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Abstract

CP symmetry, which is the combination of charge and parity symmetry, was once thought
to be a fundamental symmetry of nature. However, experiments found CP symmetry is
violated. The amount of CP-violation described by the SM is not enough to explain
the amount of baryon asymmetry in the universe. Therefore, experimental searches of
further sources of CP-violation in other sectors are necessary, which could be provided
by the coupling of the Higgs-boson to weak gauge bosons. The strength of CP-violation
is described by a single parameter d̃. The expected uncertainty on d̃ is determined
using two different statistical methods using vector-boson fusion produced Higgs-bosons
in the H → τ+τ− → eµ4ν channel. A selection based on neural networks is developed
to maximize the sensitivity. Three different CP-odd observables were compared. The
expected sensitivity for d̃ using the full Run-2 dataset is d̃ ∈ [−0.017, 0.017] for OO and
OReg, and [−0.025, 0.025] for ∆φsignedjj using the gauge curve method. For the ML method,
this was d̃ ∈ [−0.0310, 0.0315] for OO, [−0.0310, 0.305] for OReg, and [−0.0380, 0.0385]
for ∆φsignedjj .

Zusammenfassung

CP-Symmetrie ist die Kombination von Ladungskonjugation und Parität und galt einst
als eine fundamentale Symmetrie der Natur. Es wurde aber experimentell bestätigt, dass
die CP-Symmetrie verletzt ist. Die Menge an CP-Verletzung in dem SM reicht nicht
aus, um die Asymmetrie zwischen Baryonen und Antibaryonen in diesem Universum zu
erklären. Deswegen ist es notwendig, eine experimentelle Suche nach weitere Quellen
von CP-Verletzung in anderen Sektoren durchzuführen, die in der Kopplung zwischen
dem Higgs-Boson und zwei schwachen Eichbosonen vorhanden sein könnten. Die Stärke
der CP-Verletzung wird durch einen einzigen Parameter d̃ beschrieben. Die erwarteten
Grenzen auf d̃ werden durch zwei statistische Methoden mit VBF-produzierten Higgs-
Bosonen in dem H → τ+τ− → eµ4ν Zerfallskanal ermittelt. Eine Selektion durch neu-
ronale Netzwerke wurde entwickelt, um die Sensitivität zu optimieren. Drei verschiedene
CP-ungerade Observablen wurden verglichen. Die erwarteten Grenzen an d̃ mit dem
vollen Run-2 Datensatz sind d̃ ∈ [−0.017, 0.017] für OO und OReg, und [−0.025, 0.025]
für ∆φsignedjj mit der Eichkurve-Methode. Mit der ML-Methode, sind die Grenzen auf
d̃: d̃ ∈ [−0.0310, 0.0315] für OO, [−0.0310, 0.305] für OReg, und [−0.0380, 0.0385] für
∆φsignedjj .
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1 Introduction

The Standard Model (SM) of particle physics describes elementary particles and the
interactions between them. The SM describes the strong, weak nuclear forces and the
electromagnetic force. Particles that are described by the SM can be classified into two
categories, the fermions with half-integer spin and bosons with integer spin. [56, 84, 90].

Experimental measurements showed that gauge bosons, the W and Z bosons, posses
a mass of mW = 80.4 GeV and mZ = 91.2 GeV, respectively [78]. This required an
augmentation to the SM with mass terms for the W and Z bosons, which is local gauge
invariant. A solution to this problem was the Higgs mechanism, which allowed for mass
terms for gauge bosons and fermions while maintaining local gauge invariance [52, 58,
62]. The Higgs mechanism utilizes spontaneous symmetry breaking and introduces the
Higgs field. A prediction of the Higgs mechanism is the existence of a spin-0 Higgs boson.

In 2012, both the ATLAS and CMS experiments announced the discovery of a particle
with a mass of approximately 125 GeV, which had properties consistent with that of the
predicted Higgs boson in the SM [21, 44].

An important property of the Higgs boson is its CP properties. CP symmetry, the
combination of charge (C) and parity (P) symmetry is broken in the weak interaction
but conserved in the strong and electromagnetic interactions in the SM. This violation of
CP symmetry is encoded in the Cabibbo-Kobayashi-Maskawa (CKM) matrix. However,
the amount of CP violation present in the SM is not enough to explain the observed
baryon asymmetry in the Universe, which is one of the Sakharov conditions for baryon
asymmetry [83]. Therefore experimental searches for further sources of CP violation in
other sectors of the SM are necessary.

The investigation of the CP properties of the Higgs coupling to two vector bosons (HV V
vertex) provides an advantage due to its prevalence in pp collisions in the ATLAS detector.
One method in the investigation of CP properties of the HVV coupling is the use of
the Optimal Observable method, which is shown to have the largest sensitivity to CP-
violating contributions in the Higgs-sector. An analysis on the CP properties of the
HV V coupling in the H → ττ channel by the ATLAS and CMS collaborations showed
no significant deviation from SM predictions [28, 41].

This thesis focuses on the CP properties of the HV V coupling using vector boson fusion
produced Higgs bosons exploiting the H → ττ → eµ4ν decay channel using a dataset
of 139 fb−1 of recorded using the ATLAS experiment. Using neural networks, signal
events are selected from background events. The settings on the neural networks are
optimized to maximize the sensitivity using Bayesian hyperparameter optimization. From
the distribution of different CP-odd variables, expected limits on d̃ are derived, which is
a parameter regulating the strength of CP-violation. One method uses the mean value of
the CP odd observable and another is a maximum likelihood fit to the full distribution.
The performance of these two statistical methods are optimized and compared by applying
them onto an Asimov dataset. The performance of different CP-odd variables such as
the OO, OReg and ∆φsignedjj are compared in addition.
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This thesis is structured in the following way: In the second Chapter, the standard model
is introduced and CP-odd observables are discussed. In Chapter 3, the LHC and the AT-
LAS experiment are described. The reconstruction and identification of physics objects
in the ATLAS experiment are described in Chapter 4. In Chapter 5, the signal and back-
ground processes and defined and described, followed by Chapter 6, which details the
estimation of the contribution of background process with jets misidentified as leptons.
Chapter 7 describes the event selection requirements that are applied onto the dataset.
Chapter 8 describes the theoretical aspects of neural networks and Chapter 9 the opti-
mization of a neural network in discriminating signal from background events. This is
followed by Chapter 10, which describes the statistical procedures and their applications
in extracting limits on d̃. Lastly, in Chapter 11, the results are summarized and an
outlook for further studies are discussed.
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2 Theoretical background

2.1 The Standard Model

The Standard Model (SM) of particle physics describes three of the four fundamental
forces of nature: electromagnetism, strong force and weak force. It also describes elemen-
tary particles and interactions between them. Particles are classified into two categories:
leptons with half-integer spin and bosons with integer spin. These particles can further-
more be classified into the following categories: quarks, leptons, gauge bosons, and the
Higgs boson. Quarks constitute hadrons, while leptons do not interact strongly. Gauge
bosons act as the intermediary of fundamental forces. Leptons and quarks are each com-
posed of three generations defined according the particles’ flavor and mass. An overview
of the particles and their properties in the SM is shown in Figure 1.

Figure 1: An overview of the particles described by the Standard Model as well as their
properties such as mass, charge and spin. Colored frames show which particles are affected
by which interactions [77].

The first generation of quarks include the up and down quark, which comprise the valence
quark content of protons and neutrons. The second generation of quarks are the charm
and strange quark and the third generation the top and bottom quark. Quarks carry
a color charge which can have three values: red, blue or green, as well as respective
anticolors in the case of quark antiparticles, such that hadrons are overall color neutral
(white).

In the case of leptons, the first generation encompasses the electron and electron neutrino,
the second generation the muon and muon neutrino and the third generation the tau and
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tau neutrino, classified in order of increasing mass of the charged lepton. Neutrinos are,
on the other hand, electrically neutral. For each fermion, an antiparticle exists with the
same mass but with opposite charge and quantum numbers.

Bosons mediate the fundamental forces between elementary particles and have integer
spins. Apart from the Higgs boson, which has a spin of 0, all bosons have a spin of 1.
The photon is massless and mediates the electromagnetic force and couples to particles
possessing electric charge. W and Z bosons mediate the weak nuclear force and couple
to the particles possessing weak isospin. Gluons, which can have 8 different color charge
configurations, are massless, and couples to particles possessing color charge. These
bosons are collectively called gauge bosons. Lastly, the Higgs boson couples to all massive
particles, and is detailed in section 2.1.3.

The Standard Model is a relativistic quantum field theory (QFT). Specifically, it is a lo-
cally gauge-invariant QFT with the group structure SU(3)C ×SU(2)IW ×U(1)YW , where
SU(3)C is the symmetry group of quantum chromodynamics, representing color charge,
SU(2)IW and U(1)YW the symmetry group of the electroweak interaction representing
weak isospin and hypercharge respectively. In QFTs the Langrangian describes the dy-
namics, kinematics and interactions of the theory, which in the case of the Standard
Model is also locally gauge invariant. Such a Lagragian is constructed first by defining
the symmetry structure of the theory and finding the most general renormalizable La-
grangian for all of its particles, which is not necessarily trivial the Lagrangian is to be
invariant under local gauge transformations. A "naive" attempt at an inclusion of mass
terms for gauge bosons results in a non-renormalizable theory, which warranted the de-
velopment of the Higgs mechanism to consistently describe masses of gauge bosons and
fermions while maintaining local gauge invariance.

2.1.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory of the strong interaction and is a non-
abelian gauge theory with the gauge structure SU(3)C , which is the generator of the color
charge C. Quarks carry a color charge of either red, blue or green, while gluons carry a
color and anti-color charge. Although 9 different color combinations are expected, gluons
constitute a color-octet, and therefore the SU(3) symmetry group is used to describe
QCD. As with the electric charge, the color charge is conserved at each QCD coupling
vertex. In addition, the self-coupling of the gluon exists in QCD, contrasting with the
photon which has no self coupling since it is charge neutral.

The generators of SU(3) are the Gell-Mann λ-matrices, whose commutators define the
structure constants fabc of the SU(3) group:

[λa, λb] = 2ifabcλc (1)

The gauge invariant Lagrangian of QCD is:

LQCD = ψ̄i(iγ
µ(Dµ)ij −mδij)ψj −

1

4
Ga
µνG

µν
a , (2)

13



where upper and lower indices follow the Einstein summation convention [49]. ψi(x) is
the quark field, with i = 1, 2, 3 representing the color indices of the SU(3) group. Dµ is
the covariant derivative and γµ the Dirac matrices. Ga

µν represents the gauge-invariant
gluon field-strength-tensor, given by Ga

µν = ∂µAaν − ∂νAaµ + gfabcAbµAcν , where Aaν are the
gluon fields, with a = 1 . . . 8.

One important aspect of QCD is color confinement. The force between the color charges
of two quarks remain constant regardless of their distance, and therefore when they are
separated the increased energy enables the production quark-antiquark pairs such that
the color charges are never isolated. An important consequence of this is the process of
hadronization, where a scattered quark produces a collimated bunch of hadrons through
this process, known as a jet. Another consequence of this is that observed composite
particles are always color neutral.

2.1.2 Electroweak Interaction

The electroweak interaction is a unified description of electromagnetism and the weak
force. Electromagnetism is described by quantum electrodynamics (QED) which has a
gauge structure of U(1)Q with the electric charge Q. A unification of electromagnetic
and weak interaction results in a theory with the gauge structure SU(2)IW × U(1)YW .
Two new associated parameters are introduced: the weak isospin IW and hypercharge
YW , which are generators of SU(2) and U(1), respectively.

The weak isospin is a two-component charge, which is only carried by chiral left-handed
fermions. The isospin 1/2 is assigned to the neutrinos and to the up, charm and top
quarks. Isospin -1/2 is assigned to the charged leptons and the down, strange and bottom
quarks. Antiparticles have the opposite isospin.

Furthermore, in the weak interaction, every weak current stays within its own generation.
Hence, in electroweak theory in the SM, there is no violation of lepton number. However,
this is not the case for quarks. Transitions between quarks of different generations have
been observed, for example in the decay of the Λ baryon [78]:

Λ(uds)→ p+ π−. (3)

This is due to the weak interaction being coupled not to the mass eigenstates of quarks,
but instead to a linear combination thereof. The transformation from the mass eigenstates
to the weak eigenstates of quarks are done via the Cabibbo-Kobayashi-Maskawa (CKM)
matrix [78]:

d′s′
b′

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

ds
b

 , (4)

where Vij are the entries of the CKM matrix, and |Vij|2 corresponds to the probability
of transition from quark flavor i to quark flavor j. The d′, s′, b′ represent the weak eigen-
states, and the d, s, b the strong eigenstates, which are equivalent to the mass eigenstates.
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The electroweak interaction introduces the weak isospin fields W1, W2, W3 and the hy-
percharge field B. In the Standard Model, particles associated with the electroweak
interaction such as the W±, Z and the photon are produced by spontaneous breaking
of the SU(2)IW × U(1)YW symmetry and the Higgs mechanism, which is descussed in
Section 2.1.3. The bosons emerge through this spontaneous symmetry breaking as linear
combinations of the electroweak fields [90].(

A
Z

)
=

(
cos θW sin θW
− sin θW cos θW

)(
B
W3

)
(5)

Where A and Z are the photon and Z-boson fields, respectively. θW is the Weinberg or
weak mixing angle.

The charged massive bosons W± can be expressed as [90]:

W± =
1√
2

(W1 ∓ iW2) (6)

The electric charge can be calculated from the weak hypercharge and the third component
of the weak isospin T3 [90]:

Q = T3 +
1

2
YW (7)

2.1.3 The Higgs Mechanism

The Brout-Englert-Higgs-Mechanism, commonly known as the Higgs mechanism was in-
troduced to allow mass terms for fermions and gauge bosons, while maintaining local
gauge invariance [52, 63].

The Higgs mechanism introduces an isospin doublet with isospin Iw = 1
2
and hypercharge

Y = 1, with charged and neutral fields φ+ and φ0.

φ =
1√
2

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
. (8)

It also introduces the Higgs-potential V (φ) [62]:

V (φ) = µ2φ†φ+ λ(φ†φ)2. (9)

When µ2 is negative, the Higgs-potential takes the shape as shown in Figure 2. As it can
be seen, the Higgs-potential has an infinite number of degenerate ground states located
at:

φ†0φ0 =
ν2

2
= −µ

2

2λ
, (10)
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Figure 2: The form of the SM Higgs-potential, also known as the "mexican hat potential".
The vacuum state is a random point at the minimum of the potential around the origin
[51].

where ν ≈ 246.22 GeV is the vacuum expectation value [57].

Through spontaneous symmetry breaking one can select a ground state in the unitary
gauge:

φ0 =
1√
2

(
0

ν +H(x)

)
(11)

Which results in the Higgs-Lagrangian:

LHiggs = (Dµφ)†(Dµφ)− V (φ). (12)

Here, Dµ is the covariant derivative in SU(2)IW×U(1)YW . After local gauge transfor-
mation and insertion of φ0, in the unitary gauge and excluding Yukawa coupling terms,
Equation 12 becomes:

LH =
1

2
(∂µH)(∂µH)− λν2H2 − λνH3 − 1

4
λH4 +

1

4
λν4

+
1

2
(
νg

2
)2W µ,+W−

µ +
1

2
(

νg

2 cos θw
)2ZµZµ

+ g(
νg

2
)HW µ,+W−

µ + g(
νg

4 cos2 θw
)HZµZµ

+
g2

4
H2W µ,+W−

µ +
g2

4 cos2 θw
H2ZµZµ + const.+ . . . (13)

From which a new particle, the Higgs boson, is predicted. The mass of the Higgs boson
is given by the term quadratic to the Higgs field, m2

H = 2λν2. The mass of the Higgs
Boson itself is not predicted by the SM.

It can be seen that with the introduction of the Higgs Lagrangian, mass terms for the W
and Z bosons can be written as well, namely mW = 1

2
gν and mZ = 1

2
g

cos θw
ν, respectively.

The Higgs Lagrangian also describes the couplings between itself and theW and Z bosons.
The terms λνH3 and 1

4
λH4 describe the triple and quadruple self coupling of the Higgs
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boson. The terms proportional to HW µ,+Wµ and HZµZµ describe the Higgs coupling to
the W and Z bosons.

2.1.4 Yukawa Coupling

The Yukawa coupling allows for the coupling of the left-handed SU(2)IW fermion doublet
to the Higgs doublet, thereby generating fermion masses within the Standard Model. The
introduction of the Yukawa coupling was necessary since while in QED, mass terms for
fermions are gauge invariant, under SU(2)IW , it is not. This is because left- and right-
handed fermion states transform differently, since, for example, an electron the mass term
can be written as a product of its chiral states:

−mēe = −m(ēLeR + ēReL), (14)

where e is the field of the electron, and eR,L the right or left handed chiral states associated
with the electron. After electroweak symmetry breaking, one finds for each individual
fermion f the Lagrangian density:

LfYukawa =
1√
2

(ν(λf ψ̄
fψf ) + (λfHψ̄

fψf )), (15)

where λf is the Yukawa coupling of the Higgs field to the fermion. From this one can
write the mass of the fermion as:

mf =
λf√

2
ν (16)

The coupling of the Higgs boson to the fermion is proportional to λf and the mass of the
fermion.

2.2 Higgs-boson Phenomenology

The Higgs Mechanism predicts the existence of a Higgs boson with a spin of 0. However,
the mass of the Higgs boson is not predicted by the SM, which is must be known in order to
predict other properties of the Higgs boson. In 2012, the ATLAS and CMS collaborations
jointly announced the discovery of a new boson with a mass of approximately 125 GeV,
whose properties were consistent with those of the Higgs boson [21, 44].

2.2.1 Higgs-boson production modes

The four dominant production modes of the Higgs-boson in pp-collisions at the LHC
are gluon fusion (ggF), vector-boson fusion (VBF), Higgs-Strahlung (V H), and Higgs
production in association with a pair of top-quarks (t̄tH). The predicted Higgs-boson
production cross sections as a function of the mass of the Higgs-boson for different pro-
duction modes are shown in Figure 3. Example leading order Feynman-Diagrams of these
processes are shown in Figure 4. The expected production cross section for each of these
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Figure 3: The predicted production cross section of the Higgs-boson as a function of the
mass of the Higgs-boson for different production modes [81].

production modes for a center of mass energy of
√
s = 13 TeV and a Higgs-mass of 125.09

GeV can be found in Table 1.

