Higgs-Physik und Phänomenologie jenseits des Standardmodells Dr. Jochen Dingfelder und Prof. Markus Schumacher Freiburg / Sommersemester 2009

Kapitel 1: Higgs-Physik im Standardmodell

1.1 Theorie und Phänomenologie
1.2 Stand der Suche und Entdeckungspotenzial am LHC
1.3 Untersuchung des Higgs-Sektors am LHC und ILC
1.4 Probleme des SM-Higgs-Sektors und möglicher Erweiterungen und Alternativen

Das SM in der Nussschale

- Der Teilcheninhalt:6 Quarks + 6 Leptonen + Antiteilchen
- Kräfte durch Eichsymmetrien beschrieben
- Im SM: SU(2)_LxU(1)_Y-xSU(3)_C
 - \rightarrow 8 Gluonen (M=0)
 - \rightarrow 1 Photon (M=0)
 - → 2W, Z (M=80/)0 GeV)

Experiment: alle Teilchen massiv bis auf Gluonen und Photon d.h. Symmetrie der Natur nur SU(3)_CxU(1)_{QED}

- Eichsymmetrien verbieten "ad hoc"Massenterme
 - generell für Eichbosonen
 - für Fermionen, da linkschirale Felder in Dublett,

rechtschirale Felder in Singulett bzgl SU(2)IW

Das SM Ist seit 30 Jahren erfolgreich!

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

Das Elektroschwache-SM: formal

Der Teilcheninhalt und die elektroschwachen Quantenzahlen

	Leptonen					Quarks						
	Q	Y	I_W^3	3 Familien			Q	Y	I_W^3	3 Familien		
Dubletts	$0 \\ -1$	$-1 \\ -1$	$\frac{1/2}{-1/2}$	$\binom{\nu_{\mathrm{e}}}{\mathrm{e}}_{\mathrm{l}}$	$\binom{\nu_{\mu}}{\mu}_{1}$	$\binom{\nu_{\tau}}{\tau}_{1}$	$\frac{2/3}{-1/3}$	$\frac{1/3}{1/3}$	$\frac{1/2}{-1/2}$	$\begin{pmatrix} u \\ d \end{pmatrix}_1$	$\binom{c}{s}_1$	$\binom{t}{b}_{l}$
Singulett	-	-	-	-	-	-	-2/3	-4/3	0	u_r	c_r	tr
Singulett	-1	-2	0	er	$\mu_{\rm r}$	$\tau_{\rm r}$	-1/3	-2/3	0	d_r	$\mathbf{s}_{\mathbf{r}}$	b_r

 $Q = rac{Y}{2} + I_W^3$

SU(2)_LxU(1)_Y-invariante Lagrangedichte \rightarrow Wechselwirkungen

$$\mathcal{L}_{\text{QFD}} = \bar{e}i\gamma^{\mu}\partial_{\mu}e + \bar{\nu}_{1}i\gamma^{\mu}\partial_{\mu}\nu_{1} - \frac{1}{4}B^{\mu\nu}B_{\mu\nu} - \frac{1}{4}\vec{W}^{\mu\nu}\vec{W}_{\mu\nu} + \bar{L}\gamma^{\mu}g'\frac{Y}{2}B_{\mu}L + \bar{e}_{r}\gamma^{\mu}g'\frac{Y}{2}B_{\mu}e_{r} + \bar{L}\gamma^{\mu}g\frac{1}{2}\vec{\sigma}\vec{W}_{\mu}L$$

$$\mathbf{B}_{\mu\nu} = \partial_{\mu}\mathbf{B}_{\nu} - \partial_{\nu}\mathbf{B}_{\mu} \text{ und } \vec{\mathbf{W}}_{\mu\nu} = \partial_{\mu}\vec{\mathbf{W}}_{\nu} - \partial_{\nu}\vec{\mathbf{W}}_{\mu} + ig\vec{\mathbf{W}}_{\mu} \times \vec{\mathbf{W}}_{\nu} \qquad \mathbf{L} := \binom{\nu_{\mathbf{e}}}{e}_{1}$$

