEG+PYTHIA8 0.025 (0.025)
WH→ τe(τµ) POWHEG+PYTHIA8 0.019 (0.019)
ZH→ τe(τµ) POWHEG+PYTHIA8 0.009 (0.009)

Background

Z/γ∗ → ττ Sherpa 2721.00
WW Sherpa 0012.70
WZ Sherpa 0011.00
ZZ Sherpa 0004.90
tt̄ POWHEG+PYTHIA8 0087.70
single top POWHEG+PYTHIA8 0071.70
Z/γ∗ → ee/µµ Sherpa 9038.00
ggH H → ττ POWHEG+PYTHIA8 0000.60
VBF H → ττ POWHEG+PYTHIA8 0000.40
tt̄H POWHEG+PYTHIA8 0000.50
WH POWHEG+PYTHIA8 0000.09
ZH POWHEG+PYTHIA8 0000.06

Table 7.2: Summary of the analysis selection criteria. Only events ful�lling all requirements are
kept.

Selection number Cut name Selection criteria

Selection 1 reconstructed vertex Npvx ≥ 1
Selection 2 two leptons Ne +Nµ = 2
Selection 3 tau veto no hadronic τ decays
Selection 4 opposite charge q`0 · q`1 ≤ 0
Selection 5 identi�cation & isolation �ag (see chapter 4)
Selection 6 channel eµ if peT > pµT , µe if p

µ
T ≥ peT

Selection 7 trigger �ag (see section 4.2)
Selection 8 pseudorapidity |η| < 2.47 & (|η| < 1.37 or 1.52 > |η|)
Selection 9 leading lepton pT (`0) ≥ 35GeV
Selection 10 sub-leading lepton pT (`1) ≥ 15GeV
Selection 11 visible mass 30GeV< mvis < 150GeV
Selection 12 b-jets veto no b-jets
Selection 13 impact parameters |d0,signif.| < 10 & |z0 sin θ| < 0.5mm

In �gure 7.3 both momenta are shown before a tighter requirement is applied. The transverse
momentum distribution of the leading lepton for the signal process has its peak at around 60GeV,
which allows to raise the threshold and eliminate further background contributions.

The visible mass of the dilepton system is required to be within the range of 30GeV to 150GeV.
As shown in �gure 7.4, this mainly reduces top quark background contributions. This background
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Figure 7.3: Transverse momentum distribution of the leading (left) and sub-leading lepton (right)
in the eµ (top) and µe-channel (bottom), before a tighter selection requirement is
applied. Only events with pT (`0) ≥ 35GeV and pT (`1) ≥ 15GeV are used, indicated
by the dashed line. The pT (`1) requirement has no in�uence in the µe channel, since in
the production electrons are required to have a transverse momentum greater 15GeV.
The LFV signal is scaled in the �gure by a factor of 30.

contribution is reduced further by applying a veto on jets containing b-quarks, shown in �gure
7.4. These jets are tagged by MV2c10 at the FixedCutBE�_85 working point. With these two
requirements, the top quark background is reduced by about 93%, whereas the signal is only
reduced by about 8%.

Finally, the longitudinal impact parameter z0 sin θ and the signi�cance of the transverse impact
parameter d0,signif. are restricted for both leptons to |z0 sin θ| < 0.5mm and |d0,signif.| < 10.
The applied requirements reduce additional fake background contributions by about 28% and
the signal by 4%. In �gure 7.5, both distributions in the eµ-channel are displayed before the
respective selections are applied.

In table 7.3 and 7.4, the expected event yield in the eµ and µe-channel for the individual signal
and background processes are summarized for speci�c selections. The respective ratio of signal
over background is displayed as well. All data-taking years are combined.

With the applied selection, the signal over background ratio is about 1.3% in both channels.
However, to enhance this ratio machine learning techniques are used to separate the signal
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Figure 7.4: Visible mass mvis of the dilepton system (left) and number of b-quark jets (right)
in the eµ (top) and µe-channel (bottom), before the respective selection is applied.
Events with a visible mass outside of 30GeV and 150GeV or any jet containing
b-quarks are eliminated, indicated by the vertical dashed lines. Mainly background
contributions from top quarks are reduced. The LFV signal is scaled in the �gure by
a factor of 30.

processes better from the background processes.
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Figure 7.5: The signi�cance of the transverse impact parameter d0,signif. (left) and the longi-
tudinal impact parameter z0 sin θ (right) for the leading lepton in the eµ (top)
and µe-channel (bottom), before the respective selection is applied. Events with
|d0,signif.| ≥ 10 and z0 sin θ ≥ 0.5mm are eliminated, indicated by the dashed lines.
The LFV signal is scaled in the �gure by a factor of 30.
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7 Signal and Background Processes and Analysis Selection

Table 7.3: Expected event yield of signal and background processes in the eµ-channel for speci�c
selections. The background H → ττ contains all Higgs boson processes discussed in
7.2.

Process Selection 9 Selection 10 Selection 11 Selection 12 Selection 13

Signal

ggH → τe 2983.3± 5.2 2403.5± 4.7 2403.3± 4.7 2257.2± 4.5 2119.5± 4.4
ggH → τµ 0359.9± 1.7 0351.8± 1.7 0351.6± 1.7 0314.7± 1.6 0309.2± 1.6
V BF → τe 0231.5± 0.5 0185.0± 0.5 0184.9± 0.5 0163.3± 0.4 0150.8± 0.4
V BF → τµ 0061.5± 0.3 0059.3± 0.3 0059.3± 0.3 0052.0± 0.2 0050.4± 0.2
WH → τe 0108.0± 0.7 0090.7± 0.6 0081.4± 0.6 0067.0± 0.5 0063.4± 0.5
WH → τµ 0032.7± 0.4 0031.6± 0.4 0027.5± 0.3 0022.5± 0.3 0022.0± 0.3
ZH → τe 0044.5± 0.3 0035.9± 0.3 0035.2± 0.3 0025.8± 0.2 0024.1± 0.2
ZH → τµ 0012.5± 0.2 0012.0± 0.2 0011.5± 0.1 0008.5± 0.1 0008.3± 0.1

Background

Z → ττ 142316± 213 103505± 169 101286± 159 93750± 152 88391± 149
diboson 075571± 970 069227± 930 050036± 800 46512± 780 45751± 770
top 706355± 242 646816± 232 455819± 194 44444± 700 43675± 690
Fakes 081402± 518 069479± 512 045432± 223 32365± 167 21995± 148
Z → `` 013461± 392 004711± 238 004265± 226 03888± 221 02550± 175
H → ττ 002814± 400 002219± 300 002061± 300 01570± 300 01439± 300

Sig/Bkg 3.75 · 10−3 3.54 · 10−3 4.79 · 10−3 1.31 · 10−2 1.35 · 10−2

Table 7.4: Expected event yield of signal and background processes in the µe-channel for spe-
ci�c selections. Selection 10 does not change the event yield, since in the production
electrons are required to have a transverse momentum greater than 15GeV. The back-
ground H → ττ contains all Higgs boson processes discussed in 7.2.

Process Selection 9 Selection 11 Selection 12 Selection 13

Signal

ggH → τe 0307.6± 1.6 0307.6± 1.6 0275.1± 1.5 0265.3± 1.5
ggH → τµ 1965.8± 4.2 1965.4± 4.2 1847.1± 4.0 1798.9± 4.0
V BF → τe 0051.6± 0.2 0051.5± 0.2 0045.1± 0.2 0042.5± 0.2
V BF → τµ 0147.5± 0.4 0147.4± 0.4 0130.3± 0.4 0125.4± 0.4
WH → τe 0028.5± 0.3 0024.3± 0.3 0019.5± 0.3 0018.9± 0.3
WH → τµ 0076.6± 0.6 0067.6± 0.5 0055.5± 0.5 0054.3± 0.5
ZH → τe 0010.4± 0.1 0010.1± 0.1 0007.3± 0.1 0007.0± 0.1
ZH → τµ 0029.8± 0.2 0029.1± 0.2 0021.3± 0.2 0020.8± 0.2

Background

Z → ττ 083227± 154 081231± 144 75268± 139 72080± 137
diboson 060489± 920 042829± 750 39856± 740 39359± 730
top 563840± 214 389054± 177 37792± 630 37439± 630
Fakes 585701± 281 041137± 230 29649± 188 22727± 173
Z → `` 009440± 354 008778± 342 08359± 338 07559± 320
H → ττ 001812± 300 001673± 300 01265± 300 01179± 300

Sig/Bkg 3.37 · 10−3 4.61 · 10−3 1.25 · 10−2 1.29 · 10−2
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8 Estimation of Fake Lepton Background

The majority of the background to the LFV τe and τµ �nal states results from physical processes
with a similar signature as �nal state, such as Z → ττ → eµ2ν and tt̄→ eµ2ν + 2b. A smaller,
yet signi�cant part results from so called fake leptons. These are objects, for instance jets, which
are misidenti�ed in the reconstruction as leptons. Another contribution comes from non-prompt
leptons. These are correctly reconstructed leptons, but do not originate from the original decaying
particle, i.e. in case of the LFV search the Higgs boson. Leptons from the τ -lepton decay are
also not counted as fake leptons. Non-prompt leptons mostly result from the decay of hadrons
with a bottom or charm quark content. The sources and contributions of the fake leptons are
di�erent for electrons and muons. Thus, the estimation is performed separately for electrons
and muons [94]. The notation fake leptons is used in the following for both fake leptons and
non-prompt leptons.

Those fake leptons have a signi�cant background contribution in the signal region (SR). Thus,
it is important to estimate this background contribution well. Monte Carlo simulation does not
model the fake background in a reliable way, hence a data driven estimate is necessary.

The method which will be used is the so-called fake factor method, which is described in section
8.1. Section 8.2 presents the Z+jets extraction region, which is used to determine the fake factor.
This is followed by the estimation of a normalisation factor for the prompt WZ background in
section 8.3. The determination of the fake factor with its kinematic dependencies is described in
section 8.4, followed by a closure test with the resulting fake lepton estimation in section 8.5.

8.1 The Fake Factor Method

In the fake factor method, a transfer factor, also called fake factor, between two lepton identi�-
cation requirements is calculated for the fake leptons. At �rst the lepton identi�cation de�nitions
are presented, followed by the fundamental assumptions of the fake factor method. This section
closes with the scheme to calculate the fake factor.

8.1.1 ID and anti-ID De�nitions

The fake factor method uses two orthogonal lepton identi�cation requirements, called ID and
anti-ID. The anti-ID region is enriched with fake leptons with only a small contribution of prompt
leptons, whereas the ID region has a larger contribution of prompt leptons, but through the choice
of phase space, is as well enriched in fake leptons compared to the SR.

The de�nition of the ID criteria is the same as in the SR. ID electrons require Gradient isolation
and medium identi�cation, whereas for the ID muons FCTightTrackOnly_FixedRad isolation
and medium identi�cation is demanded. For the anti-ID de�nition, one or both of these criteria
are inverted, resulting in an orthogonal set of events. Since all muons are required to be medium
identi�ed on a more fundamental level, only the isolation requirement is inverted. For electrons,
either the isolation or the identi�cation requirements must fail, while still passing loose identi�-
cation. Figure 8.1, shows the ID and anti-ID de�nitions for electrons and muons, respectively.
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8 Estimation of Fake Lepton Background

Figure 8.1: Schematic of the ID and anti-ID requirements used in the fake factor method for the
estimation of the fake background contribution. The isolation criteria given as x-axis,
the identi�cation requirement as y-axis. Both are tightened for increasing axis values.
The de�nitions are chosen such that there is no overlap between both regions. The
grey area is displayed for completeness, but is not used in the fake factor method.

8.1.2 Description of the Fake Factor Method

For a given lepton �avour, it is assumed that the number of leptons satisfying the ID requirements
is proportional to the number of leptons satisfying the anti-ID requirements, independent of other
selection criteria. The fake factor f connects the two lepton identi�cation de�nitions. With this,
the leptonic fake background in the signal ID region can be estimated as

NSR,ID
fake = f ·NSR,anti-ID

fake (8.1)

where the NSR,anti-ID
fake are only those events, which ful�l all SR requirements except the identi-

�cation criteria and NSR,ID
fake which ful�l all SR requirements. Rewriting equation 8.1, the fake

factor

f = N ID
fake/N

anti-ID
fake (8.2)

can be written as the ratio of fake events in the ID and the anti-ID region.
To calculate the fake factor, an extraction region (ER) is de�ned, which is kinematically close
enough to the SR, but tailored to select the fake factor. It is assumed, that the ratio in equation
8.2 is the same in both the ER and the SR. With this assumption, the fake factor calculated in
the extraction region can be applied to estimate the fake leptons in the signal ID region [95].

8.1.3 Fake Factor Calculation

The fake factor is obtained in the extraction region as

f = NER,ID
fake /NER,anti-ID

fake (8.3)

This factor can then be used to estimate the leptonic fake background in the SR by using equation
8.1. However, the fake factor is not well described as a constant for all kinematic values. Leptons
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8.2 Z+jets Extraction Region

in the ID and anti-ID region are distributed di�erently in speci�c kinematic observables. This
means, the fake contribution in the ID de�nition can not be simply obtained by scaling the fake
contribution in the anti-ID de�nition, but kinematic dependencies of these parameters must be
taken into account as f → f (x, y, . . . ). Equation 8.1 then becomes

NSR,ID
fake = f (x, y, . . . ) ·NSR,anti-ID

fake (x, y, . . . ) (8.4)

where x and y are examples of kinematic dependencies.

8.2 Z+jets Extraction Region

To obtain the fake factor, a phase space region of high purity of fakes is desired, called Z+jets

extraction region. The Z boson decays to two leptons which represent a very clear signature in
the �nal state. The leptons are oppositely charged and of same-�avour and their invariant mass
is close to the mass peak of the Z boson. Consequently, any additional reconstructed lepton
candidate is likely to be a fake lepton. An additional reason is the large cross-section of the Z
boson reducing the statistical uncertainty.

8.2.1 Selection

For the Z+jets extraction region, exactly three leptons are required, either electrons or muons.
For all electrons, loose ID is required and for all muons medium ID. Two same-�avour (SF)
leptons with opposite charge (OS) are Z-tagged, if their invariant mass is between 80GeV and
100GeV. If more than one pair of leptons ful�ls this requirement, the pair closer to the Z peak
of m = 91.188GeV is chosen [35]. For the Z-tagged leptons, medium ID is required in addition.
The missing transverse energy ~EmissT , de�ned in equation 4.2, is required to be below 60GeV.
This reduces the contamination due to WZ → ```ν events. For all leptons, a requirement on the
transverse momentum of pT ≥ 15GeV is used. The third lepton, which is not Z-tagged, is called
`probe in the following. The transverse mass

mT (`i) =

√
2 · |~pT (`i) | · | ~EmissT | ·

(
1− cos ∆φ

(
~pT (`i) , ~EmissT

))
(8.5)

of `probe must satisfy mT (`probe) < 40GeV, which also rejects WZ events. For all three leptons,
the same impact parameter requirements as in the SR are used as well as the same crack veto
and b-jets veto, presented in section 7.3
For the Z+jets extraction region, an overview of the criteria is also given in table 8.1. In addition,
events are then split depending on whether the third non Z-tagged lepton passes the ID or anti-ID
requirement.
Events are only used, if at least one of the two Z-tagged leptons �red the trigger. This is done
by an logical OR combination of single lepton triggers, as described in section 4.2.

8.2.2 Simulation of Prompt Background

Since this is a data driven estimation, contaminations by real prompt lepton processes in both
the ID and anti-ID region must be estimated and subtracted before calculating and applying the
fake factor. This is done by simulated events for the respective prompt background processes.
Thus, the yields become

Nfake (x, y) = Ndata (x, y)−NMC,prompt (x, y) (8.6)
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8 Estimation of Fake Lepton Background

Table 8.1: Selection for the Z+jets extraction region. The ID and anti-ID requirements are applied
in addition to the probe lepton `probe.

Quantity Requirement

Number of leptons (e, µ) 3

Z tagging of leptons
2 SF, OS leptons with 80GeV< m`` < 100GeV

and medium ID

Missing transverse energy EmissT < 60GeV

Transverse momentum pT ≥ 15GeV

Transverse mass mT (`probe) < 40GeV

for both ID and anti-ID as well as extraction and signal region.

Only prompt background contributions with at least three real leptons in the Z+jets ER are
considered. The background processes are WZ → ```ν, ZZ → ```` and inclusive WH decays
where the Higgs boson decays into two tau leptons. The tau leptons decay further into electrons
or muons and two neutrinos, hence resulting in a three lepton signature. These processes are
estimated with MC simulation. The used simulated samples are listed in table 8.2.

Table 8.2: Simulated event samples for background processes in the Z+jets ER. Each sample is
shown together with its respective cross-section.

Process Sample name Cross-section/pb

WZ
Sherpa_222_NNPDF30NNLO_lllv 4.5765

Sherpa_222_NNPDF30NNLO_lllv_lowMllPtComplement 2.9708

ZZ
Sherpa_222_NNPDF3ONNLO_llll 1.252

Sherpa_222_NNPDF30NNLO_llll_lowMllPtComplement 1.4484

WH

PowhegPy8EG_NNPDF30_AZNLO_
0.033417

WmH125J_Winc_MINLO_tautau
PowhegPy8EG_NNPDF30_AZNLO_

0.052685
WpH125J_Winc_MINLO_tautau

In table 8.3 the event yield for the prompt background processes as well as the data in the Z+jets
extraction region is shown in case `probe is an electron or a muon. From the considered prompt
background processes, WZ has the largest contribution.

Table 8.3: Event yield for prompt background processes and data in Z+jets ER in case `probe is
an electron or a muon.

Electron Muon
ID anti-ID ID anti-ID

data 7000± 84.0 17696± 133. 3987± 63.0 5130± 72.0
WZ 1361± 9.00 0167± 3.00 1523± 8.00 0043± 1.00
ZZ 0871± 6.00 0192± 5.00 0697± 8.00 0138± 7.00
WH .0.35± 0.05 .0.04± 0.02 .0.40± 0.06 .0.01± 0.01
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8.3 Normalisation of WZ Background

8.3 Normalisation of WZ Background

The WZ process has the highest cross-section among the considered background processes and
has also the largest contribution of all considered background processes in the Z+jets region. It
was shown in previous measurements, that the NLO cross-section for WZ production did not
predict correctly the observed event yield [96]. Hence, an additional normalisation of the WZ
cross-section to data is performed.

For this, a speci�c region is used, which is orthogonal to the Z+jets extraction region.