Process H-Production Cross Section [pb]
VBF 3.766 +0.45%

−0.33%(scale) ±2.1%(PDF+αs)

VH
W−H 0.527 +0.59%

−0.63%(scale) ±2.03%(PDF+ αs)
W+H 0.831 +0.74%

−0.73%(scale) ±1.79%(PDF+ αs)
ZH 0.880 +3.50%

−2.68%(scale) ±1.65%(PDF+ αs)
ggH 48.61 +4.27%

−6.48%(theory) ±1.85 (PDF) +2.59%
−2.62%(αs)

t̄tH 0.507 +5.8%
−9.2%(scale) ±3.6%(PDF+αs)

Table 1: The production cross section of the Higgs-boson as predicted by the Standard
Model at a Higgs mass of 125.09 GeV at a center of mass energy of 13 TeV. Explanations
for the scale and PDF uncertainties are described in [54].

The production cross-section of the Higgs boson for each production mode was experi-
mentally measured to be: 2.7 ± 0.4 (stat) +0.9

−0.6 (sys) pb for ggH, 0.197 ± 0.028 (stat)
+0.032
−0.026 (sys) pb for VBF, 0.012 ± 0.06 (stat) ± 0.04 (sys) pb for V H and 0.033 +0.033

−0.029

(stat) +0.022
−0.017 (sys) pb for t̄tH. The total cross-section of the pp → H → ττ process was

measured to be 2.94 ± 0.21 (stat) +0.37
−0.32 (sys) pb [17].

The signal process in this thesis is VBF, where two quark scatter off each other by
emitting a W or a Z boson each, which fuse into a Higgs boson. The scattered quarks
hadronize into two jets in the forward and backwards region [79].
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(a) Vector-boson fusion
(b) Associated production with a pair of top
quarks

(c) Gluon-fusion
(d) Higgs-Strahlung

Figure 4: Example Feynman diagrams of the different production modes of the Higgs-
boson: (a) Vector-boson fusion, (b) Associated production with a pair of top quarks (c)
Gluon-fusion (d) Higgs-Strahlung.

2.2.2 Decays of the Higgs-boson

In this thesis the H → τ+τ− → eµ4ν channel is considered. However, since neutrinos
are not detected by the ATLAS detector, this process is not distinguishable from the
H → WW → eµ2ν process. Furthermore, it can be shown that the inclusion of this
process increases the sensitivity to CP violation [61]. Therefore, this process is also
considered as a signal process.

Branching ratios of the Higgs-boson depend on the mass of the Higgs-boson. The branch-
ing ratio of each possible Higgs-boson decay as a function of the mass of the Higgs-boson
is shown in Figure 5. The predicted branching ratios of the relevant decays H → ττ
and H → WW for a Higgs mass of mH = 125.36 GeV are 6.26 ± 0.35 and 22.0 ± 0.9
respectively [18].

The τ -lepton has a very short mean lifetime of (290.3 ± 0.5)×10−15 s and therefore only
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Figure 5: Branching ratios of the different SM Higgs-boson decay modes as a function of
the mass of the Higgs-boson [54].

its decay products can be directly measured [78]. The τ -lepton may decay hadronically
or leptonically. Considering only the leptonic decay modes, the branching ratio of the
µ + ν̄µ + ντ final state is 17.39 ± 0.04% and for e + ν̄e + ντ this is 17.82 ± 0.04% [78].
Therefore, a ditau system decays into e + µ + 4ν in 6.20±0.03% of cases. A W -boson
decays into a e + νe and µ + νµ in 10.71±0.16% and 10.63±0.15% of cases, respectively
[78]. A WW system therefore decays into e+ µ+ 2ν in 2.91±0.08% of all cases.

The product of the branching ratio with the VBF Higgs production cross-section for
H → ττ → eµ4ν and H → WW → eµ2ν procceses are therefore 14.6 ± 1.3 fb and
24.1±2.3 fb, respectively. Using the relation N = Lintσ, where N is the number of
events, Lint = 139fb−1 the integrated luminosity, defined in Chapter 3, and σ the cross
section; the expected number of events for H → ττ → eµ4ν and H → WW → eµ2ν
processes are found to be 1950 ± 170 and 3300 ± 190 events, respectively.

2.3 CP Violation

There is a large imbalance between the amount of baryons and antibaryons in this uni-
verse. One of the Sakharov conditions for baryon asymmetry is CP-violation [83]. CP
symmetry is the combination of charge (C) and parity (P) symmetries. A charge transfor-
mation transforms particles to their antiparticles and vice versa. Parity transformation
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inverts the signs of the components of the spacial coordinates:

P :

xy
z

 7→
−x−y
−z

 , (17)

where P represents the parity operator.

Parity symmetry was thought to be a fundamental symmetry of the universe, however
experiments such as the Wu experiment has shown that parity is in fact not conserved.
Furthermore, in the weak interaction, parity is maximally violated [91].

The combination of C and P symmetries was also found to be violated in the Cronin and
Fitch experiment in Kaon decays [39]. Subsequent experiments have also discovered CP
violation in other sectors involving B and D mesons [38, 69].

CP violation is present in the SM through the complex phase of the entries of the CKM
matrix. However, the amount of CP violation provided by the CKMmatrix is too small to
explain the observed baryon asymmetry. Thus, experimental searches for further sources
of CP violation in other sectors are necessary.

2.3.1 Effective Field Theories

Effective field theories (EFT) provide a framework to describe physics beyond the SM
(BSM). BSM physics may introduce new particles that are too heavy to be produced
directly. Utilizing EFT’s, one can describe the effect of heavy particles, which may
only be produced at high energy scales Λ, at lower energy scale accessible with current
technology.

The Standard Model Effective Field Theory (SMEFT) provides a framework to describe
new physics using higher-dimensional operators including SM fields [61]. A general form
of a Lagrangian in SMEFT is:

L = LSM +
∑
i

f
(5)
i

Λ
O(5)
i +

∑
i

f
(6)
i

Λ2
O(6)
i + . . . , (18)

where LSM is the SM Lagrangian, fi are called the Wilson coefficients [61], O(D) gauge
invariant operators with mass-dimension D > 4, and energy scale of new physics is
represented by Λ [61].

In this thesis, one would like the investigate the effect of a CP-violating contribution to
the HV V coupling. Therefore one considers operators with mass dimension 6, which are
CP odd, U(1)Y×SU(2)IW ,L invariant, and use electroweak and Higgs gauge boson fields.
This results in the following Lagrangian:

Leff = LSM +
fB̃B
Λ2
OB̃B +

fW̃W

Λ2
OW̃W +

fB̃
Λ2
OB̃, (19)
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with operators Oi are defined as:

OB̃B = Φ+ ˆ̃BµνB̂
µνΦ (20)

OW̃W = Φ+ ˆ̃WµνŴ
µνΦ (21)

OB̃ = (DµΦ)+ ˆ̃BµνDνΦ (22)

In these equations, the covariant derivative is given by:

Dµ = ∂µ +
i

2
g′Bµ + ig

σa

2
W a
µ . (23)

The field strength tensors B̂µν and Ŵ µν of the W and B gauge fields and their dual ones
are given by:

B̂µν + Ŵ µν = i
g′

2
Bµν + i

g

2
σaW a

µν = [Dµ, Dν ], (24)

Ṽµν =
1

2
εµνρσV

ρσ, (V = B,W ), (25)

, with couplings g and g′ and [·, ·] the commutator operator.

The operator OB̃ is not considered since it is constrained heavily by measurements at
LEP [59].

After electroweak symmetry breaking, the above Lagrangian becomes [61]:

Leff = LSM + g̃HAAHÃµνA
µν + g̃HAZHÃµνZ

µν + g̃HZZHZ̃µνZ
µν + g̃HWWHW̃

+
µνW

µν
− , (26)

Anomalous couplings HAA and HAZ, which are not present in the SM. whereas cou-
plings HZZ and HWW are present. The Lagrangian furthermore contains the following
coupling strengths:

g̃HAA =
g

2mW

(d̃ sin2 θW + d̃B cos2 θW ), g̃HAZ =
g

2mW

sin 2θW (d̃− d̃B), (27)

g̃HZZ =
g

2mW

(d̃ cos2 θ̃W + d̃B sin2 θW ), g̃HWW =
g

mW

d̃, (28)

where
d̃ = −m

2
W

Λ2
fW̃W , d̃B = −m

2
W

Λ2
tan2(θW )fB̃B, (29)
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Figure 6: Example Feynman diagrams depicting different possibleHV V coupling vertices.
From left to right: Vector boson fusion, Higgs decay, and Higgs-Strahlung.

The effect of γγ, γZ, ZZ and WW to VBF processes cannot be distinguished experi-
mentally [61]. Therefore one can arbitrarily set d̃ = d̃B, which results in the following
coupling strengths:

g̃HAA = g̃HWW =
1

2
g̃HWW =

g

2mW

d̃ and g̃HAZ = 0. (30)

Therefore, the strength of CP violation in the HV V coupling can be parameterized by a
single parameter d̃ [61].

2.3.2 Matrix Element with CP-violating Contributions

Three cases of the HV V coupling are: VBF, Higgs-decay and Higgs-Strahlung. Example
Feynman diagrams of these couplings are shown in Figure 6.

Considering the most general tensor structure of the HV V coupling [61]:

T µν(q1, q2) = a1(q1, q2)gµν + a2(q1, q2)[q1 · q2g
µν − qµ2 qν1 ] + a3(q1, q2)ηµνρσq1ρq2σ (31)

Where q1 and q2 refer to the four-momenta of the two vector-bosons. The first and second
terms are CP-even, whereas the last term is CP-odd. In the SM, a2 and a3 are equal
to zero. Investigations of such BSM contributions are favored at high energies since the
second and third terms are proportional to q1 and q2.

The Higgs-decay case is therefore not favorable due to the momenta of the vector bosons
being limited by the mass of the Higgs boson. The Higgs-Strahlung case is also not
favorable due to its low cross section. Therefore, vector boson fusion production of the
Higgs boson is advantageous in investigating CP properties of the HV V coupling.

The matrix-element for this process with CP-violating contributions gains an additional
term:

M =MSM + d̃MCP-odd. (32)

The absolute square ofM is:
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|M|2 = |MSM |2︸ ︷︷ ︸
CP-Even

+ d̃2<{M∗
SMMCP−odd}︸ ︷︷ ︸
CP-odd

+ d̃2|MCP−odd|2︸ ︷︷ ︸
CP-Even

(33)

The first term, being the SM-case, and the last term, being quadratic to a CP-odd term,
are CP-even. The second interference term, which is linear in d̃, is CP-odd.

2.3.3 Test of CP Invariance

Observables can be constructed that are sensitive to CP-violating contributions of the
HV V coupling. CP-odd Observables can be used for investigating the CP properties of
the Higgs boson. Any average value of this CP-odd variable incompatible with 0 would
therefore imply the existence of CP-violating contributions to the HV V coupling.

The Optimal Observable

For the analysis presented in this thesis, the optimal observable is used, which is defined
in the following way:

OO =
2<{M∗

SMMCP−odd}
|MSM |2

, (34)

When comparing Equation 33 and 34,it can be seen that the OO is the ratio of the CP-
odd term in the absolute square of the matrix element in the CP-violating case to that
of the SM case.

The matrix elements are calculated using HAWK [48], which takes in the truth informa-
tion of the Higgs boson, VBF jets and partons as inputs.

The optimal observable combines the full phase-space information into a single observ-
able, and it can be shown that on truth-level it has optimal sensitivity for CP-violating
contributions [30]. A histogram showing the distribution of the optimal observable for
different d̃ hypotheses is shown in Figure 7.

Other CP-odd variables

Other CP-odd variables can be used in the investigation of CP-properties of the HV V
coupling. These include the signed azimuthal angle difference between the tagging jets.
Defined as:

∆φsignedjj = φj1 − φj2 (35)

where the jets are ordered such that ηj1 > ηj2 . This variable is P-odd and therefore is
also sensitive to CP-violating contributions. Previous studies have shown that ∆φsignedjj

does not outperform the Optimal Observable [20].

Another a CP-odd variable that can be investigated is constructed using neural networks
trained on matrix-element information, where symbolic regression is used to construct
observables, which are presented as simple human-interpretable formulas [34]. Several
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Figure 7: The normalized distribution of the Optimal Observable for different values of
d̃, evaluated using a Monte Carlo simulated dataset.

different configurations of such formulas are presented within the study with different
performances. The observable with the simplest expression whose performance is not
significantly different from the optimum performance is taken. This is defined as:

OReg = −5.5386× 10−5pj1T p
j2
T sin ∆φsignedjj (36)
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3 The ATLAS Experiment

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [53] located at CERN (Conseil Européen pour la
Recherche Nucléaire) in Geneva, Switzerland is the most energetic circular particle col-
lider in the world, designed for proton-proton (pp) and heavy ion collisions (Pb-Pb) at
center-of-mass energies (

√
s) of up to 14 TeV. The LHC has a circumference of about

27 kilometers and accelerates protons and heavy ions in two parallel pipes. For proton-
proton collisions, each beam contains up to 2808 bunches with 1011 particles each, spaced
at an interval of 25 ns.

The beams intersect at four locations, which house particle detectors for the ATLAS [29],
CMS [45], LHCb [70] and ALICE [4] experiments. These detectors are used for precise
measurements, the largest of them in size being the ATLAS detector.

The amount of collisions and subsequently the amount of recorded data can be quantified
by the luminosity. The instantaneous luminosity (L) is defined to be the ratio of the event
rate to the cross-section (σ):

L =
1

σ

dN

dt
. (37)

In practice, the instantaneous luminosity depends on different collider parameters and
can be expressed as

L = nb
N2γrfrev
4πβ∗εn

F, (38)

where N is the number of particles per bunch, nb the number of bunches per beam, frev
revolution frequency, γr the relativistic gamma factor, εn the normalized transverse beam
emittance, β∗ the beta-function at the collision point and F the geometric luminosity
reduction factor due to the beam crossing angles. The LHC is designed to have an
instantaneous luminosity of up to 1034cm2s−1 [53].

The integrated luminosity (Lint) is the integral of the instatenous luminosity with respect
to time:

Lint =

∫
Ldt (39)

Data-taking with the LHC began in 2011 with the "Run-1". In 2011, the LHC operated
at a center-of-mass energy of 7 TeV, which was subsequently increased to 8 TeV in 2012.
During this period, an integrated luminosity of 23.3 fb−1 was delivered to the ATLAS
detector, of which 20.3 fb−1 was used for physics analysis [3, 15]. After a maintenance
period of 3 years, 2015 marked the beginning of "Run-2", which lasted until 2018. During
this data-taking period, a total integrated luminosity of 147 fb−1 was recorded at a center-
of-mass energy of

√
s = 13 TeV, 139 fb−1 of which is used for physics analyses [27].

Multiple interactions occuring per bunch crossing is referred to as in-time pile-up [73].
Another type of pile-up is out-of-time pile-up [73], which happens due to the read-out
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time of the calorimeters being longer than the bunch interval of 25 ns. The luminosity-
weighted distribution of the mean number of interactions per crossing for Run-2 data is
shown in Figure 8.
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Figure 8: The luminosity-weighted distribution of the mean number of interactions per
bunch crossing (〈µ〉) for the full Run-2 pp collision data at

√
s = 13 TeV for each year

and also combined [25].

3.2 The ATLAS Detector in Run-2

The ATLAS (A Toroidal LHC ApparatuS) detector is a cylindrical, multi-purpose par-
ticle detector with a length of 44 meters and a diameter of 27 meters, centered around
the beam axis [29]. It consists of multiple components, each specialized for specific mea-
surements, as well as a magnet system that immerses these units in a strong magnetic
field of up to 3.5 T. An illustration of the ATLAS detector is shown in Figure 9. The
innermost part closest to the beam axis is the Inner Detector (ID), which determines
the tracks and momenta of charged particles. The electromagnetic calorimeters (EM)
measure the energy deposited by electrons and photons, whereas hadronic calorimeters
measure the energy deposited by hadrons. The muon chambers, which is located at the
outermost layer of the detector, provides measurements for the momenta of muons.
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Figure 9: A computer-generated illustration of the ATLAS Detector with its main con-
stituent parts labeled [29].

3.3 Coordinate System of the ATLAS Detector

A cylindrical, right-handed coordinate system is defined with its origin at the nominal
interaction point where the protons collide. The beam direction defines the z-axis, where
the positive z axis points counter-clockwise when viewing the LHC ring from above. The
x-y plane is normal to the beam direction. The positive x direction is defined to be
pointing from the interaction point towards the center of the LHC ring, and the positive
y direction pointing upwards. The azimuthal angle φ is measured around the beam axis
and the polar angle θ from the beam axis. The pseudorapidity, η, is defined as

η = − ln

[
tan

(
θ

2

)]
, (40)

which maps θ ∈ [−π, π] to η ∈ [−∞,∞]. An illustration of the coordinate system of the
ATLAS detector is shown in figure 10.

Another useful quantity is the distance in the pseudorapidity-azimuthal angle space be-
tween two objects, defined as:

∆R =
√

∆η2 + ∆φ2, (41)

where ∆η and ∆φ are the differences in pseudorapidity and azimuthal angle between two
objects, respectively.

Transverse observables such as the transverse momentum,

pT =
√
p2
x + p2

y (42)

and the transverse energy,
ET =

√
E2
x + E2

y , (43)
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Figure 10: A diagram illustrating the coordinate system of the ATLAS detector [86].

are defined, where px,y are the x and y components of the momentum vector and Ex,y
the x and y components of the energy vector.

3.4 Inner Detector

The inner detector provides momentum measurements, tracking and vertex reconstruc-
tion of charged particles. The inner detector comprises of the insertable B-layer (IBL),
pixel detector, semiconductor tracker (SCT) and the transition radiation tracker (TRT),
and is immersed in a magnetic field of 2 T [6].

The insertable B-layer (IBL) is the innermost layer of the pixel detector with a radius of
3.3 cm from the beam axis and compensates for the deterioration of the B-Layer, the first
layer of the pixel detector, due to radiation damage [68]. The proximity of the IBL to the
interaction point also improves the vertexing and b-tagging (see Section 4) performance.
The IBL covers a pseudorapidity range of |η| < 3 and consists of 14 fiber staves each 2
cm wide and 64 cm long.

The precision tracking detectors consist of the pixel detector and semiconductor tracker,
which cover a pseudorapidity range of |η| < 2.5 [9, 46].