Massenterme zerstören Eichinvarianz

Massenterm f
ür Eichbosonen → generelles Problem

$$\frac{1}{2}M_A^2 A_\mu A^\mu \to \frac{1}{2}M_A^2 (A_\mu - \frac{1}{e}\partial_\mu \alpha)(A^\mu - \frac{1}{e}\partial^\mu \alpha) \neq \frac{1}{2}M_A^2 A_\mu A^\mu$$

■ Massenterm f
ür Fermionen → Problem da rechts- und linksh
ändige Teilchen unterschiedliche QZ

$$-m_e\bar{e}e = -m_e\bar{e}\Big(\frac{1}{2}(1-\gamma_5) + \frac{1}{2}(1+\gamma_5)\Big)e = -m_e(\bar{e}_Re_L + \bar{e}_Le_R)$$

Eichinvarianz nettes Prinzip. Aber stört die Verletzung derselben? Warum keine "ad hoc"-Massenterme?

Zerstörung der Renormierbarkeit

- ➡ → keine Präzisionsvorhersagen auf Schleifenniveau möglich
- scheint aber zu funktionieren (mit Erweiterung durch Higgs-Boson)

z.B. Vorhersage von Masse des Top-Quarks

Higgs-Physik und BSM-Phänomenologie

TEVATRON-Entdeckung wo LEP-Vorhersage

Synergie von Hadron- und Leptonbeschleunigern

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

Unitaritätsverletzung in Streuprozessen

schlechtes Hochenergieverhalten für Streung von z.B. $VV \rightarrow VV$

Verletzung der Unitarität bei Schwerpunktsenergien von ~ 1.2 TeV

 Grund: dritter longitudinaler Freiheitsgrad für massives Eichboson

$$\varepsilon_{\text{long}}^{\mu}(p) = \frac{1}{M_{W}}(E, 0, 0, p) \sim E$$

Vgl.: masseloses Photon besitzt nur zwei transversale Freiheitsgrade

Der Brout-Englert-Guralnik-Hagen-Higgs-Kibble-Mechanismus

- Ziel: Brechung der Eichsymmetrien von $SU(2)_L xU(1)_Y \rightarrow U(1)_{QED}$ ohne Verletzung von Renormierbarkeit und Unitarität
- muss spontan sein, d.h.
 - Lagrangedichte ist eichinvariant
 - Zustand niedrigster Energie verletzt Eichinvarianz
- Idee: Einführung von neuen Felder die einen nicht verschwindenden Vakuumerwartungswert erhalten

Bedingungen:

- Lorentzinvarianz \rightarrow skalares Feld
- um erwünschte Brechung zu erhalten: geladen bzgl. $SU(2)_L$ und $U(1)_Y$
- Vakuum muss elektromagnetisch ungeladen sein
- 3 longitudinale Freiheitsgerade für W/Z-Bosonen
- Restaurierung der Unitarität für VV-Streung

Der Brout-Englert-Guralnik-Hagen-Higgs-Kibble-Mechanismus

im SM ökonomischste Wahl: ein Dublett von komplexen skalaren Higgs-Feldern

$$\Phi = \begin{pmatrix} \Phi_3 + i\Phi_4 \\ \Phi_1 + i\Phi_2 \end{pmatrix} \qquad \Phi_i \quad \text{reell} \qquad Y = 1, \quad I_W = \frac{1}{2}$$

$$\mathcal{L}_{\text{Higgs}} = (D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi) - V(\Phi) \quad D_{\mu}\Phi = (\partial_{\mu} - \frac{1}{2}ig\vec{\sigma}\vec{W}_{\mu} - \frac{1}{2}ig'YB_{\mu})\Phi$$

mit geeignet gewähltem Potenzial

$$V(\Phi) = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2, \mu^2, \lambda > 0$$