8.3.1 WZ Normalisation Region

The WZ normalisation region must be orthogonal to the Z+jets ID region and enriched in WZ
events. For this purpose, the two requirements Emiss

T andmT (`probe) are inverted. The kinematics
of `probe ought to be similar of those in the Z+jets ER. This is accomplished by comparing the
shape of the pT (`probe) distribution for several possible values for the Emiss

T and mT (`probe)
requirements with the one of the Z+jets extraction region. The requirements, resulting in the
most similar shape are chosen to be used for determining the WZ normalisation region.
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Figure 8.2: Normalised transverse momentum distributions of the probe lepton for di�erent se-
lection criteria for a possible WZ normalisation region as well as the Z+jets re-
gion. The label mTXEtY corresponds to the requirements mT (`probe) ≥ X GeV and
Emiss
T ≥ Y GeV.

The di�erent shapes are shown in �gure 8.2. With either mT (`probe) ≥ 40GeV or mT (`probe) ≥
50GeV, the orthogonality with the Z+jets region is always ensured. Thus, the EmissT selection
has no restriction due to the orthogonality requirement and can be also lowered below the SR
value after inversion. Selections of EmissT ≥ 40GeV, EmissT ≥ 50GeV and EmissT ≥ 60GeV have
been investigated.

The EmissT ≥ 60GeV requirement is found to result in the closest approximation of the Z+jets
ER shape for pT (`probe) compared to the others. Even higher EmissT requirements result in an
even better agreement, but this would raise the statistical uncertainty further and is therefore not
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8 Estimation of Fake Lepton Background

considered. The requirement on the transverse mass mT (`probe) does not show any signi�cant
in�uence. A requirement of mT (`probe) ≥ 50GeV is used.

The WZ normalisation region is thus de�ned by the same selection requirements as in the
Z+jets region, except EmissT ≥ 60GeV and mT (`probe) ≥ 50GeV. The pT (`probe) distribution
for predictions compared to data in the WZ normalisation region is shown in �gure 8.3. The
contamination from other process is below 6%, demonstrating a very good purity of the WZ
normalisation region.
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Figure 8.3: Distribution of pT (`probe) in the WZ normalisation region, for predictions of SM
contributions compared to data. The lower panel shows the ratio of data over pre-
dictions. Processes with a Z boson and jets induced by a b-quark are combined in
Z+heavy, whereas jets induced by a c-quark are noted as Z+cc. All other Z+jets pro-
cesses are combined in Z+light. Diboson processes with three leptons and a neutrino
in the �nal state are noted as Diboson/3lν, and the ones with four leptons in the
�nal state as Diboson/4l.

The event yields of the simulated events are presented table 8.4 for di�erent selection steps.

8.3.2 Estimation of the WZ Normalisation

The estimation of the WZ normalisation factor is done by comparing the transverse mass distri-
bution mT (`probe) in simulation with data. The distribution is shown in �gure 8.4. All processes
except WZ are �xed as constant background in the following.

The simplest way to estimate the WZ normalisation factor is by calculating the total number
of events in data minus the other background processes as well as the one predicted from WZ
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8.3 Normalisation of WZ Background

Table 8.4: Event yield of the simulated processes in the WZ normalisation region for di�erent
selection steps. The Z-tagging and ID selections are the same as for the Z+jets extrac-
tion region. For Emiss

T a value greater 60GeV is required and for the transverse mass
a value greater than 50GeV.

No Cuts Z-tagging Emiss
T mT (`probe) ID

Diboson/3lν 043419± 1070 032416± 4900 9281± 220 6429± 190 4476± 16.
Diboson/4l 017633± 1120 006646± 2800 0447± 600 0211± 500 0134± 20.

Top 091408± 6600 011244± 2300 5079± 150 3022± 120 0069± 20.
Z+light 165227± 1655 102301± 1293 3437± 219 1032± 127 0019± 40.
Z+heavy 088215± 4940 071128± 4340 2336± 600 0400± 230 0017± 50.
Z+cc 042438± 4800 031074± 4060 1112± 630 0234± 310 0012± 50.
WH 0.033.8± 0.6.0 0.003.7± 0.2.0 0.1.0± 0.1. 0.0.5± 0.1. 0.0.3± 0.1
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Figure 8.4: Distribution of mT (`probe) in the WZ normalisation region for data compared to the
sum of predictions from simulations. The lower panel shows the ratio of data over
predictions. The legend is described in �gure 8.3.

simulations. The normalisation factor is then derived as

αyield =
Ndata −Nbkg

NWZ
(8.7)

with Ndata and NWZ being the respective yields of data and WZ and Nbkg the yield of the other
background processes.
A more sophisticated way for the estimation of the WZ normalisation factor is a χ2-�t of the
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8 Estimation of Fake Lepton Background

mT (`probe) distribution to data. For this purpose, the area around the peak in the mT (`probe)
distribution is considered, namely 50GeV≤ mT (`probe) ≤ 150GeV. The chosen �t range miti-
gates the in�uence of the high mT (`probe)-tail on the �t, which has minimal impact on the total
number of events.
A binned extended maximum likelihood �t is performed. The �t returns an adjusted WZ yield
with its respective uncertainty. By dividing the new yield Npost-�t

WZ with the one prior to the �t,

Npre-�t
WZ , the normalisation factor

α�t =
Npost-�t
WZ

Npre-�t
WZ

(8.8)

is obtained. The statistical uncertainty on the normalisation factor is given as (�t error) /Npre-�t
WZ .

The WZ normalisation factors, investigated separately for 2015+2016 (c16a), 2017 (c16d) and
2018 (c16e) are listed in table 8.5. The results for the di�erent campaigns are consistent within
the statistical uncertainties, justifying the combination of all.

Table 8.5: Obtained WZ normalisation factors separately for the three data-taking campaigns:
2015+2016 (c16a), 2017 (c16d) and 2018 (c16e). Both, the yield and �t estimation are
shown.

Campaign α�t αyield
c16a 0.968± 0.029 1.008± 0.032
c16d 0.909± 0.026 0.948± 0.029
c16e 0.926± 0.023 0.957± 0.026

For the 2015-2018 combined estimation, the compatibility of the four lepton channels is investi-
gated. The channels are de�ned by the Z-tagged lepton pair and `probe. Since only electrons and
muons are present in the �nal state, the four channels are eee, eeµ, µµe and µµµ. The results
for the di�erent channels are shown in table 8.6. All channels except the µµµ channel agree
within one standard deviation and in case of the µµµ channel an agreement within two standard
deviations is observed.

Table 8.6: Obtained WZ normalisation factors for the four lepton channels eee, eeµ, µµe and
µµµ for data from 2015-2018. Both, the yield and �t estimation are shown.

Channel α�t αyield
eee 0.968± 0.032 1.009± 0.035
µµe 0.919± 0.030 0.954± 0.034
µµµ 0.873± 0.028 0.919± 0.031
eeµ 0.975± 0.030 0.997± 0.032

The results from table 8.5 and 8.6 justify a combination of all three data-taking campaigns and
four lepton channels to one common normalisation factor. A systematic uncertainty due to the �t
range of α�t is considered, by deriving a normalisation factor α�t,full in the �t range 50−250GeV.
This results in a larger normalisation factor and the di�erence α�t,full − α�t is then assigned as
systematic uncertainty on α�t.
The �nal result for the yield method is given by

αyield = 0.968± 0.016
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and

α�t = 0.932± 0.015(stat)± 0.036(syst) (8.9)

for the χ2-�t. Both scaling factors agree within the uncertainties. For the estimation of the fake
factor, α�t is used. The statistical and systematic uncertainty are treated as uncorrelated, which
results in a combined uncertainty of the normalisation factor of 0.039.

8.4 Fake Factor Estimation

The fake factor is derived using equation 8.3 in the Z+jets extraction region. The contamination
from real prompt lepton processes is subtracted from the data using MC simulations. These pro-
cesses are WZ, ZZ and WH inclusive decays. The WZ contribution is scaled by a normalisation
factor α�t, stated in equation 8.9. In addition, truth matching is applied to the MC samples. This
means, that events are only used, if no mismatching in the reconstruction algorithm is present.
Hence, only reconstructed electrons and muons are used, which are no fake leptons, but in fact
electrons and muons. With this, only simulated events are subtracted, when the reconstructed
leptons are real prompt leptons, originating directly from the respective signal particle.
The obtained data set is split into an electron and a muon set, depending on the �avour of `probe.
Both sets are treated separately resulting in two fake factor estimations. Further, kinematic
dependencies of the fake factor are taken into account as stated in equation 8.4.

8.4.1 Kinematic Dependencies of the Fake Factor

Kinematic dependencies of the fake factor are taken into account as a function of pT and η of
the probe lepton. A binning of [15, 20, 25, 35, 1000]GeV in pT is chosen. For the pseudorapidity,
only the absolute value is considered. As a start, for both electrons and muons, two bins [0, 1.37]
and [1.52, 2.47] are used. The region between 1.37 and 1.52, covers the crack region and is thus
empty.
An additional observable that is investigated is the ∆R between the nearest jet and `probe. The

nearest jet is de�ned as the jet with the smallest ∆R =
√

∆φ2 + ∆η2 to the probe lepton. Due
to the overlap removal, no events with ∆R < 0.4 are present.
Figure 8.5 shows the η distribution of the leading jet with the lepton ID selection in the Z+jets
extraction region, for (a) jets with pT ≥ 20GeV and (b) jets with pT ≥ 30GeV. The modelling in
the pT ≥ 30GeV shows improvements for high pseudorapidities, which are di�cult to simulate
with MC. Thus, only jets are considered which lie above this threshold.
For all events without any jet ful�lling the requirement of pjetT ≥ 30GeV, a separate fake factor
is estimated. This corresponds to an implicit binning in Njets = 0 and Njets ≥ 1.

8.4.2 Determination of the Fake Factor

The fake factor is calculated according to equation 8.2, binned in the probe lepton pT , η and
∆R (nearest jet, `probe). Figures 8.6 and 8.7 show the results for all campaigns separately, both for
the electron and the muon. The obtained values agree reasonably well among the three campaigns
with each other, only in the central pT range for the �rst electron η bin small deviations are
observed. Justi�ed by the reasonable agreement, a common fake factor estimation is performed
in the following for the three campaigns.
The resulting fake factors for both electrons and muons are shown in �gure 8.8. For the electron,
clear di�erences in the fake factor for the two η bins are visible. This di�erence is not visible
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Figure 8.5: Leading jet η distribution for di�erent jet pT thresholds of 20GeV (a) and 30GeV
(b). No truth matching and no WZ scaling is applied here. The legend is described
in �gure 8.3.
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Figure 8.6: Electron fake factors for three all data-taking campaigns as a function of pT for
|η| < 1.37 (a) and |η| > 1.52 (b).
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Figure 8.7: Muon fake factors for all three data-taking campaigns as a function of pT for |η| < 1.37
(a) and |η| > 1.52 (b).

for the muon. Therefore, the two |η| bins are merged for muons. The combined fake factors for
muons are shown in �gure 8.9.
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Figure 8.8: Fake factor binned in pT (`probe) and η (`probe) for the electron (a) and for the muon
(b).

The extracted fake factors for electrons and muons are presented in table 8.8 and 8.9, with
statistical and systematic uncertainties included.
The systematic uncertainties on the fake factors result from the background subtraction and
the following sources are considered: theoretical uncertainties on ZZ and WH as well as the
normalisation uncertainty on WZ. In table 8.7, the theoretical uncertainties on ZZ and WH
are presented. For both, scale uncertainties as well as PDF uncertainties are taken into account.
In case of the ZZ production, the uncertainty is calculated at next-to-leading order in perturba-
tive QCD. The uncertainty from the choice of PDF is derived as 2% and the scale uncertainty
as 4− 5%. This results in a theoretical uncertainty of 6% [97].
TheWH uncertainty is also calculated at next-to-leading order in perturbative QCD. TheW+H
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Figure 8.9: Muon fake factor combined for the entire |η| range as function of pT .

Table 8.7: Theoretical uncertainties of ZZ and WH [42, 97].

ZZ W+H W−H W±H

Theoretical uncertainty
+6% +1.9% +2.0% +2.2%
−6% −1.9% −2.1% −2.2%

scale uncertainty at
√
s = 13TeV is given as +0.5

−0.7%. With the sum in quadrature of PDF and αs
uncertainties of ±1.8%, this results in a combined theory uncertainty of ±1.9%. For the W−H
process, the scale uncertainty is estimated as +0.4

−0.7% and results in a combined uncertainty of
±2.0%. A combined theoretical uncertainty on W+H and W−H is used as ±2.2% which covers
both individual uncertainties [42].
Due to the WZ normalisation, discussed in section 8.3, no theoretical uncertainties are applied
on WZ. Instead, the uncertainty of α�t is propagated through to the fake factor estimation.
For all considered systematic sources, the uncertainty is propagated to the fake factor uncertainty
by varying the corresponding process normalisation by the respective uncertainty up and down.
This results in a new fake factor, denoted as fi,syst. The fake factor without variation is denoted
as fnom.
The di�erence ∆fi = fi,syst − fnom indicates the systematic uncertainty in the fake factor. The
di�erences ∆fi are very similar in their absolute value for both up and down variation. Hence,
the uncertainty is symmetrized by averaging the absolute values of the respective up and down
variations. The resulting systematic uncertainty on the fake factor due to WH is suppressed by
the ones of ZZ and WZ. In the low pT range, both dominant systematic uncertainties are of
equal size, whereas for the highest pT range, ∆fWZ becomes about twice as large as ∆fZZ .

Table 8.8: Muon fake factor and systematic uncertainties.

pT (`probe) [GeV] Fake factor Stat. unc. Sys. unc. Combined

15-20 0.335 0.013 0.004 0.014
20-25 0.337 0.026 0.009 0.028
25-35 0.510 0.059 0.028 0.065
35-1000 1.224 0.282 0.258 0.382

The dependence of the fake factor on ∆R (nearest jet, `probe) is shown in �gure 8.10. For this,
the fake factor is integrated over pT (`probe) and η (`probe). The events with Njets = 0 are shown
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Table 8.9: Electron fake factor for |η| < 1.37 (a) and |η| > 1.52 (b) and systematic uncertainties.

(a) |η| < 1.37

pT (`probe) [GeV] Fake factor Stat. unc. Sys. unc. Combined

15-20 0.255 0.008 0.001 0.008
20-25 0.236 0.012 0.003 0.012
25-35 0.218 0.014 0.005 0.015
35-1000 0.327 0.025 0.017 0.030

(b) |η| > 1.52

pT (`probe) [GeV] Fake factor Stat. unc. Sys. unc. Combined

15-20 0.305 0.012 0.001 0.012
20-25 0.305 0.022 0.003 0.022
25-35 0.420 0.035 0.007 0.036
35-1000 0.454 0.042 0.017 0.045
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Figure 8.10: The fake factor binned in ∆R (nearest jet, `probe). The values obtained for the elec-
tron are shown in �gure a) and those for the muon in b).

In the case of the electron, no signi�cant dependence on ∆R (nearest jet, `probe) is visible. For
the muon a di�erence between Njets = 0 and the �rst ∆R (nearest jet, `probe) bin is observed.
To investigate this further all three data-taking campaigns are split up again. This is shown in
�gure 8.11.

In the campaign c16a, no dependence of the muon fake factor on ∆R is observed within the
uncertainties and in c16d, strong statistical �uctuations are visible without a clear trend. For the
campaign c16e, the trend similar to the combined fake factor for the three data-taking campaigns
is observed. Since two out of the three campaigns show no signi�cant dependency of the fake
factor on ∆R and the campaign c16d is behaving very di�erent compared to the others, no
additional ∆R binning is applied.

Additional fake factor dependencies are investigated. The number of jets Njets has a possible
in�uence. An implicit binning in the context of the ∆R dependency was already performed. The
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Figure 8.11: Muon fake factor binned in ∆R (nearest jet, `probe), separately for the three data-
taking campaigns c16a (a), c16d (b) and c16e (c).

explicit dependency of the fake factor on Njets is shown in �gure 8.12. It is divided in Njets = 0
and Njets > 0. Jets are required to have a transverse momentum of pT ≥ 30GeV. The muon fake
factor shows a slight dependency on Njets. Thus, taking this additional dependency into account,
improvements especially for the muon could be achieved.

Further, a dependency of the fake factor on the signi�cance of the transversal impact parameter
|d0,signif.| is investigated. A binning of [0, 0.5, 1, 2, 3, 5, 10] is chosen integrating over the complete
pT and η range. The resulting fake factor dependency is displayed in �gure 8.13. In the case of
an electron fake, a dependency is visible. A |d0,signif.| binning with [0, 3, 10] could be considered.

Lastly, the dependency of the longitudinal impact parameter |z0 sin θ| on the fake factor is inves-
tigated, binned in [0, 0.025, 0.05, 0.075, 0.1, 0.2, 0.5]mm. The dependency is very similar to the
one of the transversal impact parameter and a binning of the fake factor in this parameter may
improve the fake estimation.

However, dependencies of the fake factor on |d0,signif.|, |z0 sin θ| or Njets are not take into account
in the following closure test.
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Figure 8.12: Fake factor binned in Njets = 0 and Njets > 0 for the electron (a) and the muon (b).
Jets are required to have an pT ≥ 30GeV.
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Figure 8.13: Fake factor binned in the signi�cance of the transverse impact parameter |d0,signif.|
for the electron (a) and the muon (b).

8.5 Closure Test for the Fake Facotrs

The fake factors obtained in the previous section are applied as closure test to the anti-ID
selection in the Z+jets extraction region and compared to the ID selection.

8.5.1 Procedure for the Closure Test

The closure test is performed to verify a correct estimation and implementation of the fake factors
and search for possible mismodelling or further kinematic dependencies of the fake factor.