The pixel detectors surround the insertable B-layer and cover a pseudorapidity range
of |η| < 2.5 [9], providing high-precision measurements close to the interaction point.
The pixel detectors, as with other components of the ATLAS detector, are split into the
barrel region, radially surrounding the beam axis, and the endcap region, which cover the
circular area on each side of the barrel region. This system is composed of three barrel
layers with mean radii of 5 cm, 8.8 cm and 12.2 cm and length 80.1 cm and six disk layers,
with three at each end of the barrel region. The barrel layers contain approximately 67
million pixels, while the endcaps contain approximately 13 million pixels, covering a total
active area of about 1.7 m2.

The SCT surrounds the pixel detector and provides precision measurements allowing the
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measurement of momentum, impact parameters and vertex position [46]. It occupies the
region 30−52 cm radially from the interaction point with a width of 5.4 m, providing a
coverage of up to |η| < 2.5. The SCT is composed of 4088 silicon strip modules arranged
into 4 barrel layers and 9 endcap disks at each end.

The TRT is a straw-tube tracker, which improves the electron identification capabilities
and accuracy of the momentum measurement in the ID by providing further hit measure-
ments. [89]. The barrel region covers a radius from 0.5 to 1.1 meters and a pseudorapidity
range of |η| < 1. It consists of 52544 tubes each with a length of 1.5 m and a diameter
of 4 mm. The endcaps contains straws with 0.4 m length, arranged radially to the beam
axis. Each endcap consists of 122800 straws covering a range length and angle range of
0.8 m< |z| < 2.7 m and 1 < |η| < 2.

The design resolution for pT (σpT ) of the inner detector is:

σpT
pT

= 0.05%pT ⊕ 1%1. (44)

A cross-sectional drawing of the inner detector with its main components labeled is shown
in Figure 11.

Figure 11: A cross-sectional diagram of the Inner Detector of the ATLAS Detector, with
the radial distances (R) of the layers of the Insertable B-Layer (IBL), pixel detector
(Pixels), Semiconductor Tracker (SCT) and Transition Radiation Tracker (TRT) from
the beam axis provided in units of millimeters (mm)[29].

1a⊕ b =
√
a2 + b2
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3.5 Calorimeters

The calorimeters measure the energies of detectable particles apart from the muon [7].
They consist of two parts: the electromagnetic calorimeter, which measures the energy
deposited by electrons and photons, and the hadronic calorimeter, which measures the
energy deposited by hadrons. The calorimeters cover a pseudorapidity range of η < |4.9|.

3.5.1 Electromagnetic Calorimeter

The electromagnetic calorimeter (EM) is a lead-liquid argon (LAr) calorimeter which
surrounds the inner detector [7]. The EM calorimeter is a sampling calorimeter with lead
as the absorber and liquid argon as the active material. The EM calorimeter is divided
into a barrel region (|η| < 1.475) and two end-cap regions (1.375 < |η| < 3.2) on each
side of the barrel. The barrel region has a length of 6.4 meters, and the end caps have a
radius of 2.077 meters. The |η| range between 1.37 and 1.52 corresponds to a transition
region between the barrel region and end-cap region cryostats and results in a significantly
degraded energy resolution. Electrons as well as photons which fall into this region are
not used for the analysis. The design energy resolution (σE) of the EM calorimeter is:

σE
E

= 10%/
√
E ⊕ 0.7%. (45)

3.5.2 Hadronic Calorimeter

The hadronic calorimeter surrounds the EM calorimeter and measure the energy de-
posited by hadrons, primarily in the form of jets [29]. It consists of three components:
the tile calorimeter, LAr hadronic end-cap calorimeter and LAr forward calorimeter. The
tile calorimeter is a sampling calorimeter with a layered structure using steel as the ab-
sorber and scintillating tiles as the active material; and covers the range |η| < 1.7 with
an inner radius of 2.28 meters and an outer radius of 4.25 meters. The end-cap hadronic
calorimeters are also lead-liquid argon calorimeters and along with the tile calorimeters
cover the range 0 < |η| < 3.2 with an inner radius of 0.475 meters and an outer radius of
2.03 meters. The LAr Forward calorimeters provide coverage for pseudorapidity ranges
closer to the beam axis (3.1 < |η| < 4.9). The tile and end-cap calorimeters have a design
energy resolution (σE) of

σE
E

= 50%/
√
E ⊕ 3%, (46)

while the forward LAr calorimeter has a design energy resolution of

σE
E

= 100%/
√
E ⊕ 10%. (47)

Therefore the energy resolution of the hadronic calorimeter is lower than that of the EM
calorimeter. An illustration of both calorimeters with their major components highlighted
is shown in Figure 12.
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Figure 12: An illustration of the calorimeters of the ATLAS Detector [29].

3.6 Muon Spectrometer

Muons are not stopped by the calorimeters, and therefore it is not possible to precisely
measure their energy using calorimetry. The muon spectrometer determines tracks of
muons passing through it [8]. It utilizes a strong magnetic field and precise tracking
chambers to determine momenta by measuring the curvature of their tracks. For pseu-
dorapidity ranges of |η| < 1.7 the magnetic field is provided by the large barrel toroid.
For pseudorapidity ranges of |η| < 2.7, the monitored drift tubes; and for ranges of
2.0 < |η| < 2.7, cathode strip chambers provide information for tracking. The design
resolution of the transverse momentum measurement (σpT) in the muon spectrometer is:

σpT
pT

= 10% (48)

for a muon with a pT of 1 TeV [29]. An illustration of the muon system is shown in Figure
13.

3.7 Trigger System

Beam bunches at the LHC are delivered at a rate of 40 MHz, and resulting signals from the
ATLAS detector create a data volume of approximately 60 million megabytes per second
[36]. Therefore, trigger systems are used to select events with distinct characteristics that
are relevant for physics analyses. The trigger system of the ATLAS detector is composed
of three consecutive parts: Level-1 (L1) trigger, Level-2 (L2) trigger and event filter.

The L1 trigger is a hardware-based trigger using electronics attached to the detectors. It
utilizes information from the calorimeters and the muon spectrometer to select events with
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Figure 13: An illustration of components of the Muon Spectrometer of the ATLAS De-
tector [29].

muons, electrons, photons, jets and hadronically decaying τ leptons with high transverse
momentum, as well as a large total and missing transverse energy [36]. This decision is
made in less than 2.5 microseconds, and reduces the data rate to approximately 75 kHz.
In addition, the L1 trigger defines regions-of-interest (RoI) which marks regions in the
η−φ plane where interesting features have been identified. This information is then used
by the L2 trigger [29].

The L2 trigger and the event filter collectively make up the High-Level Trigger (HLT) [40].
The L2 trigger is a software-based trigger, which uses the full detector information in the
RoI defined by L1 trigger and further reduces data rate to approximately 3.5 kHz with an
average event processing time of around 40 ms. The event filter is also a software-based
trigger, which further select events down to a rate of 200 Hz.
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4 Reconstruction and Identification of Physics Objects

Raw signals recorded by the ATLAS detector are reconstructed and identified as specific
physics objects using various methods and algorithms. This section describes the identi-
fication and reconstruction of electrons, muons, jets, τ leptons, missing transverse energy
and the Higgs boson momentum.

4.1 Electrons

Electrons are reconstructed from topological energy clusters in the EM calorimeter that
are matched with tracks reconstructed in the ID. Energy is measured from energy deposits
in the EM calorimeter, while energy-loss effects such as Bremsstrahlung are considered
through a calibration after this matching is done [11]. The track of the electron is re-
constructed using information provided by the ID. The electron reconstruction efficiency
increases from 97% to 99% over an ET range of 15-50 GeV [11].

Electrons in the transition region in the |η| range between 1.37 and 1.52 are excluded.
Furthermore, one only considers electrons with |η| < 2.47. Electrons are also required to
fulfill a transverse momentum of at least 15 GeV.

Identification of electrons is based on a likelihood-based discriminant [11]. This discrimi-
nant is computed from information provided by the ID and EM calorimeter. By applying
a set of requirements on this discriminant, four operating points are defined: Veryloose,
Loose, Medium and Tight, given in order of decreasing signal efficiency (the ratio of cor-
rectly identified electrons to the total number of electrons), and increasing background
rejection (the ratio of the number of other particles not identified as electrons to their to-
tal number.) [11]. These correspond to efficiencies of 93%, 88%, and 80% for identifying
a prompt electron with a pT of 40 GeV, for the Loose, Medium and Tight working points,
respectively. Therefore Tight electrons have the highest signal purity, but suffer from low
signal efficiency. Electron reconstruction and identification efficiencies as a function of
the transverse energy is shown in Figure 14.

The isolation of a particle generally refers to the amount of deposited energy and mo-
mentum in a cone of radius R around the particle. Applying conditions on the isolation
can limit the contributions from non-prompt background processes and misidentified
jets. Isolation criteria can be calorimeter-based, track-based or both. For this analysis
the calorimeter-based isolation criteria, the calorimeter isolation energy Econe0.2

T is used,
which is defined as the sum of the transverse energy deposited in calorimeter in a radius
of R = 0.2 around the electron candidate [11].

For track-based isolation criteria, similarly to the calorimeter-based isolation, the sum of
transverse momenta measured within a cone, pisolT, var, but with a variable radius depending
on the pT of the electron, determined by the equation:

R = min

(
10 GeV
pT[GeV]

, Rmax

)
, (49)

34



E
ffi

ci
en

cy

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

idεData identification efficiency 
 Loose
 Medium
 Tight

ATLAS
-1 = 13 TeV, 37.1 fbs

 [GeV]TE

20 40 60 80 100 120 140

D
at

a 
/ M

C
 

0.9

1

1.1

(a)

 [GeV]TE

20 40 60 80 100 120 140

E
ffi

ci
en

cy

0.95

0.96

0.97

0.98

0.99

1

recoεReconstruction efficiency 
 Data
 MC

ATLAS
-1 = 13 TeV, 37.1 fbs

(b)

Figure 14: The electron identification efficiencies (εid) for the Loose, Medium and Tight
criteria (a) and reconstruction efficiencies (εreco) (b) for data and Monte-Carlo simulated
samples as a function of the transverse energy of the electron (ET). Both statistical and
systematic uncertainties are shown [11].

where for electrons Rmax = 20 GeV is used. The working point FCLoose is defined such
that the ratio of the Econe0.2

T and pisolT, var to the electron’s transverse momenta is less than
0.2 and 0.15, respectively [22].

For this analysis, the baseline definition of an electron has Medium ID requirements, with
FCLoose isolation [11].

4.2 Muons

Muons distinguish themselves from other particles in that they deposit little energy in
the calorimeters and leave clear signatures in the inner detector and the muon spectrome-
ter. Tracks in the muon spectrometer are reconstructed using hit information in different
components of the spectrometer. After the tracks are built, muon reconstruction is per-
formed by dedicated algorithms, using information from the ID, calorimeters and muon
spectrometer [19].

Similar to electrons, identification working points are defined for muons based on a
likelihood-based discriminant. The Loose, Medium and Tight identification working
points are defined, corresponding to efficiencies of 98%, 97% and 93% for identifying
a muon with a pT > 100 GeV [20].

The isolation working point FCTightTrackOnly is defined such that the ratio of pisolT, var
to the transverse momenta is less than 0.06, with a Rmax of 0.3. No requirement on the
calorimeter-based isolation is set [22].
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Figure 15: The combined muon identification and reconstruction efficiency as a function
of the muon transverse momentum for the Tight, Medium andLoose muon identification
operating points for both data and monte-carlo simulated samples. Errors represent both
statisitical and systematic uncertainties [19].

In this thesis, the baseline definition of a muon has Loose ID requirements, pT > 10 GeV,
|η| < 2.47 and FCTightTrackOnly isolation. A plot of the combined muon identification
and reconstruction efficiency as a function of the transverse energy is shown in Figure 15.

4.3 Jets

Jets are reconstructed from particle flow objects, which combine signals from both the
tracker and the calorimeter [14], and topological energy clusters using the anti-kt algo-
rithm [37] with a radius parameter of R = 0.4. Jets which survive the overlap removal
(see Section 4.7) are subjected to additional requirements from the Jet Vertex Tagger
(JVT) tool [26] in order to suppress jets originating from pile-up vertices (see Section
3.1).

Jets are required to have pT > 20 GeV, |η| < 4.5, pass the LooseBad [10] quality criteria
and Tight JVT [26] requirements.

Jets originating from b-hadrons, also known as b-jets, have different topologies, which can
be exploited to determine whether a jet originates from a b-hadron. Hadrons containing
bottom quarks have a relatively longer lifetime which enables them to travel a certain
distance before decaying, causing the point of decay to be shifted from the nominal
pp collision point. Furthermore, the large mass of the bottom quark causes the decay
products to have large transverse momenta. Such characteristics are used by the DL1r
algorithm [74] to assign each jet with pT > 20 GeV and |η| < 2.5, a score corresponding
to the probability that this jet is a b-jet. This identification process is called b-tagging.
For this analysis, the working point corresponding to a tagging efficiency of 85% is used.
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4.4 Missing Transverse Energy

Neutrinos are not detected by the ATLAS detector, and therefore their properties must
be investigated indirectly. The momentum carried away by the neutrinos results in an
overall imbalance in the measured transverse momenta of the entire system. This can
be estimated by calculating the negative vectorial sum of the transverse momenta of all
the reconstructed physics objects and of tracks associated to the primary vertex but not
associated with any of the reconstructed objects, known as the soft term [24].The missing
transverse energy ( ~Emiss

T ), which is then defined as:

~Emiss
T = ~Emiss,e

T + ~Emiss,γ
T + ~Emiss,τ

T + ~Emiss,jet
T + ~Emiss,soft

T + ~Emiss,µ
T . (50)

The magnitude of the missing transverse energy vector is denoted as Emiss
T , and it com-

puted as:

Emiss
T =

√(
Emiss

T,x

)2
+
(
Emiss

T,y

)2 (51)

where Emiss
T,x/y refers to the x and y components of the missing transverse energy vector.

4.5 Hadronic τ lepton decays

The τ lepton can decay leptonically into a lepton and two neutrinos, or hadronically.
The charged leptonic decay products are reconstructed as electrons or muons, whereas
neutrinos are accounted for via the missing transverse energy. In the hadronic decay
mode, τ leptons decay into a τ neutrino along with one or more hadrons, predominantly
in the form of pions. Depending on the number of pion tracks, a hadronic τ lepton decay
can be classified into one- or multi-prong (usually 3). The visible decay products of the
hadronic τ lepton decay are denoted as τhad-vis. Although not directly investigated in the
scope of this thesis, a veto on τhad-vis objects is applied.

τhad-vis candidates are reconstructed using the anti-kt algorithm with a radius parame-
ter of R = 0.4. τhad-vis candidates may be hard to distinguish from jets, and therefore
multivariate techniques exploiting characteristics of hadronic τ decays such as their nar-
row calorimeter clusters, isolation and their charged track multiplicity are used [71] .
For this, Boosted Decision Trees (BDTs) were trained to reject quark- or gluon-initiated
background processes. Three working points: Loose, Medium and Tight, are defined with
signal efficiencies for one-prong (multi-prong) τhad-vis’s of 70% (65%), 60% (55%), and
40% (35%) respectively [71]. In this thesis, the τhad-vis objects must satisfy the Medium
working point and furthermore have one or three associated tracks with a pT > 20 GeV
and |η| < 2.47, excluding the pseudorapidity region 1.37 < |η| < 1.52.

4.6 Invariant Mass of the Higgs-Boson Candidate

The invariant mass of the ditau system is an important discriminant in the selection of
Higgs events from background events. However, since the leptonic decay of the τ lepton
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involves the production of two neutrinos whose momenta is not directly measured by the
detectors, the invariant mass of the ditau system cannot be directly calculated. Therefore
the invariant mass of the Higgs boson is reconstructed with two different methods.

4.6.1 Collinear Approximation

The collinear approximation is based on the assumption that the decay products of the
τ lepton is collinear with the τ lepton itself [13]. This assumption holds since the mass
of the Higgs boson is much greater than the mass of two τ leptons and therefore one
expects the τ leptons to have large momenta. Another assumption is that the missing
transverse energy is solely due to neutrinos from the τ lepton decay. The invariant mass
of the ditau system in the collinear approximation (mcoll) can be written as:

mcoll =
mvis√
x1x2

, (52)

where mvis is the invariant mass of the visible decay products of the ditau system and
x1(2) the momentum fractions of each τ lepton carried away by the visible decay products,
i.e.:

~pvis,1(2) = x1(2)~pτ1(2) (53)

The momentum fractions in the collinear approximation can be written as:

x1(2) =
pxvis,2p

y
vis,1 − p

y
vis,2p

x
vis,1

pxvis,2p
y
vis,1 + (−)Emiss

T,x pxvis,1(2) − p
y
vis,2p

x
vis,1 − (+)Emiss

T,y pxvis,1(2)

, (54)

where px,yvis,1(2) are the x and y components of ~pvis,1(2).

This approximation works well for when the ditau mass is boosted, i.e. has a large
momentum. However, events with back-to-back topology, ∆φ(τ1, τ2) ≈ π, Equation 54
results in unphysical solutions, and this approximation cannot be used. Many H → ττ
events, which have a back-to-back topology, must therefore be discarded. Additionally,
the collinear approximation is sensitive to Emiss

T reconstruction resolutions, therefore
resulting in long tails in the reconstructed ditau mass distribution [50], thereby reducing
the discrimination capacity.

4.6.2 The Missing Mass Calculator

The Missing Mass Calculator (MMC) [50] aims to improve upon the shortcomings of
the collinear approximation method and allows for a complete reconstruction of event
kinematics of the ditau system.

The full reconstruction of the ditau kinematics in the dilepton channel involves finding 8
unknown variables: x, y, and z components of the τ neutrinos for each of the τ -leptons
and the invariant masses of the two neutrinos from each leptonic decay. However, there
are only four independent equations, which relate these unknowns:
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Emiss
T,x = pmiss,1 sin(θmiss,1) cos(φmiss,1) + pmiss,2 sin(θmiss,2) cos(φmiss,2) (55)

Emiss
T,y = pmiss,1 sin(θmiss,1) sin(φmiss,1) + pmiss,2 sin(θmiss,2) sin(φmiss,2) (56)

m2
τ1

= m2
miss1

+m2
vis,1 + 2

√
p2
miss,1 +m2

miss,1

√
p2
vis,1 +m2

vis,1

− 2pvis,1pmiss,1 cos(θvis,1 − θmiss,1)
(57)

m2
τ2

= m2
miss2

+m2
vis,2 + 2

√
p2
miss,2 +m2

miss,2

√
p2
vis,2 +m2

vis,2

− 2pvis,2pmiss,2 cos(θvis,2 − θmiss,2)
(58)

where the index miss, 1(2) refers to the neutrinos from the decay of τ1(2) and vis, i the
visible part of the decay of τ1(2), which are the charged leptons, while mmiss1(2) refers to
the invariant mass of the neutrinos from the lepton decays of τ1(2).