zunächst 2 freie Parameter

Spontane Symmetriebrechung im frühen Universum

Der Brout-Englert-Guralnik-Hagen-Higgs-Kibble-Mechanismus

- für μ²>0: Symmetrie spontan gebrochen
 - Minmimum des Potenzial bei V<>0
 - Higgsfeld hat Vakuumumerwartungswert v

$$\Phi^{\dagger}\Phi = rac{\mu^2}{2\lambda} \equiv rac{v^2}{2} \qquad \Phi_0 = \begin{pmatrix} 0 \\ e^{-ilpha}v \end{pmatrix}$$

$$V(\phi)$$

 \uparrow
 ϕ_1
 ϕ_2
 $V(\phi)$

Physik ergibt sich aus Oszillationen um das Minimum

$$\Phi(x) = e^{i\vec{\rho}(x)\vec{\sigma}} \begin{pmatrix} 0\\ \frac{v+\mathbf{H}(x)}{\sqrt{2}} \end{pmatrix}$$

- gegen den Potenzial Anstieg →
 1 massives Higgs-Boson H
- entlang der Potenzialmulde →
 3 masselosen Goldstone-Bosonen verschwinden in unitärer Eichung
 →long. Freiheitsgrade von W und Z

Higgs-Feld hat 2 Komponenten: Hintegrundfeld und Teilchen

Higgs-Physik und BSM-Phänomenologie

Kapitel 1: Higgs-Physik im SM

Massen für die Eichbosonen

effektive Masse durch Wechselwirkung mit dem Hintergrundfeld v

Higgs-Physik und BSM-Phänomenologie

Massen für die Fermionen

zusätzliche Yukawaterme in Langrangedichte

$$\mathcal{L}_{\text{Yukawa}} = \lambda_{\text{e}} \bar{L} \Phi \mathbf{e}_{\text{r}} + \lambda_{\text{u}} \bar{q} \tilde{\Phi} \mathbf{u}_{\text{r}} + \lambda_{\text{d}} q \Phi \mathbf{d}_{\text{r}} + h.c.$$
 $\tilde{\Phi} = i \sigma_2 \Phi^*$

effektive Masse durch Wechselwirkung mit dem Hintergrundfeld v

Higgs-Physik und BSM-Phänomenologie

Higgs-Bosonmasse und Higgs-Bosonselbstwechelwrikung

$$\mathcal{L}_{H} = \frac{1}{2} (\partial_{\mu} H) (\partial^{\mu} H) - V$$

= $\frac{1}{2} (\partial^{\mu} H)^{2} - \lambda v^{2} H^{2} - \lambda v H^{3} - \frac{\lambda}{4} H^{4}$

Masse des Higgs-Bosons

$$M_H^2 = 2\lambda v^2 = -2\mu^2$$

Selbstwechselwirkung des Higgsbosons

Higgs-Physik und BSM-Phänomenologie

Alle Kopplungen festgelegt u. proportional zu Masse

ein freier Parameter: M_H bzw. quartische Selbstkopplung λ

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

Zerfallsbreiten und Verzweigungsverhältnisse

- Kopplung ~ Masse
- Zerfall in schwerste

Fermionsorte dominant

- NC=3 für Quarkzerfälle
- tau > charm wegen

laufender Masse

Zerfälle in Eichbosonen

- Kopplung ~ Masse
- steiler Anstieg in Partialbreite für MH>2MV
- W=2xZ wegen Kombinatorik
- schleifeninduzierte Zerfälle in zwei Photonen

Verzweigungsverhältnisse des SM Higgs Bosons

für M<135 GeV: H \rightarrow bb, $\tau\tau$ dominant

für M>135 GeV: H → WW, ZZ dominant

klein: $H \rightarrow \gamma\gamma$ aber wichtig am LHC

ZusammenfassungTheorie/Phänomenologie

- Higgs-Mechanismus erlaubt konsistente Formulierung einer Theorie zur Beschreibung der elektroschwachen Phänomene
- Massenerzeugung durch Wechselwirkung mit Hintergrundfeld
- Der Preis: ein neues Teilchen das Higgs-Boson
- ein freier Parameter: Masse des Higgs-Bosons
- das Profil ist unter Annahme deren Wertes komplett bestimmt
- die Kopplungen des Higgs-Bosons an Teilchenspezies ist proportional zu deren Masse