Fakes in the Z+jets ID region are estimated with equation 8.4. Prompt background processes are
subtracted in the anti-ID region, with the WZ background being scaled by α�t. As before, truth
matching for prompt leptons is applied to simulated events. In the ID region, the total yields
are given as the sum of the estimated fakes and the prompt background. The WZ background is
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Figure 8.14: Fake factor binned in the longitudinal impact parameter |z0 sin θ| for the electron
(a) and the muon (b).

again scaled by α�t. The prediction in the ID Z+jets extraction region is then compared to data.
For the variables pT and η, which are explicit dependencies of the used fake factor, a ratio between
data and fake estimation close to unity is expected. This is shown and validated in �gure 8.15.
In both, the muon pT and the electron η, slight deviations are visible, however within statistical
uncertainties the background estimation is in good agreement with the data.
The uncertainty on the data is given as ∆Ndata =

√
Ndata. For the background, statistical and sys-

tematic uncertainties are considered. The statistical uncertainty in the background ∆N2
stat,total bkg

is given by the sum of squares of event weights in the simulation.
Each systematic uncertainty of the fake factor ∆fi is used for an up and down variation of the
nominal fake factor. This results in a new fake estimation. The di�erence between the varied yields
and the nominal yield ∆Ni,syst = Ni,syst − Nnom is the corresponding systematic uncertainty.
These are then combined to one systematic uncertainty

∆Nsyst =
√

∆N2
WZ,syst + ∆N2

ZZ,syst + ∆N2
WH,syst

by the sum in quadratures. By analogy with this variation, ∆NFF includes the uncertainty
induced by the statistical uncertainties of the fake factor and ∆Nsyst,prompt the combined sys-
tematic uncertainty on the simulated prompt processes by deriving the sum of quadratures of
the individual uncertainties. With this, the total background uncertainty is given as

∆Ntotal bkg =
√

∆N2
stat, total bkg + ∆N2

syst,prompt + ∆N2
FF + ∆N2

syst

The uncertainty on the ratio of data and estimated background is obtained by the sum in
quadrature of relative uncertainties

∆

(
Ndata

Ntotal bkg

)
=

Ndata

Ntotal bkg
×
√(

∆Ndata

Ndata

)2

+

(
∆Ntotal bkg

Ntotal bkg

)2

displayed as error bars in the ratio plots.
In table 8.10, the observed data yield is compared to the estimated background yield. The latter
is split in simulated prompt processes and the estimated fake contribution.
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Figure 8.15: Closure test for the fake factor determination in the Z+jets ID region as function of
pT (left) and η (right) for electrons (top) and muons (bottom). The data is compared
to the combined estimate of the prompt lepton backgrounds and the fake estimate
through the fake factor method. Contributions from the prompt lepton backgrounds
and the fake estimate are separately shown. The lower panel shows the ratio between
data and the estimated background. For a discussion of the displayed uncertainties
see the text.

Table 8.10: Data and estimated background yield for electron and muon fakes. The statistical
and systematic uncertainties of the prompt background and the fake estimation are
included. The statistical uncertainty of the fake factor estimation dominates all oth-
ers.

Data Background Prompt background Fake background

Electron fake 7000± 83.7 7000± 287.3 2139.8± 105.8 4860.2± 267.1
Muon fake 3987± 63.1 3987± 188.4 2117.2± 101.9 1869.8± 158.5

69



8 Estimation of Fake Lepton Background

8.5.2 Closure Test for Other Observables

A qualitative evaluation of the fake factor estimation is performed by comparing data to the
estimated background in variables which are not used for the fake factor estimation.

Figure 8.16 shows the visible mass of the two Z tagged leptons. In general, good agreement is
observed, only in the lowest bin a underestimation of data by approximately 20% is visible for
electron fakes.
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Figure 8.16: Visible mass of both Z-tagged leptons for an electron probe (a) and muon probe
(b). The plot style follows the one in �gure 8.15.

The missing transverse energy is shown in �gure 8.17. For muon fakes, data and estimation are
found to be in a good agreement. However, for electron fakes, the data over background ratio
shows an underestimation up to 45% and an overestimation up to 33%. A negative slope in
the ratio is visible as well. A reason for this could be fake factor dependencies which are not
considered yet.

In �gure 8.18, the transverse mass of the probe lepton is displayed. In case of muon fakes, a good
estimation is observed. Similar to the missing transverse energy, a trend in the ratio of data over
prediction is visible for electron fakes, but in contrast to the missing transverse energy, this slope
is positive.

The lepton impact parameters d0,signif. and z0 sin θ are displayed in �gure 8.19. For both, a good
estimation around the peak value is visible. However, for larger |d0,signif.| and |z0 sin θ| values, an
overestimation is observed for electron probe leptons.

8.5.3 Discussion

In general, the closure test veri�es the determination and application of the fake factor as well
as the fake factor method for the fake background estimate. Most investigated quantities show
good agreement between data and background in the Z+jets ID region. Issues in the modelling
are seen for electrons in the missing transverse energy Emiss

T , the transverse mass mT (`probe) and
the impact parameters.

These deviations could be solved by taking an additional dependency into account. As presented
in section 8.4, both d0,signif. and z0 sin θ have in�uence on the fake factor in case of an electron
probe lepton. However, their actual in�uence for the fake estimation in the Z+jets region must
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Figure 8.17: Missing transverse energy for an electron as probe lepton (a) and a muon (b). The
plot style follows the one in �gure 8.15.
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Figure 8.18: Transverse mass of `probe for an electron as probe lepton (a) and a muon (b). The
plot style follows the one in �gure 8.15.

be veri�ed. A binning in ∆R (nearest jet, `probe) or Njets of the fake factor will not resolve the
mismodelled Emiss

T and mT (`probe), since only a fake factor dependency in case of a muon probe
lepton was observed.
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Figure 8.19: Impact parameters d0,signif. (left) and z0 sin θ (right) for an electron as probe lepton
(top) and a muon (bottom). The plot style follows the one in �gure 8.15.

72



9 Higgs Boson Mass Reconstruction via a

Regression Neural Network

An integral part for the observation of �nal states originating from LFV decays is the separation
of di�erent processes that produce two di�erent �avour leptons in the �nal state. To increase the
sensitivity to such events originating from LFV Higgs boson decays, a precise reconstruction of
the Higgs boson mass might be a very valuable separation parameter and enable a better signal-
to-background separation. This may be achieved by using a regression neural network (NN) to
reconstruct the Higgs boson mass.

The NN is competing with existing mass reconstruction techniques, namely the collinear mass
approximation and the missing mass calculator (MMC), described in section 6.4. The MMC is
a more advanced method and it is expected to outperform the collinear mass approximation.
However, in prior studies at the CMS experiment, an improved mass reconstruction of the NN
compared to existing methods was shown [98]. The signal-to-background signi�cance for a H →
ττ signal and a Drell-Yan background was improved to 16.5± 0.2 compared to the signi�cance
of a existing reconstruction algorithm of 11.2 ± 0.1. Hence, especially the comparison between
the NN and the MMC is of interest. In addition to the signal-to-background separation, the
NN might gain in terms of computing time compared to the relatively resource-intensive MMC
calculation.

Section 9.1 describes the selection of simulated events used in the training of the NN. The used
hyper-parameters, architectures and input features for the various NNs are presented in section
9.2, as well as the used optimization procedures. The trained NNs are compared with existing
mass reconstruction methods in section 9.3. This includes comparisons on the basis of the test
set as well as with di�erent Monte Carlo simulated signal and background processes.

9.1 Simulation and Event Selection

The NN is trained on a large range of Higgs boson masses to obtain a more generalized and
reliable mass reconstruction of the signal processes as well as the background processes. For
the simulated training events, only Higgs boson production processes via gluon-gluon fusion are
considered, since these have the highest contribution among all Higgs production processes. These
processes are simulated in the same way as described in section 7.1. The LFV Higgs boson is
simulated to result in a τe pair. No decay into the τµ lepton pair is considered. However, due to
lepton universality, it is expected that a NN trained on one decay mode reconstructs the Higgs
mass similarly well for both decay modes. The lowest simulated mass point is at 60GeV and
the highest at 270GeV, with steps of 5GeV in between. This results in 43 di�erent mass points.
Furthermore, events are only simulated for the 2018 data-taking year with the respective pile-up
pro�le.

The general selection is the same as described in section 7.3, however some modi�cations are
performed to gain more statistics. No hadronic τ veto, no trigger requirements and no pseudo-
rapidity selection on the leptons is applied. Furthermore, the threshold of pT (`0) is reduced to
15GeV. Since a large mass range is investigated, no selection on the visible mass is performed.
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9 Higgs Boson Mass Reconstruction via a Regression Neural Network

Finally, the requirements on the impact parameters are dropped as well.
For each mass point, between 10 000 to 15 000 events are generated. However, low mass points
are more likely to fail the event selection resulting in less statistics. The e�ciency of the event
selection is shown for each mass point in �gure 9.1. It ranges from 45% to 78%. This e�ect can
be compensated by weighting each mass point such that the sum over all event weights after the
selection is the same for every mass point. Hence, in the training process of the NN, individual
events in the lower mass range become more important than events of the higher mass points.
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Figure 9.1: E�ciency of the event selection for all simulated H → τe mass points.

9.2 Optimization of Neural Network Hyper-parameters and Input

Features

The simulated events are divided into three sets: 80% training set, 10% validation set and 10%
test set. The individual purpose of each set is described in section 5.2.1. Several feedforward NNs
are optimized via a grid-random hyper-parameter search. All NNs are written with the Python
high-level library Keras [99] in combination with TensorFlow [100] as backend, which executes
operations such as tensor products.

9.2.1 Utilized Hyper-parameters

All nodes in the hidden layers of the NN use the ReLu activation. As needed for the mass
reconstruction, the NN has only one output node, providing the predicted mass. This node uses
a linear activation, allowing also negative values of the predicted mass. The used loss function is
the mean squared error function, given in equation (5.4).
To prevent the NN from over�tting, early stopping with a patience of �ve epochs is used. In gen-
eral, no other regularization methods are applied. However, one NN is trained by using dropout
as additional regularization. For the minimization of the loss function, the Adam optimizer is
used. The maximum number of epochs is set for all NNs to 200.
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9.2 Optimization of Neural Network Hyper-parameters and Input Features

9.2.2 Neural Network Architectures

In principle, three di�erent architectures are used. For the most simple one, the �at layer ar-
chitecture, every layer of the NN has exactly the same number of nodes (N-N-N). Two, three
and four layer NNs are trained with this architecture. Studies in Ref. [101] showed that this
architecture generally performs equally well or better than others. However, this can depend on
the data and the task. Thus, two additional architectures are tested: a pyramid-like structure
and an onion-like one. In the latter case, the �rst and last hidden layer have the least nodes. The
number of nodes in each layer increases towards the middle of the NN and decreases afterwards
in such a way, that a symmetry with respect to the central layer is obtained (N-2N-N). The
pyramid structure describes a NN, where the number of nodes decreases with each hidden layer
(3N-2N-N). For the pyramid-like and onion-like layer architectures, only three layer NNs are
trained. The number of nodes N for the NNs is between 200 and 400.

9.2.3 Sets of Input Features

Two di�erent sets of input features are used. Both sets are based on the leading lepton, the
sub-leading lepton and the missing transverse energy. More advanced input features are included
in the �rst set, whereas only the fundamental quantities of the four-momenta are used in the
second set. The �rst set of input features is noted as IF1 and the second one as IF2.
The input features in both sets are standardized as described in section 5.2.2. Furthermore, the
coordinate system is rotated in both cases such that the azimuth angle φ(MET) = 0. The azimuth
angle of both leptons is restricted to (−π,+π]. This restriction is also applied to di�erences of
azimuth angles.
The �rst set of input features is presented in table 9.1.

Table 9.1: First set of input features for the regression NN, determining the Higgs boson mass.
Parameter Description

pT (`0) Transverse momentum of leading lepton

pT (`1) Transverse momentum of sub-leading lepton

Emiss

T Missing transverse energy

∆η(`0, `1) Pseudorapidity di�erence between leading and sub-leading lepton

mT (`0) Transverse mass of leading lepton and missing transverse energy

mT (`1) Transverse mass of sub-leading lepton and missing transverse energy

mcoll Collinear mass

mvis Visible mass

S Signi�cance of missing transverse energy

∆φ(`0, `1) Azimuth angle di�erence between leading and sub-leading lepton

∆φ(`0, E
miss

T ) Azimuth angle di�erence between leading lepton and missing transverse energy

∆φ(`1, E
miss

T ) Azimuth angle di�erence between sub-leading lepton and missing transverse energy

The transverse momenta of the leading and sub-leading lepton as well as the missing transverse
energy are used as well as the respective azimuth angle di�erences. Leptons originating from
heavy particles like the top quark have in general a large transverse momenta which can be
used to separate these processes from the signal process. Further, the pseudorapidity di�erence
between the leading and the sub-leading lepton is used. For low mass points, the leptons are
more likely to have the same pseudorapidity than for high mass points. Important input features
are the collinear mass and the visible mass of the dilepton system.
The transverse mass, de�ned in equation (8.5), is also used as input feature in this set. Especially
the transverse mass of the leading lepton shows a dependency on the mass of the Higgs boson.
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9 Higgs Boson Mass Reconstruction via a Regression Neural Network

The last one in this set of input features is the signi�cance of the missing transverse energy.
This signi�cance is calculated as log-likelihood ration of the hypothesis that the total transverse
momentum due to undetected particles is equal to zero against the hypothesis that it is unequal
zero. It can be written as

S2 = 2 ln

max~pund.T =~0L( ~Emiss
T )

max~pund.T 6=~0L( ~Emiss
T )

 ,

where the numerator and denominator are maximised likelihood functions for a given Emiss
T under

the constraints of no undetected transverse momentum (~pund.T = ~0) and non-zero undetected
transverse momentum (~pund.T 6= ~0) [102].

For �ve mass points, the mcoll and pT (`0) distributions are displayed in �gure 9.2. As expected,
the collinear mass is already decently predicting the actual mass. The mean value of all �ve
distributions is within ±8GeV of the actual mass. However, the standard deviation increases
with each mass point up to ≈ 27GeV for the 255GeV mass point. The leading pT distribution
becomes broader for higher masses.
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Figure 9.2: Kinematic distributions as a function of mcoll (left) and pT (`0) (right) for di�erent
mass points of LFV decaying Higgs bosons, which are used as input features in the
training of the NN. The actual mass values are indicated by the vertical lines.

In �gure 9.3, the mvis and pT (`1) distributions are shown. Both distributions are much broader
for high masses than for low masses.

The distributions of Emiss
T and S are shown in �gure 9.4. For small masses, both distributions

are shifted to smaller values and the Emiss
T distribution becomes sharper.

In �gure 9.5, the distributions of mT (`0) and mT (`1) are displayed as well as the ones of the
angular di�erences ∆φ and pseudorapidity di�erence ∆η(`0, `1). For higher masses, the mT (`0)
distribution is located around larger values and is broader distributed, whereas mT (`1) is shifted
slightly to smaller values. The distributions of ∆φ(`0, `1) and ∆φ(`0, E

miss
T ) are shifted for higher

masses more to ±π, whereas the ∆φ(`1, E
miss
T ) distribution has a sharper peak around 0. This

indicates an alignment of the sub-leading lepton and the missing transverse energy. For smaller
masses, the ∆η(`0, `1) distribution is increasingly located at smaller values.

During the training phase, the NN tries to learn how the respective input features in�uence the
reconstructed mass and adjust its weights and biases to predict the mass points more precisely.
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Figure 9.3: Kinematic distributions as a function of mvis (left) and pT (`1) (right) for di�erent
mass points of LFV decaying Higgs bosons, which are used as input features in the
training of the NN.
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Figure 9.4: Kinematic distributions as a function of Emiss
T (left) and S (right) for di�erent mass

points of LFV decaying Higgs bosons, which are used as input features in the training
of the NN.

IF1 includes measured quantities as well as calculated quantities like the collinear mass. On the
one hand, this allows more advanced input features which might help the NN to reconstruct
the mass more precisely. On the other hand, this can also lead to a bias in the training, as the
NN could learn that only the collinear mass is important for the mass reconstruction since it is
already a decently working reconstruction method.

For comparison, an additional NN is trained only using the fundamental four-momenta of the
�nal state particles. For the azimuthal angles, the 2π symmetry of the detector is factored in by
taking the sine and cosine, so that the NN does not have to extract it from the input features
itself. In contrast to IF1, no input feature in IF2 is already a mass reconstruction method. Due
to the rotation of the coordinate system, φ(Emiss

T ) is not present in this set. The input features
of the second set are listed in table 9.2.
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9 Higgs Boson Mass Reconstruction via a Regression Neural Network
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Figure 9.5: Kinematic distributions as a function of mT (`0) (top left), mT (`1) (top right),
∆η(`0, `1) (middle left), ∆φ(`0, `1) (middle right), ∆φ(`0, E

miss
T ) (bottom left) and

∆φ(`1, E
miss
T ) (bottom right) for di�erent mass points of LFV decaying Higgs bosons,

which are used as input features in the training of the NN.

In �gure 9.6, the distributions of E(`0) and E(`1) are shown. For higher masses, both distributions
are located at higher values and become broader.
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Table 9.2: Second set of input features for the training of a NN to reconstruct the LFV Higgs
boson mass. Only the fundamental four-momenta are used.

Parameter Description

pT (`0) Transverse momentum of leading lepton
pT (`1) Transverse momentum of sub-leading lepton
Emiss
T Missing transverse energy

E(`0) Energy of leading lepton
E(`1) Energy of sub-leading lepton
η(`0) Pseudorapidity of leading lepton
η(`1) Pseudorapidity of sub-leading lepton

sinφ(`0), cosφ(`0) Azimuth angle of leading lepton
sinφ(`1), cosφ(`1) Azimuth angle of sub-leading lepton
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Figure 9.6: Kinematic distributions as a function of E(`0) (left) and E(`1) (right) for di�erent
mass points of LFV decaying Higgs bosons, which are used as input features in the
training of the NN.

The η, sinφ and cosφ distributions of the leading and sub-leading lepton are displayed in �gure
9.7. The pseudorapidity distributions are for all masses approximately the same. Both sinφ
distributions have a sharper peak around 0 for higher masses and the cosφ distributions are
shifted stronger to −1 and +1 for the leading and sub-leading lepton, respectively. This is due
to the rotation of the coordinate system as well as the enhance collinearity of the sub-leading
lepton and the missing transverse energy for higher masses.

9.2.4 Hyper-parameter Optimization with Grid-Random-Search

The free hyper-parameters of the NN training, i.e. the learning rate, the decay, the nodes in each
layer and the batch size are optimized with a grid-random search as described in section 5.3.2.
If dropout is used, the dropout rate is considered as optimized hyper-parameter as well.

For the optimization, NNs are trained for each combination of values tested for the free hyper-
parameters within a given range, along randomly varied grid points. NNs without dropout are
trained with 36 di�erent hyper-parameter con�gurations and if dropout is used, 216 di�erenct
con�gurations are tested.
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Figure 9.7: Kinematic distributions as a function of η(`0) (top left), η(`1) (top right), sinφ(`0)
(middle left), cosφ(`0) (middle right), sinφ(`1) (bottom left) and cosφ(`1) (bottom
right) for di�erent mass points of LFV decaying Higgs bosons, which are used as
input features in the training of the NN.