Since it is impossible to find a unique solution with more unknowns than constraints,
the MMC compares the likeliness of different solutions by considering the characteristics
of τ lepton decays. This is done by scanning a four dimensional parameter space of
all solutions, corresponding to the degrees of freedom of the system of equations, and
assigning an event probability to each phase space point based on the probability density
functions for τ lepton decay properties. The solution with the highest probability is then
used to calculate the final reconstructed ditau mass mMMC.

The MMC allows for the calculation of the reconstructed ditau invariant mass for any
configuration, as opposed to the collinear approximation method. It additionally results
in a better resolution and accuracy of the ditau mass in comparison with the collinear
approximation method [50].

4.7 Overlap Removal

It is possible that multiple physics object fulfill the identification and reconstruction
requirements. In order to resolve this ambiguity, an overlap removal procedure is applied.
One reconstructed object is compared with another, and rejected if it fulfills a certain
criteria. Through a 9-step procedure, every reconstructed object type is compared with
another, allowing in the end only one reconstructed object type. The overlap removal
criteria for the Standard of the AssociationUtils package [17], which is used for this thesis,
can be seen in Table 2.
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Step Object to remove Object to keep Criteria

1 electron electron If they share the same track, the elec-
tron with the highest transverse mo-
mentum is kept.

2 τhad-vis electron If ∆R < 0.2, the electron is kept
3 τhad-vis muon If ∆R < 0.2, the muon is kept
4 electron muon If they share a track, the electron is re-

moved if the muon is associated with
a signature in the muon spectrometer,
otherwise the muon is removed.

5 jet electron Any jet within ∆R < 0.2 of an electron
is removed.

6 jet muon Any jet within ∆R < 0.2 of an electron
is removed if it has fewer than three
associated tracks.

7 electron jet Any electron within ∆R < 0.4 of a jet
is removed.

8 muon jet Any muon within ∆R < 0.4 of a jet is
removed.

9 jet τhad-vis Any jet within ∆R < 0.2 of a τhad-vis is
removed.

Table 2: The steps of the overlap removal in the Standard working point using the
AssociationUtils package. Table is taken from [17].
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5 Signal and Background Processes

Various processes occur in the ATLAS detector arising from pp-collisions. Many of these
processes are simulated using Monte-Carlo simulations (MC) for use in the analysis. This
section aims to define the signal processes, which is the process of interest to be analyzed
as well as other processes, which may leave similar signatures in the detectors as those of
signal processes, constituting the background processes of the signal process.

5.1 Signal Processes

This analysis considers the Vector Boson Produced (VBF) H → ττ → eµ4ν as the signal
process. One also considers H → WW → eµ2ν as a signal process as well since it can
also be used to increase the sensitivity to CP violation in the HV V vertex [28].

The final reconstructed topology of VBF produced Higgs decay into ττ → eµ4ν is charac-
terized by two charged leptons of opposite sign with missing transverse energy, associated
with at least 2 jets with a large angle separation. A Feynman diagram of this process
can be seen in Figure 16.

Figure 16: An example Feynman diagram of Vector Boson Fusion production of the Higgs
boson.

5.2 Background Processes

Many processes occur within the ATLAS detector originating from pp collisions, some
of which can mimic the signature of signal processes. These are termed background
processes. Background processes can be classified into the reducible and irreducible back-
grounds. Reducible backgrounds have different final states from the signal process and
therefore can be separated effectively. Irreducible backgrounds on the other hand have
the same final state as the signal process, making separation challenging. Furthermore,
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detector effects and limitations in identification and reconstruction can also cause re-
ducible backgrounds to appear like they have the same final state as signal processes.
Background processes include Z → ττ , Z → ll, (l = e, µ), diboson production, top-quark
background, misidentified leptons, and other Higgs boson production modes. Gluon-
Gluon Fusion, Higgs-Strahlung and production in association with a pair of top quarks
are grouped into the Other Higgs Boson production modes category. Apart from contri-
butions from misidentified leptons, all background processes are estimated through MC
simulations, which are discussed below. The contribution of misidentified leptons are
estimated through a data-driven method called the Matrix Method.

5.2.1 Z → ττ

The Z → ττ process represents the most dominant background contribution, since it
produces two τ -leptons as in the case of the signal process. Similarly to the Higgs boson,
the Z boson can also be produced via vector-boson fusion, thereby also resulting in two
VBF jets. This processes is therefore an irreducible background process. An example
Feynman diagram of a VBF produced Z → ττ process can be seen in figure 17

The contribution of such processes can be suppressed by applying requirements on the
invariant mass of the decay products, due to the differing mass between the Z boson and
the Higgs Boson.

Figure 17: Example Feynman diagram of VBF Z → ττ process.

5.2.2 Top-quark Production

Single top and top-quark pair productions are collectively referred to as the Top back-
ground, whose example Feynman diagrams are shown in Figure 19. Both can result in
a topology that is similar to that of the signal process, since a top-quark almost always
decays into a bottom-quark and a W boson. Therefore in the case of top quark pair pro-
duction, both of these top quarks can produce two jets, two leptons of opposite sign and
missing transverse energy. An example Feynman diagram of top-quark pair production
can be seen in Figure 18. In single-top quark production, top-quarks can be produced in
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three channels, called the t, s and tW -channels, whose Feynman diagrams can be seen
in Figure 19. Additional jets may be produced via final state radiation, associated with
two leptons and missing transverse energy.

Figure 18: Top-quark pair production.

(a) t-channel.
(b) s-channel. (c) tW -channel.

Figure 19: Example Feynman diagrams of different single top production channels.

This process can be suppressed by applying a veto on b-tagged jets. However, it nonethe-
less represents a sizable background contribution due to the limited efficiency of b-jet
identification. Furthermore, since the nature of the jet production associated with top
background are different from that of VBF processes, VBF processes can still be discrim-
inated from top processes through jet properties such as the transverse momentum.

5.2.3 Z → ll

Z → ll refers collectively to the Z → ee, and Z → µµ processes processes. An exam-
ple Feynman diagram of the Z → ll process is shown in Figure 20. The figure shows
how a Z boson could be produced through VBF, just like the Higgs boson in the sig-
nal process, resulting in two jets and two leptons. Another possibility is the fusion of
a quark-antiquark pair into a Z boson which then decays into a lepton-antilepton pair.
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Two additional jets may be produced by initial state radiation, resulting in two jets and
two leptons of opposite charge. This process is more common than the VBF production
mode. The Z → ee and Z → µµ processes have the largest cross section among the pro-
cesses considered in this analysis, however these processes by themselves cannot produce
two leptons of different flavors, and therefore its contribution as a background process is
limited. It is nonetheless possible that Z → ee or Z → µµ processes mimic signal pro-
cesses through detector effects, such as lepton misidentification. These processes also do
not produce missing transverse momentum. However, a possible incorrect reconstruction
of the missing transverse momentum could produce an apparent Emiss

T .

Figure 20: Example Feynman diagram of VBF produced Z → ee or Z → µµ

5.2.4 Diboson Production

Diboson production (V V ) refers to the production of a pair of vector bosons, i.e. ZZ,
WZ or WW production. Example Feynman diagrams of diboson production can be seen
in figure 21. In the case of Figures 21a and 21b the Z boson can decay into two leptons
of the same flavor, associated with two jets and no missing transverse energy. However,
similarly to Z → ll, it is still possible for this process to mimic the signature of signal
processes through detector effects. The nature of jets produced from such processes are
different from VBF processes, since in VBF the two jets are produced from scattering of
quarks while in processes shown in Figures 21a and 21b, they are produced the decay of
a Z boson. Therefore the contribution of such processes can be suppressed by examining
jet properties such as angle and transverse momentum. The process shown in Figure
21b shows a case where a Z boson decays into two W bosons, which then can decay
into two different-flavor leptons. Two jets can also be produced through initial state
radiation of two gluons. In such a case two opposite sign leptons of different flavors are
produced along with missing transverse momentum and two jets. This process also has
jet properties different from VBF processes, such as the invariant mass. The invariant
mass of the system of leptons and missing transverse momenta would also correspond to
the mass of the Z boson, instead of the Higgs boson. Therefore V V processes can be
suppressed through consideration of such kinematic variables.
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(a) ZZ production. (b) WZ production. (c) WW production.

Figure 21: Example Feynman diagrams of (a), ZZ production, (b), WZ production and
(c), WW production, which may produce a final state similar to that of signal processes.

5.2.5 W Boson Production

W bosons can also be produced in pp-collisions, however, its contribution in this analysis
is limited, since a W boson by itself cannot produce two different-flavored leptons with
opposite charge. It is however nonetheless possible, that a jet is misidentified as a lepton,
therefore creating two apparent leptons. An example Feynman diagram of W boson
production in association with two jets can be seen in Figure 22.

Figure 22: An example Feynman diagram of W boson in association with two jets.

Events from W boson production are not directly used for the background estimation,
since these overlap with events originating from misidentified leptons. However, for cer-
tain calculations in the estimation of contribution from misidentified leptons, they are
considered.

5.3 Event Generation

Apart from the contribution from misidentified leptons, all background processes are
estimated through Monte Carlo (MC) simulations. For each process, a Monte Carlo
generator is used for the matrix element, using a parton distribution function (PDF) set,
which can be estimated at various degrees of leading orders. The parton shower and
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hadronization are modeled by the Underlying Event Parton Shower (UEPS) model. In
this thesis, the Powheg-Box v1 [80], v2 [75][76][55][5] and Sherpa 2.2.1 [64] generators are
used. The following PDF sets are used: PDF4LHC1[60][35], PDF4LHC15 NNLO [32],
NNPDF2.3 NLO [72], and NNPDF3.0NNLO [31] are used. For the UEPS model, Pythia
8 [88] and Sherpa 2.2.1 are used. Detector effects are simulated using GEANT4 [1]. A
summary of the MC generators used for the considered processes can be seen in table 3,
and a table listing the measured cross sections of the considered processes can be seen in
table 4.

Process Generator PDF Set UEPS Model
VBF Powheg-Box v2 PDF4LHC15 NLO Pythia 8
ggH Powheg-Box v2 PDF4LHC15 NNLO Pythia 8
tt̄H Powheg-Box v2 PDF4LHC15 NNLO Pythia 8
V H Powheg-Box v2 NNPDF2.3 NLO Pythia 8
Z Sherpa 2.2.1 NNPDF3.0 NNLO Sherpa 2.2.1
W Sherpa 2.2.1 NNPDF3.0 NNLO Sherpa 2.2.1
V V Sherpa 2.2.1 NNPDF3.0 NNLO Sherpa 2.2.1

Single top Powheg-Box v1 NNPDF2.3 NLO Pythia 8
Top pair Powheg-Box v2 NNPDF2.3 NLO Pythia 8

Table 3: An overview of the Monte Carlo generators used to generate samples for processes
considered in this thesis.

Process Cross section (× BR) [pb] Ref.

W−-production (×BRlep) 11.83 ± 0.02 (stat) ± 0.32 (sys) ± 0.25 (lumi) ×103 [16]
W+-production (×BRlep) 8.79 ± 0.02 (stat) ± 0.24 (sys) ± 0.18 (lumi) ×103 [16]
Z-production (×BRlep) 1.981 ± 0.007 (stat) ± 0.038 (sys) ± 0.042 (lumi) ×103 [16]

Top quark pair production 781 ±7 (stat) ± 62(sys) ± 20(lumi) [43]
Single top production 219.0 ± 1.5(stat)± 13.0(sys) [42]
WW production 115±5.8(stat)±5.7(exp)±6.4(theo)±3.6(lumi) [65]
tW production 63.1 ± 1.8(stat) ± 6.4(sys) ± 2.1(lumi) [87]
WZ production 40.9±3.4(stat)+3.1

−3.3(sys)±0.4(theo)±1.3(lumi) [65]
ZZ production 14.6+1.9

−1.8(stat)
+0.5
−0.3(sys)±0.2(theo)±0.4(lumi) [65]

Table 4: The cross section of different background processes ordered by their respective
cross section. For certain processes the product of the cross section and leptonic branching
ratio is listed. Uncertainties are explained in their respective references.
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6 Estimation of Misidentified and Non-Prompt Lep-
tons

Background contribution from misidentified jets and non-prompt leptons, also known as
fakes, mainly originate from W boson production in association with jets and multi-jet
QCD production, which refer to events where several jets are strongly produced. In
contrast with other background processes, fake processes are poorly modeled in MC sim-
ulations [12]. Therefore data-driven methods often are used to estimate the contribution
from fake events. In this thesis, the matrix method is used to estimate the yield of fake
events.

6.1 The Matrix Method

The contribution of real and fake leptons cannot be directly measured experimentally.
Therefore one has to determine another property, which can be measured experimentally,
and relate that with the realness and fakeness of leptons to find the number of fake
events. For this, of tight (T) and loose (L) criteria are defined per lepton flavor, such
that leptons which pass tight selection requirements have a higher chance of being a real
lepton than those that pass loose requirements. The definition of tight and loose are
exclusive from each other, meaning that a loose lepton can also be interpreted as being
not-tight, while passing baseline requirements. In this analysis, tight leptons are required
to fulfill the same isolation and identification requirements as leptons in the signal region
(See Section 7). For electrons this is Medium ID requirement with FCLoose isolation,
and for muons medium ID requirements with FCTightTrackOnly isolation. In the loose
region, the isolation requirements for both lepton flavors are removed, and for electrons,
the ID requirement is also loosened to Loose. The removal of the isolation requirements
is motivated by the fact that processes such as misidentification of hadrons as leptons
and semileptonic decays of heavy quarks are characterized by activity in a large ∆R
surrounding the candidate object. On the other hand, prompt leptons are characterized
by little activity in the calorimeter and inner detector surrounding the reconstructed
object in ∆R [12].

The probability that a real or fake lepton is classified as a tight lepton is then referred
to as the real (εr) and fake efficiencies (εf ). They can be calculated in dedicated control
regions, which are dominated by real or fake leptons, in the following way:

εr,f =
NT

N L̄
(59)

where NT is the number of tight events in their respective control region and N L̄ the
number of events which fulfill the baseline requirements. L̄ therefore refers to the set of
events passing baseline requirements, i.e. the set of tight or loose events.

In the single lepton case, one can use Equation 59 to derive the following equations:

NT = Nrεr +Nfεf (60)
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NL = Nr(1− εr) +Nf (1− εf ) (61)

where Nr and Nf are the number of real and fake leptons, respectively. In Equation 61,
the (1 − εr,f ) term originates from the fact that the definition of loose is orthogonal to
that of tight.

Above equations can be generalized to the two lepton case through the following system
of equations, expressed as a product of matrices:


NTT

NTL

NLT

NLL

 =


εrεr εrεf εfεr εfεf
εr ε̄r εr ε̄f εf ε̄r εf ε̄f
ε̄rεr ε̄rεf ε̄fεr ε̄fεf
ε̄r ε̄r ε̄r ε̄f ε̄f ε̄r ε̄f ε̄f



Nrr

Nrf

Nfr

Nff

 (62)

where ε̄ = 1 − ε and NXY the number of events in lepton categories X or Y, ordered
by pT. The first and second efficiency term in the product always refers to the first and
second lepton, respectively. The matrix containing the product of efficiencies is termed
the efficiency matrix M .

By inverting the matrix, one can estimate the number of events with at least one fake
lepton (Nrf , Nfr, Nff ) from the number of events with tight and/or loose leptons. The
inverse of the matrix was found to be:

M−1 =
1

(εr,1 − εf,1)(εr,2 − εf,2)


ε̄f,1ε̄f,2 ε̄f,1εf,2 −εf,1ε̄f,2 εf,1εf,2
−ε̄f,1ε̄r,2 ε̄f,1εr,2 −εf,1ε̄r,2 −εf,1εr,2
−ε̄r,1ε̄f,2 ε̄r,1εf,2 −ε̄r,1ε̄f,2 −εr,1εf,2
ε̄r,1ε̄r,2 −ε̄r,1εr,2 −εr,1ε̄r,2 εr,1εr,2

 , (63)

where here the numerical index of the efficiencies refer to either the first or second lepton.

The contribution of events with at least one fake lepton in the nominal region where both
leptons are tight is then given by the sum of their projections into the region, where both
leptons are tight.

N fake
TT = εr,1εf,2Nrf + εf,1εr,2Nfr + εf,1εf,2Nff , (64)

which can be rewritten in following way by plugging in the inversion of the matrix and
gathering terms:
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N fake
TT = εr,1εf,2Nrf + εf,1εr,2Nfr + εf,1εf,2Nff

= α[εr,1εf,2(εf,1 − 1)(1− εr,2) + εf,1εr,2(εr,1 − 1)(1− εf,2) + εf,1εf,2(1− εr,1)(1− εr,2)]︸ ︷︷ ︸
wTT

NTT

+ αεf,2εr,2[εr,1(1− εf,1) + εf,1(1− εr,1) + εf,1(εr,1 − 1)]︸ ︷︷ ︸
wTL

NTL

+ αεf,1εr,1[εf,2(1− εr,2) + εr,2(1− εf,2) + εf,2(εr,2 − 1)]︸ ︷︷ ︸
wLT

NLT

− αεf,1εf,2εr,1︸ ︷︷ ︸
wLL

εr,2NLL

= wTTNTT + wTLNTL + wLTNLT + wLLNLL,

where α = ((εr,1−εf,1)(εr,2−εf,2))−1. Therefore it can be seen that the final fake estimation
amounts to weighting events in different tightness regions and then summing them up.

6.1.1 Real Efficiencies

The real efficiencies of each lepton flavor are measured in a control region enriched in
real leptons and is calculated using leptons matched to generator-level particles, referred
to as truth-matched leptons. The real CR is defined by having one electron and muon
with opposite charge. The invariant mass of the dilepton system is limited to a range
of ±10 GeV within the Z-mass, in order to select Z → ll events. At least one jet with
a transverse momentum of at least 40 GeV is required and a b-jet veto is applied. The
samples considered for the calculation of the real efficiencies are: Diboson production,
Z → ll,Z → ττ , top production and W production.