Kenntnis über die Masse des Higgs-Bosons

theoretische Grenzen:

- Unitärität, Hochenergieverhalten von Wirkungsquerschnitten
- Pertubativität
- Vakuumstabilität
- experimentelle Grenzen:
 - Vergleich der Präzisionsmessungen mit SM-Vorhersage
 - direkte Suchen bei LEP und am TEVATRON

Unitaritätsrettung duirch das Higgs-Boson

VV-Streung inklusive Higgs-Boson

Berücksichtigung anderer Streuprozesse: M_H<750 GeV</p>

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

Trivialität und Vakuumstablität

Energie- /Temperaturabhängigkeit der quartischen Kopplung λ

$$\begin{aligned} \frac{\mathrm{d}\lambda}{\mathrm{d}t} &= \frac{3}{8\pi^2} (\lambda^2 + \lambda \lambda_{\mathrm{t}}^2 - \lambda_{\mathrm{t}}^4) \quad \mathrm{mit} \ \lambda(v^2) &= \frac{M_{\mathrm{H}}^2}{2v^2} \quad \mathrm{und} \quad t = \ln \frac{Q^2}{v^2} \\ \frac{\mathrm{d}\lambda_{\mathrm{t}}}{\mathrm{d}t} &= \frac{1}{32\pi^2} (\frac{9}{2}\lambda_{\mathrm{t}}^3 - 8\lambda_{\mathrm{t}}g_s^2) \quad \mathrm{mit} \ \lambda_{\mathrm{t}}(v^2) &= \frac{\sqrt{2}m_{\mathrm{t}}}{v} \end{aligned}$$

Linkes Diagramm: Anstieg von λ

→ $\lambda < 1$ (unendliche) bis zu maximalen Energieskala Λ a) $\lambda = 0$ → Theorie trivial → kein spontane Symmetriebrechung b) $\lambda(v)$ endlich → maximale Energieskala bevor Landaupol

→ obere Grenze für $M_H = \lambda(M_H)v$ "Trivialitätsgrenze"

Rechtes Diagramm : Abfall λ (wenn m_t gross genug) Verlange stabilies Vakuum, d.h. $\lambda > 0$ bis zu Energieskala Λ \rightarrow untere Grenze auf M_H= λ (M_H)v "Vakuumstablitätsgrenze"

Trivialität bzw. Abwesenheit eines Landaupols

Vakuum-Stabilität

Trivialittätsgrenze und Vakuumstablität

Indirekte Grenze auf M_H aus Präzisionsmessungen

M_H geht durch Schleifenkorrekturen in Präzisionsobservablen ein z.B.

Higgs-Physik und BSM-Phänomenologie

Elektroschwacher Fit im Standardmodell

Die Vergangenheit:	bei LEP	(1989 bis 2000)
In die Gegenwart:	am TEVATRON	(2002 bis heute)
In der Zukunft:	am LHC	(2009 bis ???)

Particle Data Group 1988:

In summary the only cast-iron constraint on the Higgs boson

mass is M > 14 MeV (at 95 % CL).

A combination of theorectical arguments and bounds from

K, B, Upsilon decays probably exclude the range below 4 GeV.