The random shift of one hyper-parameter i at the grid point gi is given by

∆gi =
gi
10
·Ri
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9.2 Optimization of Neural Network Hyper-parameters and Input Features

with the random value Ri restricted to the interval (−1, 1]. Noting ~g as the vector build from all
free hyper-parameters, the new grid point is derived as

~g′ = ~g + ∆~g.

All NNs except the one with dropout regularization use the prede�ned grid for the grid-random
search shown in table 9.3.

Table 9.3: Prede�ned grid for the grid-random search for NNs without dropout regularization.

Free hyper-parameter Number of grid points Grid values

Learning rate 2 0.001, 0.01
Decay 2 0.001, 0.01
Nodes 3 200, 300, 400
Batch size 3 30, 50, 100

The case of an onion architecture, the parameter 'nodes' refers to the number of nodes in the
�rst and last hidden layer. For every other hidden layer, the position P of the layer in the layer
architecture, or to be precise its di�erence in position with respect to the �rst or last hidden
layer, is used to calculate the number of nodes. The number of nodes is calculated as

nodes for position P = nodes× (P + 1) (9.1)

resulting in integer multiples of the value 'nodes'.
For the pyramid architecture the optimization procedure has one modi�cation. The parameter
'nodes' refers only to the number of nodes in the last hidden layer and the position P is the
distance to this last hidden layer. Hence, the respective nodes in each layer are calculated as in
equation (9.1).
If dropout regularization used, a di�erent grid is de�ned as the additional regularization is
expected to in�uence the optimal values for most of the hyper-parameters. The prede�ned grid
is shown in table 9.4.

Table 9.4: Prede�ned grid for the grid-random search for NNs with dropout regularization.

Free hyper-parameter Number of grid points Grid values

Learning rate 3 0.01, 0.1, 0.5
Decay 2 0.01, 0.1
Nodes 3 200, 300, 400
Batch size 3 50, 100, 200
Dropout rate 4 0.05, 0.1, 0.2, 0.4

This additional regularization is only applied to �at layer architectures where all hidden layers
have the same number of nodes.

9.2.5 Application of the Principle Component Analysis

For the NN training based on the IF1 input features, a principle component analysis (PCA), as
discussed in section 5.3.3, is applied. As a result of the PCA, the 12 input features are combined
as linear combinations among which the two least important ones are dropped from the training
of the NN. The transformation matrix, constructed by the eigenvectors of the input feature
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9 Higgs Boson Mass Reconstruction via a Regression Neural Network

correlation matrix, is used to derive the linear combinations. With this, 10 uncorrelated input
features are obtained which still cover over 99% of the initial input feature information.
Furthermore, the transformation matrix is used to train one additional NN with a reduced
number of input features of the IF1 set and a �at layer architecture. As discussed in section
5.3.3, each row of the transformation matrix corresponds exactly to one initial input feature,
here IF1. Deriving the absolute value norm

∑
i |Vji| for row j of the transformation matrix V ,

the corresponding input feature is eliminated from the set, if the norm does not exceed a given
limit. This limit is set to be 0.7. As a result, all azimuth di�erences as well as the signi�cance of
the missing transverse energy are eliminated as input features for this speci�c NN.

9.2.6 Resulting Hyper-parameters and Input Features

In total, 10 di�erent optimized NNs are trained, tested and compared. A summary of the NNs is
presented in table 9.5. Two (IF1L2F), three (IF1L3F) and four layer (IF1L4F) NNs with a �at
layer architecture are compared as well as three layer NNs with a pyramid-like (IF1L3P) and
onion-like (IF1L3O) architecture.
A neural network (IF1L3F-nomcoll) with the IF1 input features, but without the collinear mass is
trained as well. It is used to verify, that the NN is able to predict the Higgs boson mass correctly,
missing an actual mass reconstruction as input feature. One NN (IF1L2F-dropout) is also trained
using dropout regularization in each hidden layer. Using the transformation matrix of the PCA
method, one NN (IF1L3F-redPCA) with reduced IF1 input features is trained. Another one
(IF1L3F-uncPCA) uses the full PCA method and has only 10 linear uncorrelated input features.
Finally, one NN (IF2L4F) with the IF2 input features is used to investigate the capability of the
NN to reconstruct the mass with only the most fundamental input features.

Table 9.5: Architecture and hyper-parameters of the 10 NNs, optimized with the grid-random
hyper-parameter search. The names of the NNs are structured as: set of input fea-
tures, number of layers, architecture. The latter F describes a NN with a �at layer
architecture, whereas P and O represent the pyramid-like and onion-like architecture
respectively. For the NN IF1L3F-no mcoll, the collinear mass is not included as input
feature. IF1L2F-dropout uses a dropout regularization with a dropout rate of 4.6% in
each hidden layer. The last two noted NNs use the PCA, where IF1L3F-uncPCA has
uncorrelated and reduced input features and IF1L3F-redPCA reduced input features.

NN name Input features Layers Nodes Learning rate Decay Batch size

IF1L2F IF1 2 304-304 0.0109 0.0009 51

IF1L3F IF1 3 365-365-365 0.0105 0.0010 28

IF1L4F IF1 4 275-275-275-275 0.0095 0.0011 45

IF2L4F IF2 4 279-279-279-279 0.0093 0.0010 31

IF1L3F-no mcoll IF1 3 191-191-191 0.0109 0.0001 54

IF1L2F-dropout IF1 2 204-204 0.0905 0.0095 198

IF1L3P IF1 3 1281-854-427 0.0103 0.0107 96

IF1L3O IF1 3 309-618-309 0.0108 0.0001 31

IF1L3F-uncPCA IF1 3 218-218-218 0.0094 0.0011 51

IF1L3F-redPCA IF1 3 194-194-194 0.0103 0.0010 51

9.2.7 Bias in Mass Prediction and its Correction

After the training the performance of each NN is evaluated based on simulated events in the
validation set. The Higgs boson mass predicted by the NN is compared to the true value.
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9.2 Optimization of Neural Network Hyper-parameters and Input Features

The relative deviation

bias =
prediction− target

target
(9.2)

between the predicted mass and the true mass value, denoted as target, is called bias. It describes
how precise the NN predicts the actual mass, and is evaluated for each target mass separately.
The arithmetic mean of the bias is derived over all events in one mass point of the validation set.
Figure 9.8 displays the bias as a function of the true Higgs boson masses. For each mass point,
the x-value is derived as arithmetic mean of the derived mass values of the NN. The uncertainties
are calculated as standard error of the mean, i.e. the standard deviation divided by the square
root of the number of events.
A mean value that deviates from zero indicates that there is an o�set in the prediction of the
NN for this mass point. A systematic trend can be observed and is in general well described
by a polynomial �t of 3rd degree. However, in the low mass range, the �t is less steep than the
observed bias dependency.
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Figure 9.8: Bias in the derived mass from the NN IF1L4F after training for each mass point.
The points from the MC simulation (black markers) are �tted with a polynomial �t
of 3rd degree (red line).

In the central mass region between 100GeV and 200GeV the bias is rather small and �at at
approximately 2%. At low and high masses, below 100GeV and above 260GeV, the bias becomes
larger than 5% and increases rapidly. This bias is tested in two ways. In the �rst one, a NN is
trained with many more nodes per layer, such that more free parameters are available to adapt to
the mass reconstruction task. For this, all hyper-parameters are the same as for the NN IF1L3F,
but with 1000 nodes in each layer. In the second test, the low and high masses during the training
process of the NN IF1L3F where weighted by an order of magnitude larger than in the standard
training. However, the �rst NN has almost the exact same dependency and the latter NN shows
a much stronger dependency, displayed in �gure 9.9.
The polynomial �t can be used to correct the systematic trend. Using equation (9.2), the corrected
mass reconstruction of the NN can be derived on an event-by-event basis from the initial mass
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Figure 9.9: Bias in the derived mass of two NNs with alternative training processes. Both have
the IF1L3F hyper-parameters, but one has 1000 nodes per layer (left) and for the
other, mass points below 90GeV and above 210GeV are weighted by an order of
magnitude larger than in the standard training (right). The points from the MC
simulation (black markers) are �tted with a polynomial �t of 3rd degree (red line).

reconstruction of the NN and the performed polynomial �t, given by

corrected mass =
initial mass

correction �t(initial mass)+1
(9.3)

where the polynomial �t depends only on the initial mass reconstruction, before the performed
correction is applied. In table 9.6, the obtained �t parameters for all NNs are presented.

Table 9.6: Obtained parameters of the performed polynomial �t a + b · initial mass + c ·
(initial mass)2 + d · (initial mass)3.

NN a/10−1 b/10−3 c/10−5 d/10−7

IF1L2F 4.93 0-9.04 5.65 -1.17
IF1L3F 4.94 0-9.09 5.67 -1.16
IF1L4F 5.13 0-9.12 5.62 -1.15
IF2L4F 5.43 0-9.84 6.10 -1.25
IF1L3F-no mcoll 4.71 0-8.65 5.39 -1.11
IF1L2F-dropout 5.05 0-9.07 5.59 -1.15
IF1L3P 5.16 0-9.47 5.89 -1.21
IF1L3O 6.14 -10.74 6.48 -1.30
IF1L3F-uncPCA 5.24 0-9.74 6.09 -1.25
IF1L3F-redPCA 4.62 0-8.57 5.41 -1.12

The distribution of the biases over all selected events in the validation set for the mass point
of 75GeV is shown in �gure 9.10, with and without the bias correction �t. With the correction
applied, the mean of the distribution is clearly shifted towards zero, hence the overall bias is
reduced. This observed for all NNs.

Connected to the bias is the resolution. The resolution of the mass reconstruction is de�ned as
the standard deviation of the di�erence between the NN mass reconstruction and the actual mass

84



9.3 Comparison of NNs to existing Mass Reconstruction Methods

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
Bias

0

20

40

60

80

100

120

E
nt

ri
es

√
s = 13 TeV, 58.5 fb−1Mean: 7.2% −→ −0.9%

RMS: 10.3 GeV −→ 11.1 GeV
NN

NN corrected

Figure 9.10: Bias in the mass reconstruction from the IF1L4F NN for the 75GeV mass point,
evaluated for the validation dataset. Both, the bias distribution without bias cor-
rection (blue) and with bias correction applied (orange) are shown. The resolution
and mean of the bias are indicated in the top left.

for a given mass point. This quantity describes how peaked the reconstructed mass distribution
is. Thus, a small resolution provides a better separation between the individual mass points.
However, the application of the bias correction in general worsens the resolution. Since the main
goal of this work is to improve the resolution to gain separation power between signal and
background, this correction �t is not applied in the following.

9.3 Comparison of NNs to existing Mass Reconstruction Methods

The trained NNs are compared with each other and to existing mass reconstruction methods,
namely the collinear mass and missing mass calculator described in section 6.4. The evaluation
of the bias and resolution is performed using data from the test set and for Higgs LFV and Z
LFV simulated events. The separation power between signal and background is compared for
both LFV signal processes.

9.3.1 Comparison of various Mass Reconstruction Techniques with Simulated
Events from the Test Set

The bias and resolution are evaluated for four di�erent true mass ranges, which ensure enough
statistics. The lowest mass range contains the Z boson mass peak with a range of [60, 100)GeV.
The second mass range includes the Higgs boson mass peak and is set to [100, 150]GeV. The
mass range above is split in (150, 200]GeV and (200, 270]GeV. To calculate the resolution in
the respective mass range, the di�erence between the reconstructed mass and the true mass is
�lled in a histogram. Each event is weighted equally and the resolution is derived as standard
deviation of the histogram. Similar to this, a histogram is �lled with the bias of each of those
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9 Higgs Boson Mass Reconstruction via a Regression Neural Network

events and the noted bias is given as mean value of the histogram.
An improvement of the resolution in the �rst two mass ranges is of high interest to enable a better
separation between the signal-like processes and the irreducible Z → ττ background. However,
to improve the separation of signal-like processes and the background due to top and diboson
contributions, higher masses must also be predicted reasonably well. The bias is summarized in
table 9.7 and the resolution in table 9.8. The uncertainty on the bias is derived as σ/

√
N and on

the resolution as σ/
√

2N − 2, where σ is the standard deviation and N the number of events.

Table 9.7: Bias of the trained NNs and existing mass reconstruction methods. All values are
stated as percentage di�erence with respect to the true masses. The abbreviations are
described in table 9.5.

Mass reconstruction [60, 100)GeV [100, 150]GeV (150, 200]GeV (200, 270]GeV

IF1L2F −6.4± 0.2 −2.1± 0.1 −1.2± 0.1 −2.3± 0.1
IF1L3F −6.2± 0.2 −2.0± 0.1 −1.2± 0.1 −2.2± 0.1
IF1L4F −7.4± 0.2 −2.8± 0.1 −1.6± 0.1 −2.1± 0.1
IF2L4F −7.2± 0.2 −2.5± 0.1 −1.5± 0.1 −2.1± 0.1
IF1L3F-no mcoll −6.1± 0.2 −1.9± 0.1 −1.1± 0.1 −2.2± 0.1
IF1L2F-dropout −7.0± 0.2 −2.4± 0.1 −1.1± 0.1 −2.6± 0.1
IF1L3P −6.5± 0.2 −1.9± 0.1 −0.8± 0.1 −2.7± 0.1
IF1L3O −8.8± 0.2 −3.0± 0.1 −1.4± 0.1 −2.4± 0.1
IF1L3F-uncPCA −6.2± 0.2 −1.7± 0.1 −0.8± 0.1 −2.7± 0.1
IF1L3F-redPCA −5.9± 0.2 −2.1± 0.1 −1.4± 0.1 −2.0± 0.1

mcoll 10.3± 0.3 −4.0± 0.2 −2.0± 0.1 −0.9± 0.1
MMCmaxw −1.5± 0.2 −2.9± 0.2 −2.5± 0.1 −2.0± 0.1
MMCmlm −4.2± 0.2 −0.4± 0.2 −0.6± 0.1 −0.8± 0.1

Table 9.8: Resolution of the trained NNs and existing mass reconstruction methods. All stated
values are in units of GeV. The abbreviations are described in table 9.5.

Mass reconstruction [60, 100)GeV [100, 150]GeV (150, 200]GeV (200, 270]GeV

IF1L2F 10.6± 0.1 16.5± 0.1 19.0± 0.1 18.3± 0.1
IF1L3F 10.6± 0.1 16.6± 0.1 19.0± 0.1 18.3± 0.1
IF1L4F 10.7± 0.1 16.6± 0.1 18.9± 0.1 18.0± 0.1
IF2L4F 10.9± 0.1 16.7± 0.1 19.2± 0.2 18.3± 0.1
IF1L3F-no mcoll 10.7± 0.1 16.6± 0.1 19.0± 0.1 18.4± 0.1
IF1L2F-dropout 10.7± 0.1 16.5± 0.1 18.8± 0.1 18.3± 0.1
IF1L3P 10.5± 0.1 16.5± 0.1 18.9± 0.1 18.2± 0.1
IF1L3O 10.5± 0.1 16.3± 0.1 18.7± 0.1 18.0± 0.1
IF1L3F-uncPCA 10.6± 0.1 16.5± 0.1 18.9± 0.1 18.1± 0.1
IF1L3F-redPCA 10.7± 0.1 16.8± 0.1 19.2± 0.2 18.3± 0.1

mcoll 14.8± 0.2 19.5± 0.2 22.8± 0.2 25.7± 0.2
MMCmaxw 12.1± 0.1 17.4± 0.1 20.9± 0.2 24.0± 0.2
MMCmlm 11.6± 0.1 16.6± 0.1 20.2± 0.2 23.5± 0.2

In general, all NNs perform similarly well with respect to bias and resolution. The NN trained
without the collinear mass (IF1L3F-no mcoll) performs slightly better in the bias, but marginally
worse in terms of resolution compared to the NN with the same architecture, but including mcoll
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as input feature. The NN trained only with the four momenta (IF2L4F) accomplishes a similar
resolution and bias as the other NNs, but is in most cases slightly below the average of all NNs.
The observations verify:

• A NN does not need an actual mass reconstruction as input feature for a good performance
of the mass reconstruction.

• The compared NN layer architectures perform equally well. The NN with a pyramid-like
architecture (IF1L3P) performs very similar to the same NN with a �at layer architecture.
In case of the NN with an onion-like architecture (IF1L3O), a slightly better resolution
with a worse bias is observed.

• Input features can be eliminated from the input feature set without impairing the NN mass
reconstruction performance. This is shown by the NN IF1L3F-uncPCA and NN IF1L3F-
redPCA. In case of the former NN, decorrelated input features are used and two of those
are eliminated from the set. The NN IF1L3F-redPCA uses only eight input features of
the �rst input feature set. In all mass ranges, both NNs perform very similar as the NN
IF1L3F, which has the same layer architecture, but all input features of the �rst set.

The trained NNs are compared to the collinear mass approximation mcoll and the two variants
of the missing mass calculator MMCmaxw and MMCmlm. Compared with the collinear mass
reconstruction, the NNs perform better with respect to the resolution and almost always better
with respect to the bias. This is also the case for the NN without the collinear mass as input
feature (IF1L3F-no mcoll) as well as the NN using only the four momenta (IF2L4F). In general,
the MMCmaxw mass reconstruction performs worse than the NNs, but better than the collinear
mass. Compared to the NNs, only the MMCmlm mass reconstruction has a very similar mass
resolution in the range between 100 and 150Gev, but still a slightly worse one in the other
mass ranges. However, its bias is in general much closer to zero than the ones of the NNs.
The resolution for each mass point of the NN IF1L3F-uncPCA and the three existing mass
reconstruction techniques is shown in �gure 9.11.

Both MMC variants take advantage of an additional event selection due to the parameter scan
over the x- and y-component of the di-neutrino momentum, discussed in section 6.4.

To summarize, the trained NNs outperform in almost all cases the existing mass reconstruction
methods in terms of the mass resolution. Compared to the existing mass reconstruction methods,
the resolution can be improved signi�cantly in the higher mass ranges by at least 1GeV and up
to 7.7 GeV. This corresponds to an improved resolution between 5 % and 30 %. Improvements
for lower mass ranges are of the order of 1GeV, which is equivalent to an improvement of 10 %.
However, the MMCmlm has the smallest bias, except in the lowest mass range, where MMCmaxw

has the smallest bias.