The real efficiency is calculated as a function of the pT and |η|, separately per lepton
flavor. For muons, 5 equidistant bins were used in an |η| range of 0 to 2.5. For electrons,
the |η| region between 1.37 and 1.52 is excluded since this region is excluded in the
definition of an electron. For electrons, pT bins with edges at 12, 20, 35 and 1000 GeV
are used. For muons, bins with edges at 10, 20, 35, and 1000 GeV are used. The lowest
bin edge corresponds to the baseline pT requirement of the respective leptons. The pT
binning is set in such a way to ensure enough statistics in each bin, such that no bin
content is negative. Furthermore, as the lepton pT increases, one expects an increase in
the real efficiency, since the identification performance of leptons improve as a function of
pT [11]. One expects this efficiency to plateau after a certain point, which is considered
by the larger width of the last pT bin.

A plot of the electron and muon real efficiencies as a function of their pT and |η| values
is shown in figure 23. A figure comparing the real efficiencies of the muon and electron
as a function of the pT is shown in figure 24.

It can be seen that the efficiencies generally increase with increasing pT, which is to be
expected. It can also be seen that the muon real efficiencies are also generally higher
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Figure 23: Real efficiencies of (a), electrons and (b), muons as a function of the lep-
ton transverse momentum and absolute value of the pseudorapidity of the lepton. All
uncertainties are statistical.

10 210 310
 [GeV]

T
Lepton p

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

R
ea

l E
ffi

ci
en

cy

Real Efficiency

ATLAS Work in progress

Electron

Muon

Real Efficiency

Figure 24: The electron (red) and muon (orange) real efficiencies as a function of the
lepton transverse momentum. Uncertainties in y direction are statistical.

than those of electrons. This is due to the muon identification efficiencies being better
than those of the electrons.

6.1.2 Fake Efficiency

As with the real efficiencies, the fake efficiencies are also measured in a control region,
albeit enriched in fake leptons. The fake CR is defined as having one muon and one
electron with the same charge, at least one jet with pT > 40 GeV and a veto on b-jets.
Due to contamination of real leptons in the fake CR, truth-matched lepton and charge
flipped electron contributions are subtracted from data. Charge flipped electrons are
defined to be electrons whose MC truth charge is opposite in sign to their reconstructed
charge. The efficiency can therefore be calculated as:
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εf =
NData
T ight −NMC

Tight −NCF
Tight

NData
Loose −NMC

Loose −NCF
Loose

, (65)

where NData, NMC the number of data events and truth-matched MC generated events,
respectively and NCF the number of events charge-flipped electrons. The lower index
refers to whether these numbers are counted in the tight or loose region.

Processes considered for the calculation of the fake efficiency are: Diboson production,
Z → ll, Z → ττ , top production and W production. Fake efficiencies are calculated as
a function of the pT and |η| for each lepton flavor, separately. The binning in |η| and pT
are same as the real efficiencies. The electron and muon fake efficiencies as a function
of the lepton transverse momentum and absolute value of the pseudorapidity are shown
in Figure 25. The electron and muon fake efficiencies are compared as a function of the
lepton pT in Figure 26.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 0.
02

±
0.2

8
 0.

01
±

0.4
3

 0.
02

±
0.7

0

 0.
02

±
0.3

1
 0.

01
±

0.4
4

 0.
02

±
0.7

3

 0.
02

±
0.3

2
 0.

01
±

0.4
7

 0.
02

±
0.6

9

 0.
03

±
0.3

2
 0.

02
±

0.4
4

 0.
03

±
0.6

2

 0.
04

±
0.4

4
 0.

02
±

0.5
8

 0.
02

±
0.7

2

Electron Fake Efficiency

210 310
 [GeV]

T
Electron p

0

0.5

1

1.5

2

2.5

η
El

ec
tro

n 

ATLAS Work in progress

Electron Fake Efficiency

|  
|

(a) Electron

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 0.
01

±
0.3

4
 0.

02
±

0.3
3

 0.
03

±
0.7

0

 0.
01

±
0.3

1
 0.

02
±

0.3
0

 0.
03

±
0.6

8

 0.
01

±
0.3

2
 0.

02
±

0.3
2

 0.
03

±
0.7

6

 0.
01

±
0.3

0
 0.

02
±

0.3
2

 0.
05

±
0.6

8

 0.
01

±
0.3

4
 0.

03
±

0.3
6

 0.
04

±
0.7

9

Muon Fake Efficiency

210 310
 [GeV]

T
Muon p

0

0.5

1

1.5

2

2.5

η
M

uo
n 

ATLAS Work in progress

Muon Fake Efficiency
|  

|

(b) Muon

Figure 25: Fake efficiencies of (a), electrons and (b), muons as a function of the lep-
ton transverse momentum and absolute value of their pseudorapidity. Uncertainties are
statistical.
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As with the real efficiencies, one sees an increase in the fake efficiency of the electron
as a function of the transverse momentum. This trend is not as pronounced in the case
of the muon, where the real efficiencies in the first and second bins are not significantly
different.

6.2 Validation of the Fake Estimation

After estimating the final contribution of fake events, the agreement between the predicted
distribution of variables with those of data is evaluated. In order to validate the fake
estimation, a validation region is defined orthogonal to that of the signal region, and
the agreement between data and prediction is investigated. For this, the opposite charge
requirement on the two leptons is reversed so that both leptons have the same charge.
This region is expected to be dominated by fake events. Example distributions of the
electron and muon pT’s in this region are shown in Figure 27.
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Figure 27: Distributions of (a) the electron and (b) muon pT’s in the same-sign fake
validation region. Bottom is a ratio-plot showing the data-to-prediction ratio. Error bars
represent statistical uncertainties.

It can be generally seen that there is good agreement between the prediction and data,
thereby supporting the validity of the fake estimation.

Plots of further kinematic variables in this same-sign validation region can be seen in the
appendix A.1.
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7 Event Selection

Event selection requirements, also known as cuts, are applied to data and simulated
samples in order to suppress the contribution of background processes, while maintaining
signal events. These requirements are chosen according to [17].

7.1 Trigger Selection

Different triggers are initially used to select which events to discard or further analyze.
Each trigger requires a pT threshold that the leptons must fulfill. Different triggers are
used in different data-taking periods. In the τeτµ channel a combination of single-lepton
and dilepton triggers are used, and an event is required to pass at least one of these
triggers. A summary of the triggers used for this analysis and their pT thresholds are
listed in Table 5.

Trigger Data-Taking Period Name pT threshold [GeV]

Single Electron

2015
HLT_e24_lhmedium_L1EM20VH peT > 24

HLT_e60_lhmedium peT > 60
HLT_e120_lhloose peT > 120

2016-2018
HLT_e26_lhtight_nod0_ivarloose peT > 26

HLT_e60_lhmedium_nod0e peT > 60
HLT_e140_lhloose_nod0 peT > 140

Single Muon
2015 HLT_mu20_iloose_L1MU15 pµT > 20

HLT_mu50 pµT > 50

2016-2018 HLT_mu26_ivarmedium pµT > 26
HLT_mu50 pµT > 50

Dilepton
2015 HLT_e17_loose_mu14 peT > 17

pµT > 14

2016-2018 HLT_e17_lhloose_nod0_mu14 peT > 17
pµT > 14

Table 5: List of triggers used in this analysis and their respective pT thresholds. Expla-
nations for triggers can be seen in [23, 27].

7.2 Preselection and VBF Topology Cuts

Preselection and VBF topology cuts are applied onto events passing the trigger cuts to
increase the signal-to-background ratio. The former aims to suppress the contribution of
different background processes, while whereas the latter attempts to capture the topology
of VBF-produced Higgs boson decays. A summary of the preselection and VBF topology
cuts are listed in Table 6.
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Preselection

1 Medium ID e, 1 Medium ID µ
∆ηll < 1.5, ∆Rll < 2.5

pj0T > 40 GeV, pj1T > 30 GeV
Emiss
T > 20 GeV

mcoll
ll > MZ − 25 GeV ≈ 66 GeV

pµT > 10 to 27.3 GeV, peT > 15 to 27 GeV
30 < mvis

ll < 100 GeV
Nb-jets=0

0.1 < x1 < 1.0, 0.1 < x2 < 1.0

VBF Topology

NJets ≥ 2,
Mjj > 300 GeV,
|∆ηjj| ≥ 3,
ηj0 × ηj1 < 0,
Lepton Centrality

Table 6: A summary of the event selection requirements applied to MC and data sam-
ples. ll and jj refers to the system of the leading and subleading pT leptons and jets,
respectively.

7.2.1 Preselection

One electron and one muon with opposite charge are required since the Higgs boson
is neutral. Electrons must fulfill the Medium ID requirement and FCLoose isolation,
while muons must fulfill Medium ID requirements and FCTightTrackOnly isolation. Fur-
thermore requirements on the angle difference of the two leptons are applied, such that
∆ηll < 1.5 and ∆Rll < 2.5, in order to select leptons originating from decays of high-
pT particles, which especially suppresses contributions from Z bosons that are produced
with small transverse momenta at the LHC. The leptons must also pass a pT threshold
depending on which trigger is fired, this can range from 10 to 27 GeV for the muon and 15
to 27 GeV for the electron. Furthermore, pT requirements are applied onto jets to select
jets with properties consistent with those expected in VBF, namely that the leading pT
jet must have a transverse momenta of at least 40 GeV, and that of the subleading pT jet
30 GeV. A requirement of at least 20 GeV is applied on the missing transverse energy to
select events with neutrinos, thereby significantly limiting contribution from Z → ll de-
cays. A requirement on the collinear mass is applied to ensure orthogonality with other
analyses investigating H → WW decays, such that mcoll

ll > 66.1876 GeV. The invari-
ant mass of the two leptons are limited to between 30 and 100 GeV to further suppress
Z → ll events. Events are also required to have no b-tagged jets in order to suppress the
contribution of top background. Lastly, the momentum fractions of the decay leptons
are required to be between 0.1 and 1 in order to make sure the direction of the missing
transverse energy is consistent with those expected in ditau decays.

7.2.2 VBF Topology Cuts

VBF topology cuts define the VBF region. Every event is required to have at least 2
jets, since VBF involves two partons which scatter off and hadronize into two VBF jets.
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Furthermore, a threshold on the invariant mass of the two leading pT jets is set to 300
GeV. The two jets are required to be in opposite hemispheres with a η separation of at
least 3, due to the high energy of the scattered partons. Furthermore lepton centrality
is required, meaning that the visible decay products of the τ leptons need to be between
the VBF jets in η.

A the event yields of each process after all cuts are applied is shown in Table 7.

Number of Events
Process No Cuts VBF Cuts

VBF H → ττ 160.77 ± 0.33 40.82 ± 0.16
H → WW 88.43 ± 0.28 16.92 ± 0.12
Other Higgs 1092.4 ± 2.1 21.64 ± 0.30
Top Background 99 712 ± 73 182.5 ± 3.4
Diboson 6288 ± 18 66.3 ± 1.4
Z → ττ 66 524 ± 160 894.8 ± 9.3
Z → ll 5000 ± 150 12.0 ± 6.7
Fakes 31 200 ± 300 213 ± 21

Total Background 210 140 ± 270 1448 ± 12

Data 449 240 1311

Table 7: Expected number of different signal and background events before and after
application of VBF region selection requirements.

The expected number of signal events in the VBF region is 40.82± 0.16 events for VBF
H → ττ process and 16.92 ± 0.12 for the H → WW process. In the VBF region, the
most dominant background process is the Z → ττ process which accounts for more than
half of all background events. After the application of preselection and VBF topology
cuts, the signal-to-background ratio increases from 0.0012 to 0.04, and the significance
from 0.54 to 1.49. There is appoximately a 10% excess in prediction compared to data..
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8 Artificial Neural Networks

Several methods can be used to select events that are relevant for the analysis. One ap-
proach is the utilization of event selection requirements on variables, which can discrimi-
nate signal processes from background events. In this thesis, such a cut-based approach is
initially used to increase the signal-to-background ratio. However, the small signal yield
and persistent background contributions make it difficult to increase the signal sensitiv-
ity using a traditional cut-based method. Another limitation of such a method is that
each kinematic variable is considered independently, and correlations between different
kinematic variables, which may be optimized better when considered together, can not
be combined effectively.

To address such problems, machine learning (ML) methods can be utilized to further
discriminate signal from background events. This chapter introduces the basic principles
of machine learning and specifically, neural networks.

8.1 Machine Learning

The field of machine learning aims to build and improve models based on data. Two major
approaches in machine learning are supervised and unsupervised learning. Supervised
learning utilizes labeled data, which associate inputs with their desired outputs, to build a
model that maps inputs to outputs as accurately as possible. Unsupervised learning works
without labels to find an overall structure or pattern in the presented data. Two major
tasks of machine learning algorithms are classification and regression. Classification tasks
aim to accurately assign class labels to data points, while regression predicts the numerical
value of a continuous variable.

In this analysis, supervised learning is used for the classification of events into signal and
background processes.

8.2 Artificial Neural Networks

An artificial neural network (NN) is composed of an interconnected collection of units
called nodes.

A node can receive one or multiple inputs and applies a non-linear transformation on
them to produce a single output value. This non-linear transformation is is achieved by
the activation function. A bias can be added to the argument of the activation function
as a further degree of freedom. The output of a node can therefore be computed as:

xji = f

(∑
k

wkx
j−1
k + bji

)
, (66)

where k runs over the number of nodes in the previous layer, xji the output of the i-th
node in the j-th layer, wi the weight applied to the output of the i-th node, bji the bias
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applied to the output of the i-th node in the j-th layer and f the activation function. In
this thesis, two activation functions are considered. The rectified linear unit, (ReLU)

fReLU(x) = max(0, x) (67)

is used for the hidden layers and softmax, which is used for the output layer, defined as:

fSoftmax(xi) =
exi∑
k e

xk
, (68)

where k runs over the number of nodes in the last layer and xi the input to the i-th
node in the output layer. Softmax normalizes the output of the layers into a probability
distribution, such that the outputs sum up to one. Therefore the output of each output
node can be interpreted as the probability that a certain event corresponds to a process
represented by that output node.

In this thesis, a feed-forward neural network is used, where the connections do not form
a cycle. The nodes are organized into layers, where nodes from each layer are connected
with nodes of other layers. The first layer is referred to as the input layer, and the
last layer the output layer. Each node in the input layer takes the value of one input
variable as its input, while the output of the output layer provides the prediction of the
network. The layers between the input and output layers are called the hidden layers.
An illustration of a feed-forward neural network is shown in Figure 28.

Figure 28: An illustration of an example feed-forward neural network with one hidden
layer [33].

8.3 Training

The goal of the training process is to find a combination of weights and biases that
minimizes the error between the predicted and true labels. The error as a function of the
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weights and biases is called the loss function (L). In this thesis, the categorical cross-
entropy loss function is used, which is typical for classification problems. The categorical
cross-entropy [47] is defined as:

L = −
∑
i

yi · log ŷi, (69)

where ŷi is the prediction and yi the true value for output node i, which represent a class.
A commonly used algorithm to find such a minimum is Stochastic Gradient Descent
(SGD) [66]. In SGD, a random initial combination of weights and biases, represented
by the vector ŵ, is selected. Then the gradient of the loss function with respect to the
weights and biases (∇ŵL(ŵ)) is calculated using a randomly selected set of data. A
vector proportional to the calculated gradient is then added to the initial weight vector,
effectively shifting ŵ closer to a minimum of the loss function. The size of this increment
is termed learning rate, η, and the amount of data used to compute the gradient for one
iteration is called the batch size. The weight vector for each iteration i, is therefore given
by:

ŵi = ŵi−1 − η∇ŵL (70)

Computing the gradient of the loss function with respect to the weights and biases can
be computationally intensive, since it must use the chain rule to calculate L

∂wljk
, where

wljk represents the weights between layer l − 1 and l, connecting the k-th node in layer
l − 1 and j-th node in layer l, which results in duplicate calculations. Therefore, the
backpropagation algorithm [82] is used to efficiently calculate this gradient. For this,
backpropagation calculates the gradient for individual layers with regards to the input of
each layer beginning from the last layer. The gradient computed from this layer is then
used to compute the gradient for the previous layer. One can repeat this recursively until
the first layer is reached. This makes the computation of the gradient much more efficient
than in the naive case where one uses the chain rule from the first to the last layer, since
when calculating the gradient at layer l one does not need to compute gradients on all
layers thereafter.

In this thesis, a modified version of SGD is used, namely the Adaptive Moment Esimation
(Adam) optimizer [67]. It utilizes first and second moment vectors m and v, defined as
the running averages of the gradient and square gradient of the loss function, respectively.
With Adam, each iteration is defined by the following set of equations:

m(t+1)
w ← β1m

(t)
w + (1− β1)∇wL

(t)

v(t+1)
w ← β2v

(t)
w + (1− β2)(∇wL

(t))2

m̂(t)
w =

m
(t+1)
w

1− βt+1
1

v̂(t)
w =

v
(t+1)
w

1− βt+1
2

w(t+1) ← w(t) − η m̂
(t)
w√

v̂
(t)
w + ε

,
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where m(t)
w and v(t)

w are the first and second moment vectors at iteration t for the weight
w respectively, and m̂w and v̂w the bias-corrected first and second moment estimates
respectively. L is the loss function. The initial moments, m0

w and v0
w are set to 0.

Parameters β1, β2 and ε are set to 0.99, 0.999 and 10−8 respectively [67]. Adam is
preferred for its computational efficiency and low memory requirements, which makes it
suitable for problems involving large amounts of data [67].

8.4 Validation and Overtraining

Parameters which are set constant during the training process, such as the learning
rate and number of layers, are called hyperparameters. Furthermore, epoch refers to a
complete iteration over the training dataset.

After each epoch, the trained model is evaluated using a dataset orthogonal to the train-
ing dataset, called the validation dataset. The trained model may be able to give accurate
predictions for the training dataset, however, it may not be able to generalize this perfor-
mance to a previously unseen dataset. This could manifest itself in a significantly higher
value of the loss function when computed using the validation dataset, compared to that
of using the training dataset. This phenomenon is referred to as overtraining. Several
methods exist to mitigate overtraining, such as regularization, dropout layers, learning
rate decay and cross-validation.

8.4.1 L2 Regularization

In machine learning, regularization refers to the general process of the simplification of
a model. One common method is the use of L2 regularization, also known as ridge
regression [85]. L2 regularization penalizes networks with large weights by adding to the
loss function a term quadratic in the weights.

LL2 = L(w1, . . . , wn, b1, . . . , bn) + λ
n∑
i=1

w2
i , (71)

where L is the original loss function and λ a hyperparameter smaller than one. L2 reg-
ularization prevents overtraining by penalizing overly complicated and flexible networks,
which are modelled too closely to the training dataset. Such models are characterized by
large weights, and cannot accurately generalize to data it has not seen. In this thesis, L2
regularization parameters, λ, between 10−6 and 10−3 are considered.

8.4.2 Dropout

The Dropout method can also be utilized to avoid overtraining. Nodes in the dropout
layers randomly set their inputs to zero at a given rate, which prevents the network from
being too dependent on a few input variables, and allows the network to learn from a
larger set of the input variables, thereby improving generalizability.
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In this thesis, dropout rates between 0.2 and 0.8 are considered.

8.4.3 Learning Rate Decay

Learning rate decay refers to the reduction of the learning rate after every iteration. This
limits how much the weight vector can be incremented every iteration and allows for a
faster convergence onto the minimum of the loss function. At the same time it decreases
the possibility of excessively large weights. The learning rate at iteration i is modulated
according to the following equation:

ηi+1 = ηi
1

1 + λd · i
, (72)

where the decay rate, λd is set to a constant of 0.001.

8.4.4 k-fold Cross-Validation

To increase the generalizability of the trained model, k-fold cross-validation can be used.
The entire dataset is randomly split into k equal parts. For each fold, k − 2 parts are
used for training, and one part each to validation and testing (see next section). After
each fold, the training, validation and testing samples are permuted such that; after k
folds, the network has done training validation and testing on all k parts at least once.
In this thesis, 5-fold cross-validation is used. An illustration of 5-fold cross validation is
shown in figure 29.

Figure 29: An illustration of how parts of the dataset is assigned to training (Tr), testing
(Te) or validation (Va) tasks a in 5-fold mixed cross validation setup.
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8.5 Hyperparameter Optimization

Hyperparameters remain constant during the duration of the training. They can be
optimized to improve the performance of the neural network, which is evaluated using a
dataset orthogonal to both the training and validation datasets, called the testing dataset.
In this thesis, hyperparameter optimization is done using the the Optuna Framework [2],
which utilizes the tree-structured parzen estimator (TPE), a Bayesian hyperparameter
optimization algorithm.

8.5.1 Tree-Structured Parzen Estimator

The Tree-Structured Parzen Estimator (TPE) is a Bayesian optimization algorithm [85].
In contrast to grid searches, where hyperparameters are scanned in a certain range at
regular step sizes, and random searches, where random combinations of hyperparameters
are evaluated, Bayesian optimization utilizes past evaluations to select which combination
of hyperparameters are selected. For this, Bayesian optimization constructs a probabilis-
tic model P (y|x) relating the hyperparameters, x, to a score of an objective function, y,
which one wishes to minimize or maximize. This probabilistic model is referred to as
the surrogate function for the objective function. The hyperparameters, which perform
best according to the surrogate function are selected and evaluated using the objective
function. The result of the evaluation is then used to update the surrogate model. These
steps are repeated until a predefined maximum amount of iterations or time is reached.
The set of hyperparameters at each iteration is chosen according to the selection function,
which is commonly chosen to be the expected improvement [85]:

EIy∗(x) =

∫ y∗

−∞
(y − y∗)P (y|x)dy, (73)

where y∗ is a threshold value of the objective function. The hyperparameters maximizing
the expected improvement with the surrogate function P (y|x) are selected.

In Tree-Structured Parzen estimators, the surrogate function P (y|x) is built based on
Bayes’ Rule [85]:

P (y|x) =
P (x|y) · P (y)

P (x)
. (74)

where P (x) and P (y) are the probability distribution functions of hyperparameters and
the objective function, respectively and P (x|y) represents the probability of having a
certain hyperparameter combination x given a score y and is expressed in TPE as:

P (x|y) =

{
l(x) if y < y∗

g(x) if y ≥ y∗
(75)

where l(x) is the PDF formed by the observations resulting in scores less than the thresh-
old value y∗ and g(x) the density formed by the remaining observations. The threshold

61



value y∗ is chosen to be a quantile of observed y values Therefore, two different distri-
butions of the hyperparameters are constructed depending on whether the score passes
this threshold or not. By doing so, the algorithm can focus on and optimize in a specific
region depending on whether the score should be minimized or maximized.

8.6 Evaluation of the Neural Network Performance

In order to evaluate the ability of the neural network in identifying signal events from
background events, one uses the output of the signal node, also known as the neural
network score. The output of the signal node corresponds to the probability that an
event is of a signal process. A threshold can be applied, such that only events above a
certain score are kept for the analysis. This is determined by calculating the expected
significance, defined by:

Sign =
s√
s+ b

, (76)

where s and b correspond to the number of signal and background events which pass a
given score, respectively, for different score thresholds and finding the threshold, which
results in the highest significance. The maximum significance is then used as a mea-
sure of the performance of the neural network, which is maximized by Optuna for its
hyperparameter optimization.

Another method of evaluating the performance of the neural network is the evaluation of
the loss and the accuracy. The loss refers to the average of the loss function after every
epoch. In this thesis, the categorical accuracy (Acc) is used as a metric for the accuracy,
which is defined to be:

Acc =
Ncorrect

Ntot

(77)

where Ncorrect and Ntot are the number of correct predictions and total number of predic-
tions, respectively.

In contrast with the significance, which is evaluated after the entire training processes.
The loss and the accuracy can be evaluated during the training process after each epoch,
and therefore is used to determine the presence of overtraining.
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9 Final Event Selection Using Neural Networks

This section describes the process of hyperparameter optimization, with the goal of maxi-
mizing the selection performance of signal processes. The neural networks were trained on
Monte Carlo simulated samples, considering the following processes: VBF Higgs produc-
tion, top background, Z → ττ , Z → ll, diboson production and other Higgs production
modes, as well as the data-driven estimation of contributions from fake leptons. This step
is applied after an initial selection though event selection requirements since the train-
ing of neural networks is a computationally-intensive process, and therefore one wishes
to optimize the amount of data that is used for the training the neural network. The
training is done in the VBF region, which is defined to contain events which pass both
preselection and VBF topology cuts.

Before the training of the neural networks, the data is pre-processed such that each input
variable is scaled down so that their averages are zero and their standard deviation is
one. This prevents certain variables from biasing the neural network and thereby making
sure the network is able to extract more information from all variables. Furthermore, an
input feature with a large variance may result in large gradient values of the loss function,
causing the shift in weights to be large, thus making the training process unstable.

Events with negative weights are excluded from the training due to technical limitations
[17]. However, for validation and testing steps, they are not excluded.

Events corresponding to each output class is weighted so that the sum of weights for all
events of each output class is the same. This allows the neural network to treat all output
classes equally without biasing the network to focus more on one class over the other.

During the optimization of hyperparameters, following hyperparameters and ranges are
considered:

• Batch Size ∈ {128, 512, 1024, 2048, 4096, 8192}

• Number of layers ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}

• Number of nodes per layer ∈ {128, 256, 512}

• L2 Regularization parameter ∈ [10−6, 10−3]

• Learning rate ∈ [10−6, 10−2]

A total of a 100 trials are used.

9.1 Input Variable Optimization

The goal of input feature optimization is to keep the neural network simple and therefore
computationally efficient, while at the same time maintaining an optimal performance.
Therefore variables which do not significantly improve the performance of the neural
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network are removed. This is done through the calculation of permutation importance.
For this, a neural network is initially trained with a given set of variables and the resulting
significance is calculated. Then, for every input feature, values are randomly shuffled for
each event, and the significance is calculated again, thereby decoupling the correlation
between this variable and other variables. The permutation importance (I) of an input
feature is defined as the decrease in the significance when that feature is shuffled randomly,
and can be computed as:

I =
Sigorig

Sigperm
, (78)

where Sigorig is the significance computed in the original unpermuted case, and Sigperm

for the case where the variable is permuted.

The initial input variable set is composed of the following variables and is mainly based
on the findings of previous analyses [17, 28]:

• pj0,1T , the transverse momentum of the leading (j0)/subleading (j1) pT jet.

• ηj0,1 , the pseudorapidity of the leading/subleading pT jet.

• φj0,1 , the azimuthal angle of the leading/subleading pT jet.

• mMMC
ll , invariant dilepton mass reconstructed using the missing mass calculator.

• mvis
ll , visible invariant mass of the dilepton system

• mll,j0 , invariant mass of the dilepton and leading pT jet system.

• mT (l0,1, E
miss
T ), transverse mass of the leading (l0)/sub-leading (l1) lepton candidate

and missing transverse energy, defined as:√
2p

l0,1
T Emiss

T (1− cos ∆φ(l0,1, Emiss
T )). (79)

• ∆Rll, angular distance between the two leptons

• ∆ηll, pseudorapidity difference of the two leptons

• ∆φll, azimuthal angle difference between the two leptons

• pT(l0) + pT(l1), scalar sum of the leptons’ transverse momenta

• pT(ll), transverse momenta of the dilepton system

• pT(l0, l1, E
miss
T ), transverse momenta of the Higgs boson candidate.

• pT(l0)/pT(l1), ratio of the transverse momenta of the leading pT lepton to the sub-
leading pT lepton.

• (pT(l0)− pT(l1))/(pT(l0) + pT(l1)) ratio of the transverse momentum difference be-
tween the two leptons to the scalar sum of their transverse momenta.
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• C(φ(Emiss
T )), azimuthal centrality of Emiss

T , defined as:

C(φ(Emiss
T )) =

√
2

r + s√
r2 + s2

(80)

where

r =
sin(φEmissT

− φl0)
sin(φl1 − φl0)

, s =
sin(φl1 − φEmissT

)

sin(φl1 − φl0)
. (81)

• Emiss
T /pT(l0,1), ratio of the missing transverse energy and the transverse momentum

to the leading/sub-leading lepton.

• ∆ηjj, the pseudorapidity difference between the two leading pT jets

• mjj, invariant mass of the two leading jets

• ηj0 × ηj1 , signed product of the pseudorapidity of the leading and sub-leading jets.

• pT(l0, l1, j0, j1, E
miss
T ), the transverse momentum of the two leading pT leptons, two

leading pT jets and missing transverse energy system.

• (
∑
pT)scalar, the scalar sum of the pT of all objects.

• ptotalT the pT of the system of all objects

• Cjj(l0,1), the centrality of the leading/sub-leading pT lepton candidate with respect
to the two leading pT jets, defined as:

Cjj(l) = exp

[
−4

(ηj0 − ηj1)2

(
ηl0,1 −

ηj0 + ηj1
2

)2
]

(82)

Each variable is permuted randomly 10 times and the resulting significances are averaged.
This is then compared with the significance calculated with the set of all initial variables
unpermuted.

To measure the permutation importance of these variables, a network was trained with
baseline setup defined with the following settings:

• 3 hidden layers

• 50 nodes per layer

• L2 parameter of 10−6

• Learning rate of 0.001

• Decay rate: 0.001

• 50 Epochs

• Batch size of 512
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With all variables unpermuted, the network resulted in an expected significance of 3.31,
with an optimum neural network score threshold of 0.82. The importance of all of the
investigated kinematic variables is shown in Figure 30.

Variables whose performance was not significantly better than that of the baseline setup
were removed from the list. These are: Emiss

T /pT(l0), Emiss
T /pT(l1), C(φ(Emiss

T )), φj0 , φj1 ,
ηj0 , ηj1 , ∆ηll, ∆φll.

As expected, variables such as the azimuthal angle of jets do not significantly improve
the performance of the neural network since their distributions are uniform.

These 9 variables were removed and the neural network was trained again with the same
hyperparameters to observe the influence of the lack of the removed variables. A 3%
decrease in the expected significance, from 3.31 to 3.22 was observed.

Using the selected variable set, a hyperparameter optimization was performed. A maxi-
mum significance of 3.39 was reached at an optimum neural network score threshold of
0.88, with a learning rate of 0.002, batch size of 1024, 10 layers with 128 nodes each and
a L2 parameter of 1.18×10−6. A plot of the loss and accuracy curve of this optimized
network is shown in Figures 31a and 31b. A distribution of the neural network score is
shown in figure 32. From the loss curve one can observe the presence of overtraining.
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Figure 30: A ranking plot of the measured permutation importance of all variables deter-
mined using the baseline neural network setup, as described in section 9.1. Uncertainties
are statistical uncertainties on the average values. The red line represents the performance
of the original network.
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Figure 31: The training and validation loss and accuracy as a function of the epoch for
the optimized network utilizing selected input variables.
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Figure 32: The distribution of the neural network score for each simulated processes
stacked.
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The performance of the network optimized using selected input variables are compared
with the performance of networks utilizing input variable sets used for training Boosted
Decision Trees in previous analyses [17, 28]. The input variable set that was used in the
ATLAS analysis [17], is termed set 1, and that of the ATLAS analysis [28] is termed set 2.
Full hyperparameter optimization was done separately with both input variables sets and
the performance of the best performing neural networks are taken. A table comparing
the performances of neural networks utilizing different variable sets is shown in table 8.

• Input variable set 1: mMMC
ll , mvis

ll , mjj, mT (l0, E
miss
T ), ∆Rll, pT(ll, j0, j1, E

miss
T ),

pT(j2), Cjj(l0), Cjj(l1), Emiss
T /pT(l0), Emiss

T /pT(l1).

• Input variable set 2: pHjjT , ηj0 × ηj1 , p
jj
T , ∆ηjj, ∆φjj, mjj, pj1T

Input Variable Set Maximum Significance NN Score Threshold s b
Selected 3.39 0.88 29.9 50.9

1 3.22 0.94 19.54 18.96
2 2.51 0.74 27.76 96.46

Table 8: Table outlining the expected significance and the optimal neural network score
threshold as well as the number of signal (s) and background (b) events passing this
threshold. The selected input variable set refers to the set that was obtained via the
permutation importance. Set 1 is taken from [17] and set 2 from [28].

The selected set outperforms the other variable sets, which is to be expected since the
selected set utilizes a larger number of input variables, thereby allowing the greater
exploitation of correlations between each input feature.

9.2 Output Node Diversification

As an alternative to having two output nodes, which correspond to one output for signal
and one output for all background processes combined, one can increase the amount of
output nodes to consider some dominant background processes individually. By doing so
one can train the network to specifically identify the signatures of major background con-
tributions and thereby also increase the discrimination of signal events from background
events.

The two largest background contributions in the H → ττ → eµ4ν channel are the
Z → ττ and the top background processes. A network with four output nodes is set up,
corresponding to the following processes: signal, Z → ττ , top and other background
processes. The definition of other background class is redefined to not contain Z → ττ
and top events. The selected input variables, as described in Section 9.1 is used for the
training. Hyperparameter optimization is done again with this setting and compared with
the case with two output nodes. The optimized four-output network has the following
hyperparameters: Learning rate of 0.0034, batch size of 128, 5 layers with 256 nodes each
and an L2 parameter of 2.36×10−6. A table comparing the performance of the optimized
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s/
√
s+ b Threshold s b

2 Outputs 3.39 0.88 29.9 50.9
4 Outputs 3.49 0.68 28.1 39.4

Table 9: The significance and optimum neural network score threshold for the optimized
2-output and 4-output networks, as well as the number of signal (s) and background (b)
event yields, which pass this threshold.
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Figure 33: The training and validation loss and accuracy as a function of the epoch for
the optimized network utilizing four output nodes.

two-output and four-output node networks is shown in Table 9. Figures of the loss and
accuracy of the network as a function of the epoch are shown in Figures 33a and 33b.

It can be seen from Figure 33a that overtraining is present, which was also observed in
the optimized 2-output network. The two additional output nodes for Z → ττ and top
background processes increased the maximum significance by 0.1. Furthermore, one ob-
serves the shift of the optimum neural network score threshold to a lower value, implying
an improved identification of background processes.

9.3 Dropout Layers

An alternative method of reducing overtraining apart from L2 regularization is the use of
dropout layers. The performance of the utilization of dropout layers is compared with L2
regularization using the optimized 4-output network using selected variables. Dropout
layers are inserted between each hidden layer with a variable dropout rate from 0.2 to 0.8.
The L2 regularization in each hidden layer is removed. Hyperparameter optimization is
done with the dropout rate as an additional variable. The resulting network has a learning
rate of 0.003, batch size of 2048, 2 layers with 256 nodes each and a dropout rate of 0.69.
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The best significance is found to be 3.38 with an optimum neural network score threshold
of 0.66. A plot of the loss and accuracy of the neural network as a function of the epoch
is shown in Figures 34a and 34b.
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Figure 34: The training and validation losses and accuracies as a function of the epoch
for the optimized network utilizing dropout layers.

In both curves one can observe that the test loss is lower than that of the training loss
and vice versa for the accuracy. This is due to the fact that the dropout is only applied
during training and not during validation. The optimized network with L2 regularization
has a significance of 3.49, which is 0.11 higher than that of the method with dropout
layers. Therefore, L2 regularization was chosen over the dropout layers method.

9.4 Final Optimized Neural Network Setup

The neural network, whose configurations resulted in the best significance, was selected
to be the the following:

• Input variables: pj0,1T ,ηj0,1 , φj0,1 , mMMC
ll , mvis

ll , mT (l0, E
miss
T ), ml0,l1,j1 , mT (l1, E

miss
T ),

∆Rll, pT(l0)+pT(l1), pT(ll), pT(l0, l1, E
miss
T ), pT(l0, l1, j0, E

miss
T ), pT(l0)/pT(l1), (pT(l0)−pT(l1))

(pT(l0)+pT(l1))
,

∆ηjj, mjj, ηj0 × ηj1 , pT(l0, l1, j0, j1, E
miss
T ), Cjj(l0), Cjj(l1).

• Learning Rate: 0.0034

• Batch size: 128

• 5 layers.

• 256 Nodes per layer.

• L2 regularization with λ = 2.36× 10−6.
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• 4 output nodes: Signal, Top, Z → ττ , and other background processes.

The network resulted in a maximum significance of 3.49, with an optimized neural net-
work score threshold of 0.68. Therefore, events in the final signal region must fulfill the
requirement that their neural network score is greater than 0.68.

Figures of the loss and accuracy of this optimized network as a function of the epoch are
shown in Figures 33a and 33b. Furthermore, the distribution of the output of the signal
node for the validation dataset is shown in Figure 35.
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Figure 35: The output of the signal node of the final optimized network, evaluated using
the validation dataset. Processes corresponding to each output node are scaled such that
they are normalized to each other.