9.3.2 Investigation of the Bias at Low Masses

To investigate a possible improvement of the NN bias, two additional mass points are added to
each event sample at 50GeV and 55GeV. The IF1L3F con�guration is used with a new hyper-
parameter search resulting in a learning rate of 0.0099, a decay of 0.0010, a batch size of 28 and
280 nodes in each layer. This NN is called IF1L3F-low in the following. The obtained bias in
the validation set as well as the performed polynomial �t is displayed in �gure 9.12 next to the
IF1L3F NN without the two lower mass points. In table 9.9, the polynomial �t parameters for
both NNs are presented.
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Figure 9.11: Resolution for the NN IF1L3F-uncPCA and the three existing mass reconstruction
techniques for all mass points. The NN shows a better resolution for masses below
90GeV and above 175GeV.
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Figure 9.12: Bias of the NNs IF1L3F-low and IF1L3F in the validation set as function of the
simulated mass points. The simulated data points are �tted with a polynomial of
3rd degree.

With the additional mass points, IF1L3F-low displays an improved bias in the low mass range.
The bias at the 60GeV mass point in the test set is improved from 13.8% to 7.4%. In addition,
the polynomial �t describes the lower tail better with the added mass points than without, which
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Table 9.9: Obtained parameters of the performed polynomial �t a + b · initial mass + c ·
(initial mass)2 + d · (initial mass)3 for the NNs IF1L3F-low and IF1L3F.

NN a/10−1 b/10−3 c/10−5 d/10−7

IF1L3F 4.94 -9.09 5.67 -1.16
IF1L3F-low 2.96 -5.38 3.52 -0.76

is expressed by a reduced χ2/ndf from 1.6 · 10−4 compared to 8.1 · 10−5.

Table 9.10: Bias (a) and resolution (b) for the NNs IF1L3F-low and IF1L3F using data of the
test set. The bias is given in % and the resolution in GeV.

(a) Bias

Mass reconstruction [60, 100)GeV [100, 150]GeV (150, 200]GeV (200, 270]GeV
IF1L3F 6.2± 0.2 2.0± 0.1 1.2± 0.1 −2.2± 0.1
IF1L3F-low 4.5± 0.2 3.0± 0.1 1.7± 0.1 −1.6± 0.1

(b) Resolution

Mass reconstruction [60, 100)GeV [100, 150]GeV (150, 200]GeV (200, 270]GeV
IF1L3F 10.6± 0.1 16.6± 0.1 19.0± 0.1 18.3± 0.1
IF1L3F-low 11.4± 0.1 16.7± 0.1 19.2± 0.2 18.4± 0.1

The obtained resolution and bias in the test set for the respective mass ranges are presented in
table 9.10. For the lowest mass range an improvement in the bias by about 1.7 % is observed,
however the bias deteriorates for two out of three higher mass points. The resolution worsens for
all four mass ranges, in the lowest mass range by about 0.8GeV. Including the two additional
mass points to the lowest mass range, i.e. [50, 100), the resolution improves to 10.8GeV, but the
bias does also increase to 5.2%.
To summarize, the additional low mass points improve the bias of the NN in the low mass range
enabling predictions closer to the true mass values. However, a worse resolution is observed which
denies an improved mass reconstruction. It is still unclear, why all NNs show this increasing bias
e�ect at both edges of the mass point range and further studies are necessary to understand and
reduce the bias.

9.3.3 Mass Reconstruction for Higgs Boson LFV and Z Boson LFV decays

In the LFV analysis H(Z)→ τe and H(Z)→ τµ decays are studied. A good mass reconstruction
of these signal processes and the SM background processes is crucial to become sensitive to a
signal excess. The performance of the trained NNs and the exisiting mass reconstruction methods
is evaluated for simulated Higgs LFV and Z LFV processes as well as the most dominant and
irreducible Z → ττ background. For the Higgs LFV processes, dependencies of the mass recon-
struction methods on di�erent production processes, decay modes and channel assignments are
investigated. The performed event selection is the same as in the signal region (SR), described
in chapter 7.
In case of the simulated Higgs LFV processes, the resolution and the arithmetic mean of the
mass reconstruction is compared for the two dominant Higgs production processes, gluon-gluon
fusion (ggH) and vector boson fusion (VBF). The results are listed in table 9.11.
As previously, all NNs perform similarly well. For all mass reconstruction methods, the Higgs
mass is slightly better reconstructed for the ggH process than for the VBF process, though the
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9 Higgs Boson Mass Reconstruction via a Regression Neural Network

di�erence is mainly around 1GeV. For the mass resolution as well, the performance is better for
the ggH production than the VBF production. This di�erence is most striking in case of the
collinear mass, where the resolution is better by 3.5GeV in ggH than in VBF. For all other mass
reconstruction methods, the resolution in ggH is better by about 1.5GeV.

The NNs outperform both the collinear mass and the MMCmaxw mass reconstruction as they did
on the test set, however the best performance is obtained by the MMCmlm mass reconstruction.
In comparison to the MMCmlm, the resolution of the NNs is approximately equal. However, the
means of the NN predictions are further away of the Higgs mass peak than for the MMCmlm,
indicating a smaller bias.

Table 9.11: Arithmetic mean and resolution of the reconstructed Higgs mass for gluon-gluon
fusion and vector boson fusion. The uncertainties on the mean and resolution of all
mass reconstruction techniques are below 0.05GeV. The abbreviations are described
in table 9.5.

Mass reconstruction
Gluon-gluon fusion Vector boson fusion

Mean [GeV] Resolution [GeV] Mean [GeV] Resolution [GeV]

IF1L2F 128.7 16.0 129.9 17.5
IF1L3F 128.5 16.0 129.8 17.6
IF1L4F 129.6 16.0 130.8 17.6
IF2L4F 129.1 16.1 130.1 17.7
IF1L3F-no mcoll 128.5 16.0 130.3 17.5
IF1L2F-dropout 129.1 15.9 130.3 17.4
IF1L3P 128.5 15.9 129.4 17.4
IF1L3O 129.8 15.7 130.9 17.2
IF1L3F-uncPCA 128.2 16.0 129.4 17.6
IF1L3F-redPCA 128.7 16.2 129.7 17.7

mcoll 130.8 19.0 134.8 22.5
MMCmaxw 122.2 16.7 122.4 18.1
MMCmlm 126.3 15.9 126.5 17.5

The NNs are trained on H → τe decays. Thus, a possible di�erence in the mass reconstruction
between τe and τµ decays is investigated for the ggH process. The arithmetic mean and resolution
values of the mass reconstruction methods are shown in table 9.12. In general, no signi�cant
dependency of the mass reconstruction methods on the decay into a τe or a τµ pair is observed.
Only the collinear mass shows a worse resolution in case of the H → τµ decay. Neither the NNs
nor the MMC variants show any signi�cant dependency.

Furthermore, the H → τe is split into the eµ and µe channels, as described in section 6.2, to
investigate a possible dependency of the mass reconstruction methods on the assigned channel.
About 11% of all H → τe events end up in the 'mismatched' µe channel. In table 9.13, the
arithmetic mean and resolution are displayed. The NNs and the MMCmaxw reconstruct the Higgs
mass better for the 'mismatched' µe channel, whereas for the collinear mass and the MMCmlm

it is the other way around. For all reconstruction methods, except the MMCmlm, the bias in the
µe channel is worse than in the eµ channel. These schemes are also seen in the H → τµ signal
process. A NN trained on both H → τe and H → τµ may bene�t from the additional events in
the µe channel.

Since the main background in the SR results from the Z boson decaying into two τ -leptons, it is
also important that this peak is well resolved. The results are presented in table 9.14.
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Table 9.12: Arithmetic mean and resolution of the via ggH produced Higgs boson, split into
τe decays and τµ decays. The uncertainties on the mean and resolution of all mass
reconstruction techniques are below 0.05GeV. The abbreviations are described in
table 9.5.

Mass reconstruction
H → τe H → τµ

Mean [GeV] Resolution [GeV] Mean [GeV] Resolution [GeV]

IF1L2F 128.4 15.9 129.1 16.1
IF1L3F 128.3 16.0 128.9 16.1
IF1L4F 129.4 15.9 129.9 16.1
IF2L4F 128.9 16.0 129.4 16.1
IF1L3F-no mcoll 128.2 16.0 128.9 16.1
IF1L2F-dropout 128.8 15.8 129.5 16.0
IF1L3P 128.2 15.8 128.8 15.9
IF1L3O 129.5 15.7 130.1 15.8
IF1L3F-uncPCA 127.9 15.9 128.5 16.0
IF1L3F-redPCA 128.5 16.1 129.0 16.2

mcoll 130.4 18.7 131.3 19.3
MMCmaxw 122.0 16.6 122.5 16.7
MMCmlm 126.0 15.9 126.7 16.0

Table 9.13: Arithmetic mean and resolution split into of the eµ and µe channel for a via ggH
produced Higgs boson, decaying into a τe pair. The uncertainties on the mean and
resolution in the eµ channel are for all mass reconstruction techniques below 0.05GeV.
In the µe channel, all uncertainties are 0.1GeV. The abbreviations are described in
table 9.5.

Mass reconstruction
eµ Channel (correctly matched) µe Channel (mismatched)
Mean [GeV] Resolution [GeV] Mean [GeV] Resolution [GeV]

IF1L2F 128.1 16.1 130.9 14.5
IF1L3F 128.0 16.1 130.1 14.5
IF1L4F 129.0 16.1 131.7 14.5
IF2L4F 128.6 16.2 130.9 14.8
IF1L3F-no mcoll 127.9 16.1 130.5 14.5
IF1L2F-dropout 128.5 16.0 131.5 14.4
IF1L3P 127.9 16.0 130.4 14.4
IF1L3O 129.2 15.9 131.7 14.1
IF1L3F-uncPCA 127.6 16.1 129.9 14.6
IF1L3F-redPCA 128.2 16.3 130.2 14.5

mcoll 129.4 17.9 137.2 22.3
MMCmaxw 122.2 16.6 119.8 15.9
MMCmlm 126.2 15.8 124.1 16.8
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9 Higgs Boson Mass Reconstruction via a Regression Neural Network

The NNs have the best resolution of the Z boson mass peak, outperforming even the MMCmlm.
The collinear mass has the smallest bias in the mass reconstruction and the MMCmaxw the
largest, whereas the NNs and the MMCmlm have a similar bias. All but the collinear mass do
underestimate the Z boson mass of 91.188GeV. However, this is expected since all techniques
but the collinear mass approximation assume a LFV decay, whereas here a decay into a τ -lepton
pair is present. Furthermore, this underestimation is expected to improve the separation between
the Higgs LFV signal and the Z boson background.

Table 9.14: Arithmetic mean and resolution of the mass reconstruction for the Z → ττ back-
ground. The uncertainties on the mean and resolution are for all mass reconstruction
techniques below 0.02GeV. The abbreviations are described in table 9.5.

Mass reconstruction Mean [GeV] Resolution [GeV]

IF1L2F 87.1 19.0
IF1L3F 86.7 19.1
IF1L4F 87.8 19.3
IF2L4F 87.6 19.2
IF1L3F-no mcoll 86.8 19.3
IF1L2F-dropout 87.5 19.2
IF1L3P 87.0 18.9
IF1L3O 88.8 18.8
IF1L3F-decPCA 86.6 19.0
IF1L3F-redPCA 86.6 19.2

mcoll 93.2 22.8
MMCmaxw 82.2 20.1
MMCmlm 86.5 19.6

In �gure 9.13, the Z → `` background contributions are shown for the µe channel.
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Figure 9.13: Mass reconstruction of the Z boson background in the µe channel for the NN IF1L3F
(left) and the collinear mass approximation (right). The Z → ττ distribution is
shown in light blue and the Z → ee/µµ distribution in dark blue.

The mass reconstruction methods are also applied to simulated Z boson events, where the Z boson
decays as Z→ τ`. The respective mean and resolution of all NNs is presented in table 9.15 next
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9.3 Comparison of NNs to existing Mass Reconstruction Methods

to the other mass reconstruction methods. The resolution of the NNs and the MMCmlm di�ers at
most 0.3GeV and is superior to both other mass reconstructions. Both, mcoll and MMCmlm have
a similar arithmetic mean as the NNs, however the resolution of the collinear mass approximation
is by about 2.4GeV worse. In comparison with the SM Z → ττ background, the mean of the
NN and the MMCmlm mass reconstruction deviates slightly more from the actual Z boson mass.
The MMCmaxw predicts the actual mass very well.

Table 9.15: Arithmetic mean and resolution of the reconstructed LFV Z boson, considering Z →
τe and Z → τµ decays. The uncertainties on the mean and resolution of all mass
reconstruction techniques are 0.1GeV. The abbreviations are described in table 9.5.

Mass reconstruction Mean [GeV] Resolution [GeV]

IF1L2F 96.7 13.5
IF1L3F 96.5 13.5
IF1L4F 97.8 13.5
IF2L4F 97.2 13.7
IF1L3F-no mcoll 96.4 13.6
IF1L2F-dropout 97.3 13.5
IF1L3P 96.8 13.5
IF1L3O 98.6 13.3
IF1L3F-decPCA 96.5 13.5
IF1L3F-redPCA 96.4 13.7

mcoll 98.5 16.1
MMCmaxw 91.7 14.4
MMCmlm 96.4 13.6

9.3.4 Separation Power of Signal and Background in Higgs Boson LFV and Z
Boson LFV decays

The maximum likelihood method, described in section 6.3, is used to estimate the separation
power of signal and background for the di�erent mass reconstruction methods. For this, all
considered Higgs LFV signal and SM background processes are the same as in the SR as well as
the performed event selection, described in chapter 7. The background includes Z → ``, diboson
and top quark background contributions as well as SM H → ττ decays. The fake background
contribution is estimated with the results of chapter 8. For H → τe and H → τµ a branching
ratio of 1% is assumed.
To evaluate the signi�cance of a particular signal, the background-only hypothesis is tested,
without considering systematic uncertainties. The expected Gaussian signi�cance Z is calculated
with equation (6.11), separately for the eµ and µe channel. The uncertainties are derived from
the 95% con�dence interval of the estimated signal strength µ̂. This interval is given by

µ̂± 1.96 · 1√
−∂2 lnL(µ)

∂µ2
|µ=µ̂

with the logarithm of the likelihood function lnL. For both, the up and down variation of the
signal strength a corresponding expected signi�cance Z± is derived. The di�erence between Z±

and the obtained expected signi�cance Z(µ̂) is indicated as uncertainty [103].
The expected signi�cance of all trained NNs deviates at most by 0.1, shown in table 9.16 next to
the other mass reconstruction methods. The found expected signi�cances are in the range of 10 to
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9 Higgs Boson Mass Reconstruction via a Regression Neural Network

14 and correspond to a p-value below 10−22, which strongly rejects the stated background-only
hypothesis. For all mass reconstruction methods, the H → τe signal in the eµ channel has a
higher signi�cance than the H → τµ signal in the µe channel. However, this di�erence is within
the 95% con�dence interval for all methods except the MMCmlm. In addition, more τe than τµ
events pass the event selection, resulting in higher signal statistics in the eµ channel. Within
the 95% con�dence interval, all NNs have the same expected signi�cance as the collinear mass
approximation, but are outperformed by the MMC variants. The expected signi�cance of the
NNs is about 25% smaller than the expected signi�cances of the two MMC variants.

Table 9.16: Expected signi�cance Z for di�erent mass reconstruction methods in the eµ and µe
channels, considering signals from H → τe and H → τµ respectively. A branching
ratio of 1% for H → τe and H → τµ is assumed. The uncertainties are obtained
from the 95% con�dence interval of the estimated signal strength. The abbreviations
are described in table 9.5.

Mass reconstruction
eµ channel µe channel

Expected signif. Z Expected signif. Z

IF1L2F 10.5+0.7
−0.8 9.3± 0.8

IF1L3F 10.5+0.7
−0.8 9.4± 0.8

IF1L4F 10.5+0.7
−0.8 9.3± 0.8

IF2L4F 10.5+0.7
−0.8 9.3± 0.8

IF1L3F-no mcoll 10.4+0.7
−0.8 9.3± 0.8

IF1L2F-dropout 10.5+0.7
−0.8 9.4± 0.8

IF1L3P 10.5+0.7
−0.8 9.4± 0.8

IF1L3O 10.5+0.7
−0.8 9.3± 0.8

IF1L3F-uncPCA 10.5+0.7
−0.8 9.3± 0.8

IF1L3F-redPCA 10.5+0.7
−0.8 9.3± 0.8

mcoll 9.6± 0.7 8.5± 0.7
MMCmaxw 13.5± 0.7 12.1± 0.7
MMCmlm 13.8± 0.7 12.3± 0.7

To investigate the di�erence between the NNs and the MMC variants, the background is split
into three contributions: (i) fake contributions, (ii) Z → `` and H → ττ processes and (iii)
diboson and top quark contributions. The expected signi�cance is calculated considering only
one background contribution in the eµ channel separately by neglecting the respective other
background contributions. In table 9.17 the expected signi�cances are presented for the individual
background contributions. Since the three background contributions are individually smaller than
the total background and the signal remains the same, the expected signi�cance becomes larger.
In case of the Z → `` and H → ττ background contribution, the NNs performs as well as both
MMC variants, whereas for the fake background it performs slightly worse. However, a large
di�erence is visible for the diboson and top background. The MMC variants have an expected
signi�cance which is about 45% larger than the one of the NNs.

The di�erence can be explained by the additional event selection for the MMC method. As
described in section 6.4, using the MMC requires a selection of those events, where a solution
for the system of equations is found. This results in a large suppression of the diboson and top
background by over 60%, displayed in �gure 9.14.

This additional selection is also applied to the events which are fed in the NN, to test its in�uence.
The expected signi�cances in the eµ and µe channels are presented in table 9.18. The values for
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9.3 Comparison of NNs to existing Mass Reconstruction Methods

Table 9.17: Expected signi�cance Z for all mass reconstruction methods of the H → τe signal
decay in the eµ channel for three di�erent background contributions. The uncertain-
ties are obtained from the 95% con�dence interval of the estimated signal strength.
The abbreviations are described in table 9.5.