As it can be seen, the signal events are generally at the higher end of the NN-score
distribution, while background processes are generally at the lower end of the distribution.
Although not used in the calculation of the significance, the distributions of outputs of
the the other output nodes can also be compared. These are shown in Figure 36.

It can also be seen from these distributions that for each output node, their corresponding
background process generally skew towards the higher end of the neural network score
distribution. This shows that the network is able to learn the characteristics of such
specific processes. One phenomenon that can be noticed is that the neural network score
range is limited to a certain threshold below the maximum value of one. For Z → ττ this
is approximately at 0.7, for top background 0.8 and for other backgrounds around 0.45.
This implies that the neural network is more uncertain about the classification of such
processes, which may be due to limited statistics, especially for the other background
processes since they only take up 7% of the total expected number of events.
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(c) Other Background Pro-
cesses

Figure 36: The distribution of the outputs of the output nodes for (a) the Z → ττ , (b) top
and (c) other background processes, evaluated using the validation dataset. Histograms
of processes corresponding to each output node are scaled such that they are normalized
to the signal process.

9.5 Validation of Input Features

The samples used for the training of the neural networks are simulated using Monte Carlo
simulations, except for fakes which are estimated through data-driven methods. Since
the same neural network will have to be applied on data, it is necessary to make sure
that input variables used in the training of the neural network are modeled well.

The analysis is done blinded in order to avoid bias, i.e. data in the signal region is not
available. Therefore input validation is done in a region orthogonal to the signal region,
called the low-NN score region. The neural network score requirement is inverted i.e.
NN < 0.68 and the expected and observed distributions of input variables used in the
training of the neural network are compared. As an example the distributions of mjj and
the mMMC

ll are shown in Figure 37a and Figure 37b, respectively. The distribution of the
other input variables can be seen in the appendix A.2.

It can been in Figure 37a, that for certain kinematic regions, the data consistently un-
derestimates the prediction, namely between approximatly 750 GeV and 950 GeV as well
as between approximately 1050 GeV and 1200 GeV. A similar phenomenon can be seen
in Figure 37b between 90 GeV and 120 GeV. However, in other distributions, one sees no
significant inconsistency between the expected and data distributions.

9.6 Event Yields

The neural network score requirement of > 0.68 is applied in addition the VBF topology
cuts. The predicted event yield before and after the NN score cut is shown in Table 10.

After the neural network score cut, the signal-to-background ratio increased from 0.04
to 0.72. The significance is increased from 1.52 to 3.45. Large reductions in dominant
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Figure 37: The predicted and observed distribution of the invariant mass of the dijet
system and the reconstructed invariant mass of the Higgs boson using the MMC in the
low NN-score region. Furthermore, below, the ratio of the observed yield to the predicted
yield for each bin is shown. All uncertainties are statistical and the last bin is the overflow
bin.

VBF H VBF H → WW Top Diboson Z → ττ Z → ll Other Higgs Fakes
∑
s

∑
b

VBF Top. Cuts 40.69± 0.16 17.03± 0.13 182.37± 3.49 66.13± 1.43 893.06± 9.45 12.00± 6.69 21.63± 0.30 213.88± 21.04 57.72± 0.20 1389.06± 12.18
NN Score Cut 21.65± 0.12 6.63± 0.08 5.17± 0.62 2.40± 0.31 23.76± 1.37 0.29± 0.20 2.65± 0.10 4.82± 3.80 28.28± 0.14 39.09± 1.55

Table 10: The expected number of events for each signal and background process after
the VBF topology (VBF Top.) and NN score cuts. The last two columns show the sum
of the signal (

∑
s) and background (

∑
b) yields. Uncertainties are statistical.

background processes are observed. For example the top and Z → ττ backgrounds were
reduced by approximately 97%. Overall, background events saw a reduction of 97.2%,
while for signal events, this was 51.0%. This is a demonstration of the effectiveness of the
utilization of machine learning methods for the discrimination of signal from background
events.
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10 Test of CP Invariance

Using CP-odd variables such as the Optimal Observable, one can investigate CP proper-
ties of the HV V vertex. The asymmetry in the distributions of CP-odd variables when
d̃ 6= 0 can be exploited to estimate limits on d̃. Two statistical methods of estimating
limits on d̃ are examined and compared. Both methods rely on generating expected BSM
distributions with CP-odd contributions and comparing these with that of measured data.

In this thesis, the analysis is performed blinded. Therefore data events in the signal
region are not available. These methods are therefore applied onto an Asimov dataset,
which is generated from simulated samples corresponding to the SM case of d̃, in order
to extract expected limits on d̃.

10.1 Signal Prediction for d̃ 6= 0

In order to determine limits on d̃, the distributions of CP-odd variables are predicted for
different d̃. To achieve this, SM samples for signal processes are reweighted such that
their overall distribution corresponds to a given d̃ 6= 0 case. The applied weights (w) are
calculated as the ratio of the square of the matrix element of the CP-mixed BSM case to
that of the CP-even SM case, which can be rewritten in the following way:

w(d̃) =
|M|2

|MSM|2
(83)

= 1 + d̃
2<(M∗

SMMCP-odd)

|MSM|2
+ d̃2 |MCP-odd|2

|MSM|2
(84)

= 1 + d̃wlin + d̃2wquad, (85)

where at equation 84, the expression for the square of the matrix element with CP-
violating contributions according to Equation 33 is inserted. The terms wlin and wquad

are calculated for every event and are called the linear and quadratic weights. These
weights are computed using matrix elements reported by HAWK [48], which takes as
input truth-level information.

10.2 Gauge Curve Method

CP-odd variables such as the OO and the ∆φsignedjj show asymmetry in the presence
of a CP-violating contribution in the HV V coupling. The amount of asymmetry of the
distribution depends on the strength of CP-violation, which is modulated by d̃. Therefore,
the average value of the CP-odd observable distribution shifts as a function of d̃. The
curve given by the average value of a CP-odd observable as a function of d̃ is called the
gauge curve. An example gauge curve of OO is shown in Figure 38.

For small values of d̃, the relation between 〈OO〉 can be approximated by a linear function.
Therefore, a linear fit can be performed in a range d̃� 1 with the following function:
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Figure 38: The average value of the OO as a function of the d̃, also known as the gauge
curve. Uncertainties are statistical.

〈OO〉 = a · d̃, (86)

where a represents the slope of the linear fit.

This results in the following for the d̃:

d̃ =
〈OO〉
a

, (87)

The error on d̃ (sd̃) can be calculated using Gaussian error propagation:

sd̃ =

√√√√(∂d̃
∂a

)2

s2
a +

(
∂d̃

∂〈OO〉

)2

s2
〈OO〉 (88)

=

√(
〈OO〉
a2

)2

s2
a +

(
1

a

)2

s2
〈OO〉 (89)

=

√√√√( d̃
a

)2

s2
a +

(
1

a

)2

s2
〈OO〉 (90)

=

∣∣∣∣1a
∣∣∣∣√d̃2s2

a + s2
〈OO〉, (91)

(92)

,where sa and sOO are the errors on the fitted slope and the average value of the OO
distribution.
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Since each event is weighted, the standard error on the average value of the optimal
observable is calculated in the following way:

s〈OO〉 =
σOO√
Neff

, (93)

where σOO is the standard deviation of the Optimal Observable and the effective number
of events, Neff, is defined as the following:

Neff =
(
∑
w)2∑
w2

(94)

where the sum runs over the weight of every event.

A χ2 fit is performed, which is a modified least-square method [47], in which the residual
for each point is computed using the error on that point. The following value is minimized:

χ2 =
∑
i

(
y(i)− f(x(i))

e(i)

)2

. (95)

In Equation 95, y(i) and x(i) are y and x values for point i, e(i) the error in the y direction
of point i, and f(x) the function to be fitted.

10.2.1 Selection of Fit Range

The linear approximation is not valid for larger values of d̃. Furthermore, it is also
important to use a sufficient amount data points for the fit itself in order to decrease the
error on the fit parameters. Although one expects the error of the fit parameter to be
small in comparison with of the CP-odd observable distribution, optimizing the settings
of the linear fit presents a possibility to improve the sensitivity.

For this, the average value of the CP-odd observable is evaluated for 100 evenly spaced
d̃ values between -0.05 and 0.05. 50 linear fits are performed within the range [−a, a]
where the value of a is scanned from 0.001 to 0.05 in steps of 0.001. The signal samples
are reweighted so that for every d̃ the signal yield is equal to the SM case. For each of
these fits, the error on the d̃ is computed, and the range resulting in the smallest error is
found. The d̃ itself and its error are computed using an Asimov dataset corresponding to
a d̃ = 0. For OO, the optimal range is found to be [-0.014, 0.014], resulting in an error
on d̃ of 0.01673. For ∆φsignedjj the range is chosen as was [-0.027, 0.027], which resulted
in an uncertainty of 0.0250. For OReg a range of [-0.017, 0.017] is decided, which gave
an uncertainty on d̃ of 0.0166. The error on d̃ as a function of the fit range for different
CP-odd variables is shown in Figure 39.

The resulting estimations of d̃ for each CP-odd variable, evaluated using an Asimov
dataset with d̃ = 0, with 100 data points, are shown in Table 11.
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CP-Odd Observable a d̃

OO 13.1± 2.7 0.003 ± 0.017
OReg -1.83 ± 0.31 0.004 ± 0.017
∆φsignedjj 3.46 ± 0.56 0.014 ± 0.025

Table 11: The fitted slope of the linear regression performed in their respective optimized
fit ranges, for all three CP-odd observables. The resulting estimation of d̃ and its error
is shown.

It can be seen, in all cases, the calculated value of d̃ does not significantly deviate from
0, which is to be expected since it was applied onto an Asimov dataset with d̃ = 0. It
can also be seen that limits on d̃ are similar for OO and OReg. Both limits outperform
the limits achieved by using ∆φsignedjj . This is expected since OO and OReg are both
designed to be maximally sensitive to CP violation, while ∆φsignedjj is not. In theory,
OO should result in the best sensitivity, since it can be mathematically shown, that at
the truth-level OO has the optimal sensitivity [30]. However, this may be obscured at
the reconstruction-level due to the finite resolution of detectors which could result in a
similar performance as that of OReg.
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Figure 39: The uncertainty on d̃ as a function of the fit range, computed using three
different CP-odd observables.
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10.2.2 Influence of the Threshold on the Neural Network Score on the Sen-
sitivity on d̃

The threshold selection on the neural network score, which defines the signal region, is
determined such that the significance is maximal. This allows for a balance between good
background rejection and large signal statistics. This section presents a study conducted
in order to validate the selection of this neural network score threshold. To achieve this,
different neural network score thresholds are scanned from 0.6 to 0.76, corresponding to
range of ± 0.08 around the nominal threshold, 0.68, in steps of 0.005. Linear fits are
then performed separately for each threshold value for each CP-odd variable using the
optimized settings described in Section 10.2.1. The resulting errors on d̃ as a function
of the NN score threshold for each CP-odd variable are shown in Figures 40c to 40i.
Furthermore, change in the significance s/

√
s+ b as a function of the error on d̃ are also

shown.
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Figure 40: The error on d̃ as a function of the NN score threshold applied onto the dataset,
computed using different CP-odd variables, as well as the significance as a function of sd̃
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In all three cases, the curve is characterized by a minima approximately around the
nominal NN score threshold of 0.68. The threshold resulting in the absolute minimum
error deviates from this nominal threshold by no more than 0.01. Large drops in the
curve are due to individual events with large weights being removed at certain NN score
thresholds.

In the scatter plots it can be observed that a general negative correlation exists between
these two variables, i.e. the higher the significance is, the smaller the limits are on d̃.

10.2.3 Validation of the Gauge Curve Method

In order to demonstrate the validity of the gauge curve method, the fit procedure is
repeated using Asimov datasets with different values of d̃ in order to see whether the
linear fit is able to recover the original value of d̃. Asimov d̃ values from -0.5 to 0.5 in
steps of 0.05 are probed for all three CP-odd variables separately. This range was chosen
since it goes beyond the range of linear behavior (see Figure 38). The resulting values
for d̃ are shown in Tables 12, 13 and 14.

d̃

Asimov Estimated
-0.5000 -0.0579 ± 0.0269
-0.4500 -0.0631 ± 0.0272
-0.4000 -0.0689 ± 0.0275
-0.3500 -0.0752 ± 0.0278
-0.3000 -0.0818 ± 0.0282
-0.2500 -0.0878 ± 0.0284
-0.2000 -0.0915 ± 0.0282
-0.1500 -0.0893 ± 0.0270
-0.1000 -0.0755 ± 0.0241
-0.0500 -0.0440 ± 0.0195
-0.0000 0.0030 ± 0.0168
0.0500 0.0505 ± 0.0201
0.1000 0.0831 ± 0.0251
0.1500 0.0983 ± 0.0282
0.2000 0.1016 ± 0.0296
0.2500 0.0989 ± 0.0298
0.3000 0.0936 ± 0.0297
0.3500 0.0876 ± 0.0293
0.4000 0.0817 ± 0.0289
0.4500 0.0762 ± 0.0285

Table 12: Comparison of the expected and estimated d̃ values from the gauge curve
method applied, for different values of d̃ using OO.

It can be seen that the gauge curve method is only able to retrieve the original d̃ values
when d̃ is small, i.e. between -0.1 and 0.1. Below and above this region, the fit generally
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d̃

Asimov Measured
-0.5000 -0.0496 ± 0.0272
-0.4500 -0.0548 ± 0.0274
-0.4000 -0.0606 ± 0.0276
-0.3500 -0.0669 ± 0.0279
-0.3000 -0.0733 ± 0.0282
-0.2500 -0.0792 ± 0.0284
-0.2000 -0.0827 ± 0.0285
-0.1500 -0.0802 ± 0.0281
-0.1000 -0.0657 ± 0.0271
-0.0500 -0.0335 ± 0.0256
-0.0000 0.0141 ± 0.0251
0.0500 0.0619 ± 0.0268
0.1000 0.0945 ± 0.0289
0.1500 0.1095 ± 0.0303
0.2000 0.1125 ± 0.0307
0.2500 0.1094 ± 0.0305
0.3000 0.1039 ± 0.0302
0.3500 0.0977 ± 0.0298
0.4000 0.0917 ± 0.0295
0.4500 0.0860 ± 0.0291

Table 13: The measured d̃ using the gauge curve method applied onto asimov datasets
for different values of d̃ using ∆φsignedjj .

underestimates the d̃. This demonstrates and confirms that the linear approximation is
only valid for small values of d̃, and cannot be generalized to a larger range.
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d̃

Asimov Measured
-0.5000 -0.0572 ± 0.0258
-0.4500 -0.0624 ± 0.0259
-0.4000 -0.0682 ± 0.0261
-0.3500 -0.0745 ± 0.0262
-0.3000 -0.0810 ± 0.0263
-0.2500 -0.0870 ± 0.0262
-0.2000 -0.0907 ± 0.0258
-0.1500 -0.0885 ± 0.0246
-0.1000 -0.0746 ± 0.0222
-0.0500 -0.0430 ± 0.0186
-0.0000 0.0040 ± 0.0167
0.0500 0.0515 ± 0.0192
0.1000 0.0841 ± 0.0231
0.1500 0.0993 ± 0.0257
0.2000 0.1026 ± 0.0270
0.2500 0.0998 ± 0.0274
0.3000 0.0945 ± 0.0275
0.3500 0.0885 ± 0.0273
0.4000 0.0826 ± 0.0271
0.4500 0.0771 ± 0.0269

Table 14: The measured d̃ using the gauge curve method applied onto asimov datasets
for different values of d̃ using OReg.
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10.3 Maximum Likelihood Fit Method

The gauge curve method makes use of the average value of the entire OO distribution,
which eliminates degrees of freedom that could otherwise be utilized to improve the
estimation of d̃. Instead of reducing the entire distribution information into a single
value, the Maximum-Likelihood method (ML) can utilize the full distribution information
available.

The ML method compares bin-by-bin the predicted and measured values for different d̃
hypotheses and finds the value for which both distributions are most compatible. This
compatibility is given by a product of Poisson distributions, and defined by the binned
likelihood function (L) [47]:

L(d̃) =
N∏
i=0

Pois(ni;npredi (d̃)) (96)

where the Poisson distribution probability density function (PDF) is given by Pois(k;λ) =
λke−λ

k!
. The likelihood function is summed over all N bins of a histogram with observed

and predicted bin contents ni and npredi (d̃), for bin i respectively. In this analysis, the bin
content ni = si + bi is simply the sum of the signal and background event yield in that
bin.

A larger value of the likelihood function implies a greater compatibility since the Poisson
distribution has its maximum at λ. Therefore, one would like to find the value of d̃ for
which the likelihood function is maximal. Instead the negative log-likelihood function is
used as a convention:

− lnL(n; d̃) = NLL(d̃) = − ln

(
N∏
i=0

Pois(ni;npredi (d̃))

)
(97)

=
N∑
i=0

(
ni lnn

pred
i − npredi − lnni!

)
(98)

Finding the best-fit value therefore involves finding the value of d̃ for where the NLL
function is minimal, NLLmin. The advantage of the negative log-likelihood method is
the simplicity in determining Confidence Intervals (CI’s). The confidence intervals at
68% and 95% confidence level can be determined by calculating the values of d̃ which
correspond to a ∆NLL = NLL− NLLmin of 0.50 and 1.92 [47].

10.3.1 Settings for the Negative Log-Likelihood Method

When working with expected distributions, the signal yield is scaled so that for all d̃
values it stays the same as the SM prediction.
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For testing the performance of different fit settings, the fit is applied onto an Asimov
distribution, constructed using the predicted observable distribution for a d̃ = 0.

For each observable, different fit ranges are used. For the optimal observable, this is
±15, for the signed ∆φjj this is ±3.2, and for the observable obtained through symbolic
regression, this is ±2, where the range is chosen such that the shape of the distribution is
captured. The binning of these observables can be chosen freely, with either uniform bin
widths or variable bin widths. One expects the performance of the fit to be dependent on
the choice of the binning of the histogram used, which is investigated in the next section.

10.3.2 Binning Studies

Different choice of binnings of the observables are investigated to see their impact on the
sensitivity to d̃. For all three CP-odd observables, histograms with 10, 20, 40 and 100
bins are used for the fit and their resulting sensitivities are compared. Furthermore, the
same study is repeated with using only signal samples to validate that the same trend is
observed with distributions that are in theory maximally sensitive to d̃. These values are
shown in Table 15 and 16.