Mass reconstruction
Z → `` & H → ττ Fakes Diboson & top
Expected signif. Z Expected signif. Z Expected signif. Z

IF1L2F 28.2+0.7
−0.8 25.1± 0.2 12.6± 0.4

IF1L3F 28.2+0.7
−0.8 25.1± 0.2 12.7± 0.4

IF1L4F 28.1+0.7
−0.8 25.1± 0.2 12.7± 0.4

IF2L4F 27.9+0.7
−0.8 25.0± 0.2 12.7± 0.4

IF1L3F-no mcoll 28.1+0.7
−0.8 25.0± 0.2 12.6± 0.4

IF1L2F-dropout 28.0+0.7
−0.8 25.0± 0.2 12.7± 0.4

IF1L3P 28.2+0.7
−0.8 25.1± 0.2 12.7± 0.4

IF1L3O 28.2+0.7
−0.8 25.0± 0.2 12.7± 0.4

IF1L3F-uncPCA 28.1+0.7
−0.8 25.0± 0.2 12.6± 0.4

IF1L3F-redPCA 28.1+0.7
−0.8 25.1± 0.2 12.6± 0.4

mcoll 22.0± 0.6 23.1± 0.2 12.3± 0.4
MMCmaxw 27.2± 0.7 27.7± 0.2 18.3± 0.2
MMCmlm 27.9± 0.7 27.9± 0.2 18.8± 0.2
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Figure 9.14: Mass reconstruction of Higgs boson LFV decays in the eµ channel for the NN IF1L3F
(left) and MMCmlm (right). In case of the MMC algorithm, a much smaller diboson
(orange) and top (red) background contribution is visible. The LFV signal is scaled
in the �gure by a factor of 20.

the MMC variants are the same as before. However a clear improvement for both the NN and
the collinear mass approximation is visible. With this additional event selection, the expected
signi�cance of the NNs is as well as the MMC methods.

Next to the Higgs LFV decay, the LFV decay of the Z boson is of great interest as well. The Z
boson has a much larger production cross-section than the Higgs boson. However, the existing
limits on the branching ratio of the LFV decay are by three orders of magnitude smaller. For the
lepton-�avour violating Z boson, a branching ratio of 5 · 10−5 is assumed. For the NN IF1L3F
and the MMCmaxw, the reconstructed mass in the eµ channel is shown in �gure 9.15.
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9 Higgs Boson Mass Reconstruction via a Regression Neural Network

Table 9.18: Expected signi�cance Z in the eµ and µe channels for LFV H → τe and H → τµ
decays respectively. The additional event selection of the MMC algorithm is applied
to all mass reconstruction methods. A branching ratio of 1% forH → τe andH → τµ
is assumed. The uncertainties are obtained from the 95% con�dence interval of the
estimated signal strength. The abbreviations are described in table 9.5.

Mass reconstruction
eµ channel µe channel

Expected signif. Z Expected signif. Z

IF1L2F 13.8± 0.7 12.4± 0.7
IF1L3F 13.8± 0.7 12.5± 0.7
IF1L4F 13.8± 0.7 12.5± 0.7
IF2L4F 13.8± 0.7 12.6± 0.7
IF1L3F-no mcoll 13.8± 0.7 12.5± 0.7
IF1L2F-dropout 13.8± 0.7 12.5± 0.7
IF1L3P 13.8± 0.7 12.6± 0.7
IF1L3O 13.7± 0.7 12.6± 0.7
IF1L3F-uncPCA 13.8± 0.7 12.4± 0.7
IF1L3F-redPCA 13.8± 0.7 12.4± 0.7

mcoll 13.0± 0.7 11.2± 0.7
MMCmaxw 13.5± 0.7 12.1± 0.7
MMCmlm 13.8± 0.7 12.3± 0.7
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Figure 9.15: Mass reconstruction of Z boson LFV decays in the eµ channel for the NN IF1L3F
(left) and MMCmaxw (right). The background processes are shown and the MMC
event selection is applied. A branching ratio of 5 · 10−5 is assumed. The LFV signal
is scaled in the �gure by a factor of 10.

The two signal decays Z → τe and Z → τµ are considered. As before, the expected signi�cance
is split into the eµ and µe channels, presented in table 9.19. The additional MMC event selection
is applied. In the eµ channel, the NNs have a similar expected signi�cance as the MMCmlm

method, which is better than the collinear mass approximation and the MMCmaxw method.
The NN IF2L4F has the highest expected signi�cance in the µe channel. However, since this
NN performs similar as the other NNs in all other investigations, it is assumed that the high
signi�cance is a result of an unexpected behaviour of the likelihood function. Further studies
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9.3 Comparison of NNs to existing Mass Reconstruction Methods

are necessary to verify if this assumption is correct or if indeed this NN has the best separation
power in the µe channel. The MMCmaxw method has the second highest signi�cance in the µe
channel and the other NNs perform similar to the MMCmlm method.

Table 9.19: Expected signi�cance Z for di�erent mass reconstruction methods in the eµ and µe
channels, considering Z → τe and Z → τµ decays respectively. A branching ratio of
5 · 10−5 for Z → τe and Z → τµ is assumed. The uncertainties are obtained from
the 95% con�dence interval of the estimated signal strength. The abbreviations are
described in table 9.5.

Mass reconstruction
eµ channel µe channel

Expected signif. Z Expected signif. Z

IF1L2F 16.9± 0.2 15.4± 0.2
IF1L3F 17.0± 0.2 15.5± 0.2
IF1L4F 17.0± 0.2 15.5± 0.2
IF2L4F 17.0± 0.2 17.7± 0.2
IF1L3F-no mcoll 17.0± 0.2 15.5± 0.2
IF1L2F-dropout 17.0± 0.2 15.5± 0.2
IF1L3P 17.0± 0.2 15.5± 0.2
IF1L3O 17.0± 0.2 15.5± 0.2
IF1L3F-uncPCA 17.1± 0.2 15.6± 0.2
IF1L3F-redPCA 17.1± 0.2 15.5± 0.2

mcoll 16.1± 0.2 14.8± 0.2
MMCmaxw 16.8± 0.2 16.4± 0.2
MMCmlm 17.1± 0.2 15.6± 0.2

9.3.5 Discussion

Several regression NNs were trained to reconstruct the mass of the Higgs boson in LFV decays. A
comparison of the NNs to existing mass reconstruction methods was performed using data from
the test set as well as for MC simulated Higgs LFV and Z LFV decays. The separation power of
the signal and background processes was evaluated using the maximum likelihood method.

On the test set, all NNs outperform existing mass reconstruction methods in most cases. The
resolution with respect to the MMCmlm is improved by about 1GeV in the lower mass range and
up to 5.5GeV in the high mass range. Only between 100GeV and 150GeV no improvement is
observed. However, the bias of the NNs is large in the vicinity of the lower training mass limit,
in�uencing the Z boson mass reconstruction. By adding more mass points below 60GeV, the bias
in the low mass range is reduced. However, this results in a worse resolution and a larger bias in
all other mass ranges. Further studies are necessary to understand and reduce the bias.

All NNs are able to predict the mass of MC simulated Higgs boson as well as the MMCmlm

does and thus, better than the collinear mass approximation and the MMCmaxw. Despite being
only trained on H → τe events, the NNs performed equally well in case of H → τµ events. A
neural network trained on both, H → τe and H → τµ events, needs to be investigated and may
outperform the MMCmlm, due to the additional events in the µe channel. Furthermore, the NNs
outperformed all other mass reconstruction methods with respect to the 'mismatched' channels,
i.e. the µe channel of the H → τe decay and the eµ channel of the H → τµ decay. In the
LFV analysis, the 'mismatched' channel is used to estimate the SM background of the 'matched'
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channel. Hence, an improved mass reconstruction of the 'mismatched' channel allows a better
background estimation.
Both MMC variants have a higher expected signi�cance than all NNs and the collinear mass
approximation, separating the LFV signal from the SM background. However, this results mainly
from the suppressed diboson and top background due to the additional event selection required
for the MMCs. When applying this additional requirement also to the events reconstructed by
the NNs, a similar expected signi�cance as the MMC methods is obtained, with the di�erence
being covered by the 95% con�dence interval. Since the NNs are supposed to replace the MMCs,
this event selection is not wanted. However, an additional classi�cation NN would have to be
trained to imitate this suppression of the diboson and top background.
Similar results are obtained for a lepton-�avour violating decay of a Z boson.
The improved resolution of the reconstructed mass in the mass range below 100GeV and above
150GeV is a promising result to use NNs. However, the polynomial dependency of the NN bias
worsens the mass reconstruction. This dependency is still not fully understood and needs to
be investigated further. Due to the additional event selection, which is mandatory if the MMC
is used, the NNs have a worse separation power than both MMC variants. It is pointless to
substitute the MMC by a NN, while using this additional selection, since this undoes the bene�t
of the much faster computation time the NNs have. To summarize, in the current state the
MMCmlm method shows the overall best performance and is recommended to used for the mass
reconstruction in the LFV analysis.
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10 Conclusion

In this thesis a sensitivity study to search for the LFV decays of the Higgs boson and the Z boson
in the H/Z → µτ → µe2ν and H/Z → eτ → eµ2ν decay modes has been presented. Simulated
events of the ATLAS detector at a centre-of-mass energy of

√
s = 13TeV with an integrated

luminosity of 139 fb−1 were used.

The events were split into two distinct sets, called eµ and µe, where the eµ (µe) set was enriched
by events of the H/Z → eτ (H/Z → µτ) decay. The dominant irreducible background process
to the LFV signal is Z → ττ , followed by the diboson and top background processes and the
fake lepton background. Small contributions result from Z → `` and H → ττ decays.

The background contribution due to non-prompt leptons and particles misidenti�ed as leptons,
so-called fake leptons, was estimated with the data driven fake factor method. A dedicated
Z+jets extraction region was de�ned by two orthogonal lepton identi�cation requirements. The
derived fake factor connects these two orthogonal regions in a linear way. Contaminations due
to background processes with prompt leptons were estimated with Monte Carlo simulations and
subtracted from the data.

A dependency of the fake factor on di�erent kinematic observables was investigated. In case of
a fake electron, dependencies on the transverse momentum and the pseudorapidity of the fake
lepton were identi�ed, whereas in case of a fake muon no dependency on the pseudorapidity was
observed within statistical uncertainties. The estimated fake factor with these dependencies was
applied as closure test in the Z+jets extraction region. A good agreement of the estimated fake
background with the data could be veri�ed for most cases. However, deviations for the distri-
butions of the missing transverse energy as well as the impact parameters were visible. These
deviations may be solved by taking into account additional dependencies of the fake factor, like
the impact parameters for which a fake factor dependency was observed.

Existing mass reconstruction methods, i.e. the collinear mass approximation as well as the two
variants of the missing mass calculator MMCmaxw and MMCmlm, were compared to a newly
method exploiting regression neural networks (NN). The NNs were trained on a via gluon-gluon
fusion produced Higgs boson in a mass range between 60GeV and 270GeV with steps of 5GeV
in between. Higgs boson decays into a τe pair were considered. The architecture and hyper-
parameters of the NNs were optimized. For the mass reconstruction bias of the predicted mass
by the NNs, a polynomial dependency on the true mass point values was observed. In the lower
mass range, this dependency could be reduced by extending the mass range in the training to
50GeV. However, this resulted in a worse resolution and bias in all other mass ranges. Further
studies are necessary to understand and reduce this dependency. The NNs have a better resolution
than the collinear mass approximation and the MMCmaxw mass reconstruction. The MMCmlm

mass reconstruction is able to compete with the NNs, however only in the mass range between
100GeV and 150GeV, where the resolutions are approximately the same. With respect to the
MMCmlm, the resolution was improved by the NNs in the mass range below 100GeV by about
1GeV. In the mass range above 150GeV an improvement between 1GeV and 5GeV was achieved
with respect to the existing mass reconstruction methods.
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For simulated LFV decays of the Higgs boson, the mass reconstruction methods were compared
for the two most important production processes, the gluon-gluon fusion (ggH) and the vector
boson fusion (VBF). The reconstructed Higgs boson mass is more precisely reconstructed in case
of the ggH production by at least 1.5GeV for all reconstruction methods. For both production
processes, the NNs perform similar to the MMCmlm method, despite being trained only on
ggH processes, which veri�es a good generalisation of the training. The mass resolution of the
NNs is the same for ggH produced H → τe and H → τµ decays. This once more veri�es
the generalisation of the training, despite only H → τe decays have been used in the training
processes. The H → τe decay mode is split further into the eµ and µe channel. Both, the NNs
and the MMCmaxw provide a better resolution for the 'mismatched' µe channel, whereas the
collinear mass and the MMCmlm have a better resolution for the eµ channel. This improved
resolution of the 'mismatched' channel by the NNs was also seen in the H → τµ decay mode. A
NN trained on both decay modes may bene�t from the additional events in the µe channel.
The separation power of signal and background processes for the existing mass reconstruction
methods was compared to the one of the NNs by performing a maximum likelihood �t to the
reconstructed mass distribution without considering systematic uncertainties. The separation
power was investigated in both channels separately for Higgs LFV decays and Z LFV decays.
Taking into account all background processes, the NNs have a higher separation power than the
collinear mass approximation, but are not able to obtain the same separation power as both
MMC variants. However, performing the maximum likelihood �t for the individual background
processes separately, by neglecting classes of background processes, showed that this is due to the
contributions from the diboson and top quark background. Using the MMC requires an additional
mandatory event selection which heavily reduces the diboson and top background. By applying
this selection also to the events when the mass is reconstructed by the NNs, the separation power
is improved signi�cantly and the expected signi�cance in both channels is almost the same as
the one when using the MMCmlm.
In general, all trained NNs are able to reconstruct the Higgs boson and Z boson mass as well as the
MMCmlm method and better than the MMCmaxw method and the collinear mass approximation.
In the lower mass range, the bias of the mass reconstruction of the NNs was improved by adding
additional mass points below 60GeV. However, this resulted in a worse resolution and bias in
all other mass ranges. Further studies are necessary to understand the behaviour of the NNs
better. Both variants of the MMC are able to separate the LFV signal processes better from
the SM background processes than the NNs. However, this is due to the additional mandatory
event selection of the MMC which heavily reduces the contributions from the diboson and top
background. Replacing the MMC by a NN while using this additional event selection to exploit
the background suppression is pointless, since it would undo the bene�t of the much faster
computation time of the NN. However, a classi�cation NN trained on this additional event
selection may be used to take advantage of the background suppression, while maintaining the
much faster computation time. Since the NNs were only trained on H → τe decays, expanding
the training data by H → τµ decays may improve the NNs even further.
In the current state the MMCmlm mass reconstruction has the overall best performance and is
recommended to be used as mass reconstruction method in the LFV analysis.

100



List of Figures

2.1 Leading order Feynman diagrams for main Higgs boson production processes . . 11
2.2 Cross-section of Higgs boson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Branching ratio of Higgs boson . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Feynman diagram of LFV Higgs boson decay . . . . . . . . . . . . . . . . . . . . 13
2.5 Combined ATLAS and CMS Higgs boson production and decay signal strength

measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Position of the four detectors in the LHC ring . . . . . . . . . . . . . . . . . . . . 15
3.2 Integrated luminosity of all data-taking years since 2011 . . . . . . . . . . . . . . 16
3.3 Overview of the ATLAS dector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Overview of the inner dector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Overview of the electromagnetic and hadronic calorimeter . . . . . . . . . . . . . 19
3.6 Overview of the muon system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7 Overview of the ATLAS trigger system and data acquistion system . . . . . . . . 21

4.1 De�nitions of the transverse and longitudinal impact parameters . . . . . . . . . 23

5.1 Architecture of a Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Concept of validation loss minimization . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Schematics for grid and random hyper-parameter search . . . . . . . . . . . . . . 35

6.1 Collinear mass for the eµ and µ sample . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Azimuth angle di�erence between MET and `1 . . . . . . . . . . . . . . . . . . . 43

7.1 Feynman diagrams for ggH and VBF Higgs boson production . . . . . . . . . . . 46
7.2 Feynman diagram for W/Z associated Higgs boson production . . . . . . . . . . . 46
7.3 Leading and sub-leading pT distribution before a thighter selection requirement . 49
7.4 Visbile mass and number of b-quark jets before the respective selection . . . . . . 50
7.5 Impact parameters before the applied selection . . . . . . . . . . . . . . . . . . . 51

8.1 ID and anti-ID requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.2 Shape comparison of di�erent WZ normalisation regions . . . . . . . . . . . . . . 57
8.3 Distribution of pT `probe in WZ normalisation region . . . . . . . . . . . . . . . . 58
8.4 Distribution of mT `probe in WZ normalisation region . . . . . . . . . . . . . . . . 59
8.5 Leading jet η distribution for di�erent jet pT thresholds . . . . . . . . . . . . . . 62
8.6 Electron fake factors for all three data-taking campaigns . . . . . . . . . . . . . . 62
8.7 Muon fake factors for all three data-taking campaigns . . . . . . . . . . . . . . . 63
8.8 Fake Factor binned in pT and η with combined campaigns . . . . . . . . . . . . . 63
8.9 Muon fake factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.10 Fake factor binned in ∆R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.11 Muon fake factor binned in ∆R, separately for the three data-taking campaigns . 66
8.12 Fake factor binned in Njets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.13 Fake factor binned in the transverse impact parameter signi�cance d0,signif. . . . . 67

101



List of Figures

8.14 Fake factor binned in the longitudinal impact parameter |z0 sin θ| . . . . . . . . . 68
8.15 Closure test for the fake factor determination in the Z+jets ID region as function

of pT and η . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.16 Visible mass of both Z-tagged leptons . . . . . . . . . . . . . . . . . . . . . . . . 70
8.17 Missing transverse energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.18 Transverse mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.19 Impact parameters for electrons and muons . . . . . . . . . . . . . . . . . . . . . 72

9.1 E�ciency of the event selection for all simulated H → τe mass points . . . . . . . 74
9.2 Kinematic distributions as a function of mcoll and pT (`0) for di�erent mass points 76
9.3 Kinematic distributions as a function of mvis and pT (`1) for di�erent mass points 77
9.4 Kinematic distributions as a function of Emiss

T and S for di�erent mass points . . 77
9.5 Kinematic distributions as a function of mT (`0), mT (`1), the angular di�erences

∆φ and pseudorapidity di�erence ∆η(`0, `1) for di�erent mass points . . . . . . . 78
9.6 Kinematic distributions as a function of E(`0) and E(`1) for di�erent mass points 79
9.7 Kinematic distributions as a function of η, sinφ and cosφ of the leading and

sub-leading lepton for di�erent mass points . . . . . . . . . . . . . . . . . . . . . 80
9.8 Bias of NN IF1L4F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.9 Bias of two NNs with an alternative training process . . . . . . . . . . . . . . . . 84
9.10 Bias of NN IF1L4F prediction for the 75GeV mass point with and without cor-

rection �t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.11 Resolution for NN IF1L3F-uncPCA and the three existing mass reconstruction

techniques for all mass points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
9.12 Bias of the NNs IF1L3F-low and IF1L3F . . . . . . . . . . . . . . . . . . . . . . . 88
9.13 Mass reconstruction of the Z boson background in the µe channel . . . . . . . . . 92
9.14 Mass reconstruction of Higgs boson LFV decays in the eµ channel for NN IF1L3F

and MMCmaxw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.15 Mass reconstruction of Z boson LFV decays in the eµ channel for NN IF1L3F and

MMCmlm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

102



List of Tables

2.1 Mass and electric charge of SM fermions . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Mediators of the three fundamental SM interactions . . . . . . . . . . . . . . . . 5

2.3 Total cross-section for di�erent Higgs boson production processes . . . . . . . . . 11

2.4 Branching ratios of the most important Higgs boson decay modes . . . . . . . . . 12

4.1 Electron trigger requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Muon trigger requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Di-lepton trigger requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7.1 Cross-section times branching ratio and generators of simulated signal and back-
ground processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.2 Summary of the analysis selection criteria . . . . . . . . . . . . . . . . . . . . . . 48

7.3 Expeced event yields of signal and background processes in the eµ-channel . . . . 52

7.4 Expeced event yields of signal and background processes in the µe-channel . . . . 52

8.1 Z+jets Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.2 Simulated event samples for prompt background processes . . . . . . . . . . . . . 56

8.3 Event yield for prompt background processes and data in Z+jets extraction region 56

8.4 Event yield of simulated processes in WZ normalisation region . . . . . . . . . . . 59

8.5 WZ scaling factors for each campaign . . . . . . . . . . . . . . . . . . . . . . . . 60

8.6 WZ scaling factors for all channels . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8.7 Theoretical uncertainties of ZZ and WH . . . . . . . . . . . . . . . . . . . . . . 64

8.8 Muon fake factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.9 Electron fake factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.10 Data and estimated background yield. . . . . . . . . . . . . . . . . . . . . . . . . 69

9.1 First set of input features for the regression NN . . . . . . . . . . . . . . . . . . . 75

9.2 Second set of input features for the training of a NN . . . . . . . . . . . . . . . . 79

9.3 Grid used for the grid-random search for NNs without dropout regularization . . 81

9.4 Grid used for the grid-random search for NNs with dropout regularization . . . . 81

9.5 Optimized neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9.6 Obtained parameters of polynomial �t . . . . . . . . . . . . . . . . . . . . . . . . 84

9.7 Bias of NNs and existing mass reconstruction methods . . . . . . . . . . . . . . . 86

9.8 Resolution of NNs and existing mass reconstruction methods . . . . . . . . . . . 86

9.9 Obtained parameters of polynomial �t of NN IF1L3F-low and IF1L3F . . . . . . 89

9.10 Bias and resolution of the NNs IF1L3F-low and IF1L3F . . . . . . . . . . . . . . 89

9.11 Mean and resolution of the reconstructed Higgs mass for ggH and VBF . . . . . 90

9.12 Mean and resolution of ggH Higgs boson, split into τe and τµ decays . . . . . . . 91

9.13 Mean and resolution in the eµ and µe channels for the ggH H → τe decay . . . . 91

9.14 Mean and resolution of the mass reconstruction for the Z → ττ background . . . 92

9.15 Mean and resolution of the reconstructed LFV Z boson . . . . . . . . . . . . . . . 93

103



List of Tables

9.16 Expected signi�cance Z in the eµ and µe channel for a Higgs LFV branching ratio
of 1% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

9.17 Expected signi�cance Z for the eµ channel for three di�erent background contri-
butions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

9.18 Expected signi�cance Z for the eµ and µe channels for a Higgs LFV branching
ratio of 1% with an additional event selection . . . . . . . . . . . . . . . . . . . . 96

9.19 Expected signi�cance Z for the eµ and µe channels for a Z LFV branching ratio
of 5 · 10−5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

104



Bibliography

[1] F. Englert and R. Brout, �Broken Symmetry and the Mass of Gauge Vector Mesons,�
Physical Review Letters, vol. 13, no. 9, pp. 321�323, 1964, 10.1103/PhysRevLett.13.321.

[2] P. W. Higgs, �Broken symmetries, massless particles and gauge �elds,� Physics Letters,
vol. 12, no. 2, pp. 132�133, 1964, 10.1016/0031-9163(64)91136-9.

[3] P. W. Higgs, �Broken Symmetries and the Masses of Gauge Bosons,� Physical Review

Letters, vol. 13, no. 16, pp. 508�509, 1964, 10.1103/PhysRevLett.13.508.

[4] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, �Global Conservation Laws and Mass-
less Particles,� Physical Review Letters, vol. 13, no. 20, pp. 585�587, 1964, 10.1103/Phys-
RevLett.13.585.

[5] P. W. Higgs, �Spontaneous Symmetry Breakdown without Massless Bosons,� Physical Re-
view, vol. 145, no. 4, pp. 1156�1163, 1966, 10.1103/PhysRev.145.1156.

[6] T. W. B. Kibble, �Symmetry Breaking in Non-Abelian Gauge Theories,� Physical Review,
vol. 155, no. 5, pp. 1554�1561, 1967, 10.1103/PhysRev.155.1554.

[7] ATLAS Collaboration, �Observation of a new particle in the search for the Standard Model
Higgs boson with the ATLAS detector at the LHC,� Phys. Lett. B, vol. 716, pp. 1�29, 2012,
10.1016/j.physletb.2012.08.020.

[8] CMS Collaboration, �Observation of a new boson at a mass of 125 GeV with the
CMS experiment at the LHC,� Physics Letters B, vol. 716, no. 1, pp. 30�61, 2012,
10.1016/j.physletb.2012.08.021.

[9] ATLAS Collaboration and CMS Collaboration, �Combined Measurement of the Higgs Bo-
son Mass in pp Collisions at

√
s = 7 and 8 TeV with the ATLAS and CMS Experiments,�

Physical Review Letters, vol. 114, no. 19, 2015, 10.1103/PhysRevLett.114.191803.

[10] ATLAS Collaboration and CMS Collaboration, �Measurements of the Higgs boson pro-
duction and decay rates and constraints on its couplings from a combined ATLAS and
CMS analysis of the LHC pp collision data at

√
s = 7 and 8 TeV,� Journal of High Energy

Physics, vol. 2016, no. 8, p. 579, 2016, 10.1007/JHEP08(2016)045.

[11] ATLAS Collaboration, �Evidence for the spin-0 nature of the Higgs boson using ATLAS
data,� Phys. Lett. B, vol. 726, pp. 120�144, 2013, 10.1016/j.physletb.2013.08.026.

[12] J. D. Bjorken and S. Weinberg, �Mechanism for Nonconservation of Muon Number,� Phys-
ical Review Letters, vol. 38, no. 12, pp. 622�625, 1977, 10.1103/PhysRevLett.38.622.

[13] J. L. Diaz-Cruz and J. J. Toscano, �Probing lepton �avour violation with Higgs bo-
son decays H-> li+lj,� Physical Review D, vol. 62, no. 11, p. 1, 2000, 10.1103/Phys-
RevD.62.116005.

105

https://inspirehep.net/literature/12291
https://inspirehep.net/literature/40440
https://inspirehep.net/literature/11883
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.13.585
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.13.585
https://inspirehep.net/literature/50073
https://inspirehep.net/literature/51165
http://arxiv.org/pdf/1207.7214v2
http://arxiv.org/pdf/1207.7235
http://arxiv.org/pdf/1503.07589v1
http://arxiv.org/pdf/1606.02266v2
http://arxiv.org/pdf/1307.1432v1
https://link.aps.org/doi/10.1103/PhysRevLett.38.622
https://arxiv.org/abs/hep-ph/9910233v2
https://arxiv.org/abs/hep-ph/9910233v2


Bibliography

[14] M. Arana-Catania, E. Arganda, and M. J. Herrero, �Non-decoupling SUSY in LFV Higgs
decays: A window to new physics at the LHC,� Journal of High Energy Physics, vol. 2013,
no. 9, p. 036, 2013, 10.1007/JHEP09(2013)160.

[15] A. Arhrib, Y. Cheng, and O. C. Kong, �Comprehensive analysis on lepton �avor violating
Higgs boson to µ∓τ± decay in supersymmetry without R parity,� Physical Review D,
vol. 87, no. 1, 2013, 10.1103/PhysRevD.87.015025.

[16] K. Agashe and R. Contino, �Composite Higgs-Mediated FCNC,� Physical Review D, vol. 80,
no. 7, p. 231, 2009, 10.1103/PhysRevD.80.075016.

[17] A. Azatov, M. Toharia, and L. Zhu, �Higgs Mediated FCNC's in Warped Extra Dimen-
sions,� Physical Review D, vol. 80, no. 3, p. 1, 2009, 10.1103/PhysRevD.80.035016.

[18] H. Ishimori et al., �Non-Abelian Discrete Symmetries in Particle Physics,� Progress of

Theoretical Physics Supplement, vol. 183, pp. 1�163, 2010, 10.1143/PTPS.183.1.

[19] G. Perez and L. Randall, �Natural Neutrino Masses and Mixings from Warped Geom-
etry,� Journal of High Energy Physics, vol. 2009, no. 01, p. 077, 2009, 10.1088/1126-
6708/2009/01/077.

[20] M. Blanke et al., �Delta F=2 Observables and Fine-Tuning in a Warped Extra Dimension
with Custodial Protection,� Journal of High Energy Physics, vol. 2009, no. 03, p. 001, 2009,
10.1088/1126-6708/2009/03/001.

[21] G. F. Giudice and O. Lebedev, �Higgs-dependent Yukawa couplings,� Physics Letters B,
vol. 665, no. 2-3, pp. 79�85, 2008, 10.1016/j.physletb.2008.05.062.

[22] J. A. Aguilar-Saavedra, �A minimal set of top-Higgs anomalous couplings,� Nuclear Physics
B, vol. 821, no. 1-2, pp. 215�227, 2009, 10.1016/j.nuclphysb.2009.06.022.

[23] M. E. Albrecht et al., �Electroweak and Flavour Structure of a Warped Extra Dimension
with Custodial Protection,� Journal of High Energy Physics, vol. 2009, no. 09, p. 064, 2009,
10.1088/1126-6708/2009/09/064.

[24] A. Goudelis, O. Lebedev, and J.-h. Park, �Higgs-induced lepton �avor violation,� Physics
Letters B, vol. 707, no. 3-4, pp. 369�374, 2012, 10.1016/j.physletb.2011.12.059.

[25] D. McKeen, M. Pospelov, and A. Ritz, �Modi�ed Higgs branching ratios versus CP
and lepton �avor violation,� Physical Review D, vol. 86, no. 11, 2012, 10.1103/Phys-
RevD.86.113004.

[26] A. Crivellin, G. D'Ambrosio, and J. Heeck, �Addressing the LHC �avour anomalies with
horizontal gauge symmetries,� Physical Review D, vol. 91, no. 7, 2015, 10.1103/Phys-
RevD.91.075006.

[27] A. Crivellin, G. D'Ambrosio and J. Heeck, �Explaining h → µ±τ∓, B → K∗µ+µ− and
B → Kµ+µ−/B → Ke+e− in a two-Higgs-doublet model with gauged Lµ − Lτ ,� Physical
Review Letters, vol. 114, no. 15, p. 361, 2015, 10.1103/PhysRevLett.114.151801.

[28] F. Gabbiani, J. H. Kim, and A. Masiero, �Z0 → bs̄ and Z0 → τ µ̄ in SUSY: Are They
Observable?� Phys. Lett. B, vol. 214, pp. 398�402, 1988, 10.1016/0370-2693(88)91384-6.

106

http://arxiv.org/pdf/1304.3371v5
http://arxiv.org/pdf/1210.8241v3
http://arxiv.org/pdf/0906.1542v2
http://arxiv.org/pdf/0906.1990v1
http://arxiv.org/pdf/1003.3552v2
http://arxiv.org/pdf/0805.4652v3
http://arxiv.org/pdf/0805.4652v3
http://arxiv.org/pdf/0809.1073v3
http://arxiv.org/pdf/0804.1753v3
http://arxiv.org/pdf/0904.2387v2
http://arxiv.org/pdf/0903.2415v2
http://arxiv.org/pdf/1111.1715v3
http://arxiv.org/pdf/1208.4597v2
http://arxiv.org/pdf/1208.4597v2
http://arxiv.org/pdf/1503.03477v2
http://arxiv.org/pdf/1503.03477v2
http://arxiv.org/pdf/1501.00993v2
https://inspirehep.net/literature/263170


Bibliography

[29] T.-K. Kuo and N. Nakagawa, �Lepton Flavor Violating Decays of Z0 and τ ,� Physical

Review D, vol. 32, p. 306, 1985, 10.1103/PhysRevD.32.306.

[30] J. I. Illana and T. Riemann, �Charged lepton �avor violation from massive neutrinos in Z
decays,� Physical Review D, vol. 63, p. 053004, 2001, 10.1103/PhysRevD.63.053004.

[31] The Super-Kamiokande Collaboration, �Evidence for oscillation of atmospheric neutrinos,�
Physical Review Letters, vol. 81, no. 8, pp. 1562�1567, 1998, 10.1103/PhysRevLett.81.1562.

[32] R. Harnik, J. Kopp, and J. Zupan, �Flavor Violating Higgs Decays,� JHEP, vol. 03, p. 026,
2013, 10.1007/JHEP03(2013)026.

[33] G. Blankenburg, J. Ellis, and G. Isidori, �Flavour-Changing Decays of a 125 GeV Higgs-like
Particle,� Phys. Lett. B, vol. 712, pp. 386�390, 2012, 10.1016/j.physletb.2012.05.007.

[34] ATLAS Collaboration, �Search for lepton-�avour-violating decays of the Higgs and Z bosons
with the ATLAS detector,� The European physical journal. C, Particles and �elds, vol. 77,
no. 2, p. 70, 2017, 10.1140/epjc/s10052-017-4624-0.

[35] M. Tanabashi et al., �Review of Particle Physics,� Physical Review D, vol. 98, no. 3, p.
030001, 2018, 10.1103/PhysRevD.98.030001.

[36] S. Dittmaier and M. Schumacher, �The Higgs Boson in the Standard Model - From LEP
to LHC: Expectations, Searches, and Discovery of a Candidate,� Progress in Particle and

Nuclear Physics, vol. 70, pp. 1�54, 2013, 10.1016/j.ppnp.2013.02.001.

[37] P. B. Pal, �An Introductory Course of Particle Physics,� Hoboken: CRC Press, 2015.

[38] N. Cabibbo, �Unitary Symmetry and Leptonic Decays,� Physical Review Letters, vol. 10,
no. 12, pp. 531�533, 1963, 10.1103/PhysRevLett.10.531.

[39] M. Kobayashi and T. Maskawa, �CP -Violation in the Renormalizable Theory of
Weak Interaction,� Progress of Theoretical Physics, vol. 49, no. 2, pp. 652�657, 1973,
10.1143/PTP.49.652.

[40] C. Schillo, �Search for the Standard Model Higgs Boson and Test of CP Invariance in
Vector-Boson Fusion Production of the Higgs Boson in the Fully Leptonic H → τ+τ− →
`+`−4ν Final State in Proton-Proton Collisions with the ATLAS Detector at the LHC,�
Dissertation, Universität, Freiburg, 2016, 10.6094/UNIFR/11333.

[41] ATLAS Collaboration, �Measurements of the Higgs boson production, �ducial and di�er-
ential cross sections in the 4` decay channel at

√
s = 13 TeV with the ATLAS detector,�

2018, ATLAS-CONF-2018-018.

[42] D. d. Florian et al., �Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature
of the Higgs Sector�, 2016, 10.23731/CYRM-2017-002.

[43] CMS Collaboration, �Measurements of properties of the Higgs boson decaying into the
four-lepton �nal state in pp collisions at

√
s = 13 TeV,� JHEP, vol. 11, p. 047, 2017,

10.1007/JHEP11(2017)047.

[44] ATLAS Collaboration, �Measurement of the Higgs boson mass in the H → ZZ∗ → 4` and
H → γγ channels with

√
s = 13 TeV pp collisions using the ATLAS detector,� Phys. Lett.

B, vol. 784, pp. 345�366, 2018, 10.1016/j.physletb.2018.07.050.

107

https://inspirehep.net/literature/16066
https://inspirehep.net/literature/535257
http://arxiv.org/pdf/hep-ex/9807003v2
https://arxiv.org/abs/1209.1397
https://arxiv.org/abs/1202.5704
https://inspirehep.net/literature/1452557
https://link.aps.org/doi/10.1103/PhysRevD.98.030001
http://arxiv.org/pdf/1211.4828v3
https://link.aps.org/doi/10.1103/PhysRevLett.10.531
https://inspirehep.net/literature/81350
https://freidok.uni-freiburg.de/data/11333
https://cds.cern.ch/record/2621479
http://arxiv.org/pdf/1610.07922v2
https://arxiv.org/abs/1706.09936
https://arxiv.org/abs/1806.00242


Bibliography

[45] CMS Collaboration, �Study of the Mass and Spin-Parity of the Higgs Boson Candidate Via
Its Decays to Z Boson Pairs,� Physical Review Letters, vol. 110, no. 8, 2013, 10.1103/Phys-
RevLett.110.081803.

[46] L. Evans and P. Bryant, �LHC Machine,� Journal of Instrumentation, vol. 3, no. 08, pp.
S08 001�S08 001, 2008, 10.1088/1748-0221/3/08/S08001.

[47] M. Hostettler and G. Papotti, �Luminosity Lifetime at the LHC in 2012 Proton Physics
Operation,� in 4th International Particle Accelerator Conference, 2013, p. TUPFI029,
s3.cern.ch/inspire-prod-�les-b/.

[48] Sarah Charley, �The LHC does a dry run,� 2015, symmetrymagazine.org.

[49] ATLAS Collaboration, �Luminosity determination in pp collisions at
√
s = 13 TeV using

the ATLAS detector at the LHC,� 2019, ATLAS-CONF-2019-021.

[50] ATLAS Collaboration, �The ATLAS Experiment at the CERN Large Hadron Collider,�
JINST, vol. 3, p. S08003, 2008, 10.1088/1748-0221/3/08/S08003.

[51] ATLAS Collaboration, �Performance of the ATLAS Trigger System in 2010,� The

European physical journal. C, Particles and �elds, vol. 72, no. 1, p. S08003, 2012,
10.1140/epjc/s10052-011-1849-1.

[52] A. R. Martínez, �The Run-2 ATLAS Trigger System,� Journal of Physics: Conference

Series, vol. 762, p. 012003, 2016, 10.1088/1742-6596/762/1/012003.