In the case of the signal-only ML fits, a larger bin numbers are also investigated, which
is shown in Table 17. For fits having both signal and background events, 200 equidistant
values of d̃ are scanned between -0.05 and 0.05, while for the signal-only fits, a range
between -0.04 and 0.04 is used

Nbins 5 10 15 20 25
OO +0.0390

−0.0395
+0.0345
−0.0340 0.0340 +0.0335

−0.0320 0.0330
OReg +0.0375

−0.0380 0.0340 0.0335 - -
∆φsignedjj

+0.0455
−0.0460

+0.0435
−0.0440

+0.0425
−0.0430 0.0420 0.0415

Table 15: The limits on d̃ for different choices of binning. In case of asymmetric limits,
the upper and lower limits are distinguished.

Nbins 5 10 15 20 25

OO 0.0264 0.0244 0.0240 0.0240 0.0240
OReg 0.0272 0.0252 0.0248 0.0248 0.0248

∆φsignedjj 0.0300 0.0288 0.0284 0.0284 0.0284

Table 16: The limits on d̃ for different choices of binning using only signal samples.

In all three cases, the nominal value for the calculated d̃ was not significantly different
from zero. In some cases, finer binning caused certain bins in the distribution to have
a zero or negative bin content, whose negative log-likelihood value cannot be computed.
These are represented by the dashes in Table 15. This is also the reason why in Table
15, a bin number limit of 25 was chosen, since beyond this bin number, for all variables,
the fit failed.
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Nbins 10 20 40 100

OO 0.0246 0.0240 0.0240 0.0240
OReg 0.0252 0.0249 0.0246 0.0246

∆φsignedjj 0.0288 0.0284 0.0282 0.0282

Table 17: The limits on d̃ put using an asimov dataset for d̃ = 0, for different binnings
of ML method, using only signal samples.

The reason why negative bins have not appeared in signal-only fits, despite smaller bin
sizes, is because large negative weight events are predominantly found to be present
in background samples, especially among fake events. Therefore, for certain ranges of d̃,
other processes would often not be able to compensate the negative weight of such events.

It can be seen in both Tables 15 and 16 that increasing the number of bins improves the
error on d̃. However, the improvement is not as pronounced beyond 20 bins. In order
to optimize the sensitivity, the number of bins should be large as possible but not large
enough to cause zero or negative bin contents. For this, an algorithm is implemented,
which adjusts the bins of a histogram with uniform binning into a histogram with variable
bin width. These new bin widths are defined so that each bin yield is above a predefined
positive threshold value. This is done by looping over the bins and adding their contents
from the center bin outwards, while at the same time merging them. When the sum
reaches the threshold, it is set to 0, and a bin edge is set at that point.

For each variable, a histogram with 100 bins is initialized. The minimum bin content
threshold is increased in steps of 0.05 starting from zero until the ML fitting procedure
no longer fails. For the Optimal Observable, this point was 0.1, and for ∆φsignedjj and OReg
at 0.05. The resulting bin edges for each variable is listed in Table 22 in the appendix.

The resulting 68% confidence intervals when using OO, OReg and ∆φsignedjj observables
are [-0.0310, 0.0315], [-0.0310, 0.0305] and [-0.0380, 0.0385], respectively. In all cases,
the nominal value of d̃ is compatible with 0. With all three variables, an improvement
in the sensitivity is observed in comparison with the case with uniform bin widths. An
improvement of 5%, 8% and 8% in the range of the CI’s is achieved when using OO, OReg
and ∆φsignedjj variables, respectively. As expected, the setup using ∆φsignedjj underperforms
compared both OO and OReg, while the latter two perform similar to each other. The
value of ∆NLL as a function of d̃, also known as the NLL curve, is shown in in Figure
41.

10.3.3 Investigation on the Influence of the Threshold on the Neural Net-
work Score on the Sensitivity to CP Violation

As with the gauge curve method, the impact of the NN score threshold on the limits on d̃
is investigated by varying the threshold from 0.6 to 0.76. Since in this case, asymmetrical
uncertainties on d̃ are possible, the measure of the sensitivity was evaluated by taking
half of the width of the confidence interval, effectively taking the average of the upper
and lower boundaries. The average error on d̃ as a function of the NN score threshold is
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shown in Figures 42c to 42i. Change in the significance as a function of the average error
on d̃ is shown in Figures 42c to 42i.
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Figure 41: The value ∆NLL as a function of d̃ for three different CP-odd variables, using
settings optimized in Section 8.3.2. A total of 100 points between ±0.05 are evaluated.
Marked in red is the value ∆NLL = 0.5, corresponding to the 68% confidence interval.
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Figure 42: The average error on d̃ as a function of the NN score threshold, computed
using different CP-odd variables using the ML method, the significance as a function on
the average error.
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When using ∆φsignedjj and OReg, the curves show a clear minima around the threshold
0.68, while this is not as apparent in the case of OO. There it seems to minimize at
around 0.7. Furthermore, one does not observe any significant jumps in the curve, which
was the case with the gauge curve method originating from events with large weights.
This is due to the fact that ML utilizes the information of the entire distribution.

When observing the relationship between the significance and the average error on d̃, as
with the gauge curve method, a general negative correlation between the two variables is
noticeable. For ∆φsignedjj and OReg observables this correlation can be seen clearly, while
for OO this is not as clear.

10.3.4 Validation of the ML method

Asimov d̃ values from -0.2 to 0.2 in steps of 0.05 are investigated, for all three CP-odd
variables. Larger ranges of d̃, as in the gauge curve method, are not investigated since
larger d̃ values result in larger event weights, causing the fits to become unstable due to
negative bin contents. For the same reason, the minimum bin content threshold is also
raised to 0.2. Furthermore, the scan range was increased from 0.05 to 0.25, and to 0.4
when using ∆φsignedjj . The resulting values of d̃ are shown in Tables 18 to 20

Asimov d̃ Measured d̃
-0.3000 −0.3000+0.1025

−0.2150

-0.2500 −0.2500+0.0850
−0.1600

-0.2000 −0.2000+0.0700
−0.1150

-0.1500 −0.1500+0.0600
−0.0875

-0.1000 −0.1000+0.0450
−0.0675

-0.0500 −0.0500+0.0325
−0.0450

-0.0000 0.0000+0.0325
−0.0300

0.0500 0.0500+0.0450
−0.0325

0.1000 0.1000+0.0650
−0.0450

0.1500 0.1500+0.0875
−0.0600

0.2000 0.2000+0.1275
−0.0750

0.2500 0.2500+0.1750
−0.0900

0.3000 0.3000+0.2350
−0.1075

Table 18: The measured d̃ using the ML method applied onto asimov datasets for different
values of d̃ using OO.

As shown, the ML method is able to retrieve the original value of d̃ from the Asimov
dataset between -0.3 and 0.3. It is also observed that for extreme values of d̃, the width
of the confidence interval increases as well.
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Asimov d̃ Measured d̃
-0.3000 -0.3000 +0.1760

−0.3120

-0.2500 -0.2500 +0.1560
−0.2640

-0.2000 -0.2000 +0.1200
−0.2240

-0.1500 -0.1500 +0.0840
−0.2040

-0.1000 -0.1000 +0.0520
−0.1600

-0.0500 -0.0500 +0.0400
−0.0560

-0.0000 0.0000 +0.0360
−0.0360

0.0500 0.0500 +0.0560
−0.0400

0.1000 0.1000 +0.1720
−0.0520

0.1500 0.1500 +0.2080
−0.0800

0.2000 0.2000 +0.2280
−0.1200

0.2500 0.2500 +0.2640
−0.1560

0.3000 0.3000 +0.3240
−0.1880

Table 19: The measured d̃ using the ML method applied onto asimov datasets for different
values of d̃ using ∆φsignedjj .

Asimov d̃ Measured d̃
-0.3000 -0.3000 +0.1075

−0.2225

-0.2500 -0.2500 +0.0900
−0.1650

-0.2000 -0.2000 +0.0725
−0.1200

-0.1500 -0.1500 +0.0625
−0.0925

-0.1000 -0.1000 +0.0450
−0.0725

-0.0500 -0.0500 +0.0325
−0.0475

-0.0000 0.0000 +0.0300
−0.0300

0.0500 0.0500 +0.0475
−0.0325

0.1000 0.1000 +0.0700
−0.0475

0.1500 0.1500 +0.0925
−0.0625

0.2000 0.2000 +0.1275
−0.0750

0.2500 0.2500 +0.1700
−0.0875

0.3000 0.3000 +0.2350
−0.1075

Table 20: The measured d̃ using the ML method applied onto asimov datasets for different
values of d̃ using OReg.
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10.4 Comparison of Fit Methods

In both the gauge curve and ML method, the settings are optimized to improve the
sensitivity on d̃. An overview of the computed values of d̃, evaluated using an Asimov
dataset with d̃ = 0 is shown in Table 21.

CP-Odd Observable Gauge Curve Method ML Method
OO 0.003±0.017 0.000 +0.0315

−0.0310

OReg 0.004±0.017 0.000+0.0305
−0.0310

∆φsignedjj 0.014±0.025 0.000+0.0385
−0.0380

Table 21: Estimated d̃ values using the gauge curve and ML methods for three different
CP-odd variables.

In none of the cases is the estimated d̃ found to be significantly different from 0. In both
gauge curve and ML methods, ∆φsignedjj underperformed relative to both OO and OReg.
This is expected since both OO and OReg are specifically optimized for their sensitivity
on d̃. The performance of OO and OReg were found to be similar in both methods.

When comparing the limits on d̃ evaluated using the gauge curve and ML methods, it
is observed that the gauge curve method performs better than the ML method. This is
unexpected since the ML method uses the full distribution information and therefore is
able to exploit more degrees of freedom, while the gauge curve method relies on a single
averaged value, thereby possibly discarding important information.
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11 Conclusion

In this thesis, an investigation of the CP properties of the HV V vertex in Higgs-boson
production via VBF in the H → ττ → eµ4ν decay channel is presented. For this, the
full Run-2 dataset corresponding to an integrated luminosity of 139.1 fb−1 is used. After
an initial selection procedure to increase the signal-to-background ratio, two different
methods on estimating the expected uncertainty on d̃ are compared.

Firstly the data-driven matrix method was used to estimate the contribution of back-
ground processes where jets is misidentified as leptons, also known as fakes. Fake electrons
and muons mostly originate from multi-jet QCD production and W -boson production.
For this, real and fake efficiencies were measured in their respective control regions. This
was done separately for electrons and muons as a function the lepton pT and |η|. This
information was then used to calculate weights to be applied onto data events, which
yields an estimate of the total fake contribution. The resulting fake estimation is then
validated in a validation region defined such that the two leptons have the same signed
charge.

A cut-based analysis was then employed to initially increase the signal to background ra-
tio. These event selection requirements exploit the kinematic differences between signal
and background events in order to suppress the contribution of background processes.
These were split into the preselection cuts, which targets and reduces background pro-
cesses, and the VBF topology cuts, which specifically targets VBF Higgs-boson produc-
tion events. These selection requirements define the VBF region, in which neural networks
are used to further improve the signal-to-background ratio.

After the application of event selection requirements, neural networks were trained to
discriminate signal events from background events. The neural networks were trained
on simulated data, which was split according to 5-fold mixed cross validation. Hyperpa-
rameters, such as the batch size, number of layers were optimized using Optuna, which
uses a Bayesian optimization algorithm called the Tree-Structured Parzen Estimator.
The performance of the neural network was evaluated by varying the neural network
score thereshold, and finding for which threshold the maximum significance s/

√
s+ b, is

reached. Firstly, the input variable set was determined by computing the permutation
importance on a large set of variables and removing those which do not contribute to the
improvement of the performance. Furthermore, the number of output nodes were varied
as well to differentiate different background processes. Lastly, the performance of the use
of dropout layers as an alternative to L2 regularization was investigated. The optimized
neural network has a learning rate of 0.0034, batch size of 128, 5 layers with 256 nodes
per layer, L2 regularization parameter of 2.36×10−6, with 4 output nodes considering:
signal, Z → ττ , top and other background processes. This resulted in an maximum
significance of 3.49, with a neural network score threshold of 0.68. The application of
the neural network resulted in an increase of the signal-to-background ratio from 0.07 to
0.72. The selection on the neural network score then defines the signal region. Previous
analyses also showed no signed of CP violation and the expected constraints on d̃ were
d̃ ∈ [−0.035, 0.033] at the 68% confidence level [28].

Two different statistical methods were applied onto an Asimov dataset of d̃ = 0 to extract
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expected limits on d̃ in the signal region. For this, three CP-odd variables, OO, ∆φsignedjj ,
and OReg were investigated. One such method utilizes the gauge curve, which assumes a
linear relation between the average value of the CP-odd variable and d̃ for small d̃ values.
Settings such as the fit range and the cut on the NN score were optimized to yield
the smallest expected uncertainty on d̃. It was observed that the optimal observable
and the observable obtained from symbolic regression have similar performances, and
both outperformed the signed azimuthal angle difference between the tagging jets. The
expected sensitivity on d̃ using the full Run-2 dataset is d̃ ∈ [−0.017, 0.017] for OO and
OReg, and [−0.025, 0.025] for ∆φsignedjj using the gauge curve method. Another statistical
method is the maximum likelihood fit to the full distribution of the CP-odd observable,
which in contrast to the gauge curve method, utilizes the full distribution information
to estimate limits on d̃. As with the linear method, settings such as the binning were
optimized to yield the best performance. For the ML method, The expected sensitivity
on d̃ are d̃ ∈ [−0.0310, 0.0315] for OO, [−0.0310, 0.305] for OReg, and [−0.0380, 0.0385]
for ∆φsignedjj . It was observed with the ML method, that OO and OReg resulted in
similar performances, while at the same time outperforming ∆φSignedjj . Furthermore it
was observed that the gauge curve method consistently outperforms the NLL method,
which is unexpected, since the NLL method takes the entire distribution information
instead of one value. The exact reason for this phenomenon is unknown, and therefore
further investigations are necessary. Nonetheless, this thesis presents the first expected
limits on d̃ using a simulated data corresponding to an integrated luminosity of 139 fb−1

in the VBF H → ττ → eµ4ν channel.

Further improvements and studies are possible. One assumption made when applying
the matrix method for the estimation of the fake background is that the lepton efficien-
cies are independent of the jet multiplicity and the data taking period. A study could
have been done to validate this assumption by measuring and comparing the efficiencies
for different years and jet multiplicities. Another point of improvement regarding the
efficiency measurements pertains to truth matching. The current official truth matching
criteria for ATLAS analyses utilizes the categorization scheme given by the International
Fake Forum (IFF). However, in the samples used for this thesis, information regarding the
IFF truth categorization was not present, and therefore those of the MCTruthClassifier
were used, which are no longer officially used. Therefore, the use of IFF categories could
have yielded more accurate measurements of the electron and muon efficiencies. Lastly,
in a full analysis, one would also consider the effects of systematic uncertainties on the
obtained expected limits on d̃. However, due to time and technical constraints, investi-
gations on the effect of systematic uncertainties were not made. If studies on systematic
uncertainties had been made, the thesis could have possibly encompassed a full analysis
on the CP properties of the HV V coupling, applied onto measured data instead of an
Asimov dataset. These limits can then be compared with previous analyses.
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A Appendix

A.1 Same-Sign Fake Validation Region Distributions
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Figure 44: Expected and data distributions in the same-sign fake validation region of
different kinematic variables. Error bars represent statistical errors.
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A.2 Low Neural Network Score Region Distributions.
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Figure 48: Expected and data distributions of the optimized input variable set in the low
NN score region. Error bars represent statistical errors.
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A.3 Optimized Binnings of CP-odd Observables for the MLMethod

Variable Bin Edges

OO

[−15.,−11.4,−10.8,−9.9,−9.6,−8.7,−8.1,−7.8,−7.5,−7.2,−6.9− 6.6,−6.3,−6.
−5.7,−5.4,−5.1,−4.8,−4.5,−4.2,−3.9,−3.6,−3.3,−3.− 2.7,−2.4,−2.1,−1.8,−1.5,

−1.2,−0.9,−0.6,−0.3, 0., 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3., 3.3,
3.6, 3.9, 4.2, 4.5, 4.8, 5.1, 5.4, 5.7, 6., 6.3, 6.9, 7.5, 8.1, 8.4, 9., 9.3, 9.6, 10.2

, 11.1, 12.3, 15.]

OReg

[−2.,−1.68,−1.6,−1.52,−1.4,−1.36,−1.32,−1.24,−1.2,−1.16,−1.12,−1.08,
−1.04,−1.,−0.92,−0.88,−0.84,−0.8,−0.76,−0.72,−0.68,−0.64,−0.6,−0.56,
−0.52,−0.48,−0.44,−0.4,−0.36,−0.32,−0.28,−0.24,−0.2,−0.16,−0.12,−0.08,

−0.04, 0., 0.04, 0.08, 0.12, 0.16, 0.2, 0.24, 0.28, 0.32, 0.36, 0.4,
0.44, 0.48, 0.52, 0.56, 0.6, 0.64, 0.68, 0.72, 0.76, 0.8, 0.84, 0.88,
0.92, 0.96, 1., 1.04, 1.08, 1.12, 1.16, 1.2, 1.32, 1.4, 1.44, 1.48,

1.6, 1.64, 2.]

∆φsignedjj

[−3.2,−3.008,−2.944,−2.88,−2.816,−2.752− 2.688,−2.624,−2.56,−2.496,
−2.432,−2.368,−2.304,−2.24,−2.176,−2.112,−2.048,−1.984,−1.92,−1.856,
−1.792,−1.728,−1.664,−1.6,−1.536,−1.472,−1.408,−1.344,−1.28,−1.216,
−1.152,−1.088,−1.024,−0.96,−0.896,−0.832,−0.768,−0.64,−0.576,−0.512,
−0.448,−0.384,−0.32,−0.256,−0.192,−0.128,−0.064, 0., 0.064, 0.128,

0.192, 0.256, 0.32, 0.384, 0.448, 0.512, 0.576, 0.64, 0.704, 0.768,
0.832, 0.896, 0.96, 1.024, 1.088, 1.152, 1.216, 1.28, 1.344, 1.408,
1.472, 1.536, 1.6, 1.664, 1.728, 1.792, 1.856, 1.92, 1.984, 2.048,
2.112, 2.176, 2.24, 2.304, 2.368, 2.432, 2.496, 2.56, 2.624, 2.688,

2.752, 2.816, 2.88, 2.944, 3.008, 3.072, 3.2]

Table 22: The bin edges of the histogram used for the NLL method, optimized such that
for each variable, the bin contents fulfill a threshold.
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