[53] ATLAS Collaboration, �Measurement of the tau lepton reconstruction and identi�cation
performance in the ATLAS experiment using pp collisions at

√
s = 13 TeV,� 2017, ATLAS-

CONF-2017-029.

[54] ATLAS Collaboration, �Electron reconstruction and identi�cation in the ATLAS exper-
iment using the 2015 and 2016 LHC proton-proton collision data at

√
s = 13 TeV,�

The European physical journal. C, Particles and �elds, vol. 79, no. 8, p. T05008, 2019,
10.1140/epjc/s10052-019-7140-6.

[55] �Tracking-CP analysis guidelines for DC14,� twiki.cern.ch/twiki/InDetTrackingDC14,
07.05.2020.

[56] ATLAS Collaboration, �Muon reconstruction performance of the ATLAS detector in
proton-proton collision data at

√
s=13 TeV,� The European physical journal. C, Particles

and �elds, vol. 76, no. 5, p. 043, 2016, 10.1140/epjc/s10052-016-4120-y.

[57] M. Cacciari, G. P. Salam, and G. Soyez, �The anti-k_t jet clustering algorithm,� Journal
of High Energy Physics, vol. 2008, no. 04, p. 063, 2008, 10.1088/1126-6708/2008/04/063.

[58] ATLAS Collaboration, �Jet reconstruction and performance using particle �ow with the
ATLAS Detector,� Eur. Phys. J. C, vol. 77, no. 7, p. 466, 2017, 10.1140/epjc/s10052-017-
5031-2.

[59] ATLAS Collaboration, �Measurements of b-jet tagging e�ciency with the ATLAS detector
using tt̄ events at

√
s = 13 TeV,� JHEP, vol. 08, p. 089, 2018, 10.1007/JHEP08(2018)089.

[60] ATLAS Collaboration, �Tagging and suppression of pileup jets,� 2014, ATLAS-CONF-
2014-018.

108

https://arxiv.org/abs/1212.6639
https://arxiv.org/abs/1212.6639
https://inspirehep.net/literature/796247
https://s3.cern.ch/inspire-prod-files-b/bf8be5e2dcdbbc56bafd5bb6e8278fd6
https://www.symmetrymagazine.org/article/march-2015/the-lhc-does-a-dry-run
http://cds.cern.ch/record/2677054
https://inspirehep.net/literature/796888
http://arxiv.org/pdf/1110.1530v2
https://inspirehep.net/literature/1499949
https://cds.cern.ch/record/2261772
https://cds.cern.ch/record/2261772
http://arxiv.org/pdf/1902.04655v2
https://twiki.cern.ch/twiki/bin/view/AtlasProtected/InDetTrackingDC14
http://arxiv.org/pdf/1603.05598v2
http://arxiv.org/pdf/0802.1189v2
https://arxiv.org/abs/1703.10485
https://arxiv.org/abs/1703.10485
https://arxiv.org/abs/1805.01845
https://cds.cern.ch/record/1700870
https://cds.cern.ch/record/1700870


Bibliography

[61] ATLAS Collaboration, �Performance of missing transverse momentum reconstruction with
the ATLAS detector using proton-proton collisions at

√
s = 13 TeV,� The European physical

journal. C, Particles and �elds, vol. 78, no. 11, p. 063, 2018, 10.1140/epjc/s10052-018-6288-
9.

[62] S. Schramm, �Machine learning at CERN: ATLAS, LHCb, and more,� in Proceedings

of The 39th International Conference on High Energy Physics � PoS(ICHEP2018), U.-
k. Yang, J. E. Kim, and Y. Kim, Eds. Trieste, Italy: Sissa Medialab, 2019, p. 158,
10.22323/1.340.0158.

[63] Y. Bengio, �Practical Recommendations for Gradient-Based Training of Deep Architec-
tures,� 2012, arXiv:1206.5533v2.

[64] X. Glorot, A. Bordes, and Y. Bengio, �Deep Sparse Recti�er Neural Networks,� in Proceed-

ings of the Fourteenth International Conference on Arti�cial Intelligence and Statistics, ser.
Proceedings of Machine Learning Research, G. Gordon, D. Dunson, and M. Dudík, Eds.,
vol. 15. Fort Lauderdale, FL, USA: PMLR, 2011, pp. 315�323, proceedings.mlr.press.

[65] F. Bre, J. M. Gimenez, and V. D. Fachinotti, �Prediction of wind pressure coe�cients
on building surfaces using arti�cial neural networks,� Energy and Buildings, vol. 158, pp.
1429�1441, 2018, 10.1016/j.enbuild.2017.11.045.

[66] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, �Learning Representations by Back-
propagating Errors,� Nature, vol. 323, no. 6088, pp. 533�536, 1986, 10.1038/323533a0.

[67] I. Goodfellow, Y. Bengio, and A. Courville, �Deep Learning,� Cambridge, Massachusetts
and London, England: MIT Press, 2016, deeplearningbook.org.

[68] D. P. Kingma and J. Ba, �Adam: A Method for Stochastic Optimization,� 2014,
arXiv:1412.6980v9.

[69] D. R. Wilson and T. R. Martinez, �The General Ine�ciency of Batch Training for Gradient
Descent Learning,� Neural Netw, vol. 16, no. 10, pp. 1429�1451, 2003, 10.1016/S0893-
6080(03)00138-2.

[70] N. Srivastava et al., �Dropout: A Simple Way to Prevent Neural Networks from Over�tting,�
J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929�1958, 2014, 10.5555/2627435.2670313.

[71] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, �E�cient BackProp,� in Neural Net-

works: Tricks of the Trade, This Book is an Outgrowth of a 1996 NIPS Workshop. Berlin,
Heidelberg: Springer-Verlag, 1998, pp. 9�50, yann.lecun.com.

[72] J. Bergstra and Y. Bengio, �Random Search for Hyper-Parameter Optimiza-
tion,� Journal of machine learning research, vol. 13, no. Feb, pp. 281�305, 2012,
jmlr.org/papers/volume13/bergstra12a.

[73] K. Pearson, �LIII. On lines and planes of closest �t to systems of points in space,� The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 2,
no. 11, pp. 559�572, 2010, 10.1080/14786440109462720.

[74] S. Wold, K. Esbensen, and P. Geladi, �Principal Component Analysis,� Chemomet-

rics and Intelligent Laboratory Systems, vol. 2, no. 1-3, pp. 37�52, 1987, 10.1016/0169-
7439(87)80084-9.

109

http://arxiv.org/pdf/1802.08168v2
http://arxiv.org/pdf/1802.08168v2
https://inspirehep.net/literature/1748493
https://arxiv.org/abs/1206.5533v2
http://proceedings.mlr.press/v15/glorot11a.html
https://www.sciencedirect.com/science/article/abs/pii/S0378778817325501
https://www.nature.com/articles/323533a0
http://www.deeplearningbook.org/
http://arxiv.org/pdf/1412.6980v9
https://doi.org/10.1016/S0893-6080(03)00138-2
https://doi.org/10.1016/S0893-6080(03)00138-2
https://dl.acm.org/doi/pdf/10.5555/2627435.2670313
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
https://www.tandfonline.com/doi/abs/10.1080/14786440109462720
https://www.sciencedirect.com/science/article/abs/pii/0169743987800849
https://www.sciencedirect.com/science/article/abs/pii/0169743987800849


Bibliography

[75] S. Bressler, A. Dery, and A. Efrati, �Asymmetric lepton-�avor violating Higgs decays,�
Physical Review D, vol. 90, no. 1, 2014, 10.1103/PhysRevD.90.015025.

[76] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, �Asymptotic formulae for likelihood-based
tests of new physics,� The European physical journal. C, Particles and �elds, vol. 71, no. 2,
p. 60, 2011, 10.1140/epjc/s10052-011-1554-0.

[77] J. Neyman and E. S. Pearson, �On the Problem of the Most E�cient Tests of Statis-
tical Hypotheses,� Philosophical Transactions of the Royal Society of London. Series A,

Containing Papers of a Mathematical or Physical Character, vol. 231, pp. 289�337, 1933,
jstor.org/stable/91247.

[78] R. Ellis, I. Hinchli�e, M. Soldate, and J. J. van der Bij, �Higgs Decay to τ+τ−: A Possible
Signature of Intermediate Mass Higgs Bosons at the SSC,� Nucl.\ Phys.\ B, vol. 297, pp.
221�243, 1988, 10.1016/0550-3213(88)90019-3.

[79] A. Elagin, P. Murat, A. Pranko, and A. Safonov, �A New Mass Reconstruction Tech-
nique for Resonances Decaying to di-tau,� Nuclear Instruments and Methods in Physics

Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.
654, no. 1, pp. 481�489, 2011, 10.1016/j.nima.2011.07.009.

[80] S. Agostinelli et al., �Geant4�a simulation toolkit,� Nuclear Instruments and Methods in

Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equip-

ment, vol. 506, no. 3, pp. 250�303, 2003, 10.1016/S0168-9002(03)01368-8.

[81] ATLAS Collaboration, �The ATLAS Simulation Infrastructure,� Eur. Phys. J. C, vol. 70,
pp. 823�874, 2010, 10.1140/epjc/s10052-010-1429-9.

[82] S. Frixione, P. Nason, and C. Oleari, �Matching NLO QCD computations with Parton
Shower simulations: The POWHEG method,� Journal of High Energy Physics, vol. 2007,
no. 11, p. 070, 2007, 10.1088/1126-6708/2007/11/070.

[83] T. Sjöstrand et al., �An Introduction to PYTHIA 8.2,� Computer Physics Communications,
vol. 191, pp. 159�177, 2015, 10.1016/j.cpc.2015.01.024.

[84] J. Butterworth et al., �PDF4LHC recommendations for LHC Run II,� Journal of

Physics G: Nuclear and Particle Physics, vol. 43, no. 2, p. 023001, 2016, 10.1088/0954-
3899/43/2/023001.

[85] J. Botts et al., �CTEQ Parton Distributions and Flavor Dependence of Sea Quarks,� Physics
Letters B, vol. 304, no. 1-2, pp. 159�166, 1993, 10.1016/0370-2693(93)91416-K.

[86] J. Pumplin et al., �New Generation of Parton Distributions with Uncertainties from
Global QCD Analysis,� Journal of High Energy Physics, vol. 2002, no. 07, p. 012,
2002,10.1088/1126-6708/2002/07/012.

[87] K. Hamilton, P. Nason, E. Re, and G. Zanderighi, �NNLOPS simulation of Higgs
boson production,� Journal of High Energy Physics, vol. 2013, no. 10, p. 1, 2013,
10.1007/JHEP10(2013)222.

[88] K. Hamilton, P. Nason, and G. Zanderighi, �MINLO: Multi-scale improved NLO,� Journal
of High Energy Physics, vol. 2012, no. 10, p. 2916, 2012, 10.1007/JHEP10(2012)155.

110

http://arxiv.org/pdf/1405.4545v1
http://arxiv.org/pdf/1007.1727v3
http://www.jstor.org/stable/91247
https://inspirehep.net/literature/246989
http://arxiv.org/pdf/1012.4686v2
https://inspirehep.net/literature/593382
http://arxiv.org/pdf/1005.4568v1
http://arxiv.org/pdf/0709.2092v1
http://arxiv.org/pdf/1410.3012v1
http://arxiv.org/pdf/1510.03865v2
http://arxiv.org/pdf/1510.03865v2
http://arxiv.org/pdf/hep-ph/9303255v1
http://arxiv.org/pdf/hep-ph/0201195v3
http://arxiv.org/pdf/1309.0017v2
http://arxiv.org/pdf/1206.3572v1


Bibliography

[89] D. Lange, �The EvtGen particle decay simulation package,� Nuclear Instruments and Meth-

ods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment, vol. 462, pp. 152�155, 2001, 10.1016/S0168-9002(01)00089-4.

[90] CMS Collaboration, �Measurement of the Zγ∗ → ττ cross section in pp collisions at
√
s =

13 TeV and validation of τ lepton analysis techniques,� The European physical journal. C,

Particles and �elds, vol. 78, no. 9, p. 1, 2018, 10.1140/epjc/s10052-018-6146-9.

[91] T. Gleisberg et al., �Event generation with SHERPA 1.1,� Journal of High Energy Physics,
vol. 2009, no. 02, p. 007, 2009, 10.1088/1126-6708/2009/02/007.

[92] The NNPDF Collaboration, �Parton distributions for the LHC Run II,� Journal of High
Energy Physics, vol. 2015, no. 4, p. 21, 2015, 10.1007/JHEP04(2015)040.

[93] ATLAS Collaboration, �Performance of the ATLAS Inner Detector Track and Vertex Re-
construction in the High Pile-Up LHC Environment,� 2012, ATLAS-CONF-2012-042.

[94] ATLAS Collaboration, �Search for anomalous production of prompt same-sign lepton pairs
and pair-produced doubly charged Higgs bosons with

√
s = 8 TeV pp collisions using

the ATLAS detector,� Journal of High Energy Physics, vol. 2015, no. 3, p. 349, 2015,
10.1007/JHEP03(2015)041.

[95] J. Alison, �The Road to Discovery: Detector Alignment, Electron Identi�cation, Particle
Misidenti�cation, WW Physics, and the Discovery of the Higgs Boson,� Dissertation, 2015,
10.1007/978-3-319-10344-0.

[96] ATLAS Collaboration, �Measurement of the W±Z boson pair-production cross section in
pp collisions at

√
s = 13 TeV with the ATLAS Detector,� Physics Letters B, vol. 762, pp.

1�22, 2016, 10.1016/j.physletb.2016.08.052.

[97] ATLAS Collaboration, �Multi-Boson Simulation for 13 TeV ATLAS Analyses,� 2017, ATL-
PHYS-PUB-2017-005.

[98] P. Bärtschi, C. Galloni, C. Lange, and B. Kilminster, �Reconstruction of τ lepton pair
invariant mass using an arti�cial neural network,� Nuclear Instruments and Methods in

Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equip-

ment, vol. 929, pp. 29�33, 2019., 10.1016/j.nima.2019.03.029

[99] F. Chollet et al., �Keras,� 2015, keras.io.

[100] Martín Abadi et al., �TensorFlow: Large-Scale Machine Learning on Heterogeneous Sys-
tems,� 2015, tensor�ow.org.

[101] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin, �Exploring Strategies for
Training Deep Neural Networks,� J. Mach. Learn. Res., vol. 10, pp. 1�40, 2009,
jmlr.org/papers/volume10/larochelle09a.

[102] ATLAS Collaboration, �Object-based missing transverse momentum signi�cance in the
ATLAS detector,� 2018, ATLAS-CONF-2018-038.

[103] G. Cowan, �Statistical data analysis,� ser. Oxford science publications. Oxford: Clarendon
Press, 1998, physics.m�.cuni.cz.

111

https://inspirehep.net/literature/560129
https://arxiv.org/abs/1801.03535
http://arxiv.org/pdf/0811.4622v1
http://arxiv.org/pdf/1410.8849v4
https://cds.cern.ch/record/1435196
http://arxiv.org/pdf/1412.0237v2
https://cds.cern.ch/record/1536507?ln=de
http://arxiv.org/pdf/1606.04017v2
http://cds.cern.ch/record/2261933
http://cds.cern.ch/record/2261933
http://arxiv.org/pdf/1904.04924v1
https://keras.io
https://www.tensorflow.org/
http://jmlr.org/papers/volume10/larochelle09a/larochelle09a.pdf
https://cds.cern.ch/record/2630948
https://physics.mff.cuni.cz/kfnt/vyuka/statisticke_metody/Cowan.pdf

	Introduction
	Theory
	Standard Model of Particle Physics
	The Standard Model Gauge Structure
	Electroweak Symmetry Breaking
	Yukawa couplings
	Flavour Violation in the SM

	Charged Lepton-Flavour Violation
	The Higgs Boson
	Production and Decay of the Higgs Boson
	The SM Higgs Boson Candidate


	Experimental Setup at CERN
	The Large Hadron Collider
	The ATLAS Detector
	Inner Detector
	Calorimeters
	Muon System
	Trigger System


	Object Reconstruction and Triggers
	Object Reconstruction
	Electrons
	Muons
	Jets
	Missing Transverse Energy
	Overlap Removal

	Triggers

	Neural Networks
	Introduction to neural networks
	Important quantities of neural networks
	Regression DNN in Contrast to Classification DNN
	Hyper-parameters of Neural Networks
	Regularization of a Neural Network
	Error Back Propagation

	Training of a Neural Network
	Importance of Train-, Validation- and Test-Sets
	Preprocessing of the Data-Set

	Optimizing the Neural Network Architecture, Hyper-parameters and Input Features
	Determining the Best Hyper-parameter Configuration
	Grid-, Random- and Grid-Random-Hyper-parameter Search
	Description of the Principle Component Analysis


	Searches for Lepton-Flavour Violation in H and Z decays
	Analysis Strategy
	The Symmetry Method
	Extracting the Signal with the Maximum Likelihood Method
	Mass Reconstruction of the Higgs Boson and Z Boson Candidate

	Signal and Background Processes and Analysis Selection
	Signal Processes
	Background Processes
	Analysis Selection

	Estimation of Fake Lepton Background
	The Fake Factor Method
	ID and anti-ID Definitions
	Description of the Fake Factor Method
	Fake Factor Calculation

	Z+jets Extraction Region
	Selection
	Simulation of Prompt Background

	Normalisation of WZ Background
	WZ Normalisation Region
	Estimation of the WZ Normalisation

	Fake Factor Estimation
	Kinematic Dependencies of the Fake Factor
	Determination of the Fake Factor

	Closure Test for the Fake Facotrs
	Procedure for the Closure Test
	Closure Test for Other Observables
	Discussion


	Higgs Boson Mass Reconstruction via a Regression Neural Network
	Simulation and Event Selection
	Optimization of Neural Network Hyper-parameters and Input Features
	Utilized Hyper-parameters
	Neural Network Architectures
	Sets of Input Features
	Hyper-parameter Optimization with Grid-Random-Search
	Application of the Principle Component Analysis
	Resulting Hyper-parameters and Input Features
	Bias in Mass Prediction and its Correction

	Comparison of NNs to existing Mass Reconstruction Methods
	Comparison of various Mass Reconstruction Techniques with Simulated Events from the Test Set
	Investigation of the Bias at Low Masses
	Mass Reconstruction for Higgs Boson LFV and Z Boson LFV decays
	Separation Power of Signal and Background in Higgs Boson LFV and Z Boson LFV decays
	Discussion


	Conclusion
	List of Figures
	List of Tables
	Bibliography