LEP1: 1989 bis 2000

Higgs-Physik und BSM-Phänomenologie

Kapitel 1: Higgs-Physik im SM

Higgsproduktion bei LEP

einziger relevanter Prozess: Higgs-Strahlung durch grosse Kopplung von H and Z

LEP1 (1989 bis 1995) Schwerpunktsenergie ~ MZ Abfall des WQ mit M_H, da Z nicht "off shell" sein mag

LEP2 (1995 bis 2000)
 Schwerpunkstenergie <209 GeV
 Abfall des WQ mit M_H, wegen
 Phasenraumunterdrückung
 "reelles" Z im Endzustand

Wirkungsquerschnitte bei LEP

LEP1: dominanter Untergund Z-Zerfälle

LEP2: Zweifermionproduktion, W- und Z-Paarproduktion

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

Suchtopologien bei LEP2

LEP1: nur Suche im Neutrino- und Leptonkanal wegen UntergrundLEP2: alle Topologien studiert, am Wichtigsten 4-Jet-Kanal

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

Neutrino Kanal $e^+e^- \rightarrow HZ$ $\rightarrow b\overline{b} v\overline{v}$

zwei Jets, die nicht unter 180 Grad liegen + fehlende Energienach Selektion: kein interessantes Ereignis

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

- zwei Jets und zwei Leptonen
- gute Massenrekonstruktion aus Rückstossmasse
- nach Selektion: ein interessantes Ereignis bei OPAL

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

Der interessante LEP1 Kandidat

Obere Grenze auf Anzahl Signalereignisse

Higgs-Physik und BSM-Phänomenologie

Das finale LEP1 Massen-Limit

OPAL: <59.6 GeV LEP-Kombination: <65.2GeV ausgeschlossen</p>

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

Suche bei LEP2 im 4-Jet-Kanal bis 209 GeV

4-Jet Kanal $e^+e^- \rightarrow HZ$ $\rightarrow b\overline{b}q\overline{q}$

Signatur. 4 Jets LEP1 – zwei Jets aus b-Quarks vom Higgs-Zerfall - zwei Jets aus Z-Zerfalls : M _{JJ} ~M_Z

Higgs-Physik und BSM-Phänomenologie Kapitel

Kapitel 1: Higgs-Physik im SM

Ergebnis der Selektion mit multivariaten Methoden

Eff(95GeV)=47% $N_{Sig}(95GeV)=7.8$ Untergrund: 19.9 4 Fermion: 15.0 (davon 65%ZZ \rightarrow bbqq) 2 Fermion: 4.9

Likelihood >0.96

Daten: 24

Massenverteilung der Higgskandidaten

Anzeichen eines Signals oder statistische Fluktuation?

Woher weiss ich, dass Methode nicht fehlerhaft ist?

Higgs-Physik und BSM-Phänomenologie Kapitel 1:

Kapitel 1: Higgs-Physik im SM

Test der Likelihood-Selektion

Higgs-Physik und BSM-Phänomenologie Kapitel

Finales OPAL-Ergebnis bei LEP2

Higgs-Physik und BORMardmarkersity Kapitel 1: Higgs-Physik im SM

Statistische Interpretation

im Mittel 0.5 erwartet

für Entdeckung <2.85x10-7</p>

mit 95% CL ausgeschlossen, wenn CLS<0.05

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

Ein ALEPH-Kandidat

Higgs-Physik und BOMMANOBOSILY Kapitel 1: Higgs-Physik im SM

LEP: Finales Ergebnis E_{CM} von 90 bis 209 GeV

leichter Überschuss bei ~ 115 GeV (1.7 σ)

aber nur im 4-Jet-Kanal bei ALEPH

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

	$1-\mathrm{CL}_{\mathrm{b}}$	CL_{s+b}		Expected limit (GeV/c^2)	Observed limit (GeV/c^2)
LEP	0.09	0.15	LEP	115.3	114.4
ALEPH	$3.3 imes10^{-3}$	0.87	ALEPH	113.5	111.5
DELPHI	0.79	0.03	DELPHI	113.3	114.3
L3	0.33	0.30	L3	112.4	112.0
OPAL	0.50	0.14	OPAL	112.7	112.8
Four-jet	0.05	0.44	Four-jet channel	114.5	113.3
All but four-jet	0.37	0.10	All but four-jet	114.2	114.2

Markus Schumacher, Higgs Physics, WS 04/05

Higgs-Physik und BOMMardine Wersity Kapitel 1: Higgs-Physik im SM

Das finale Massenlimit von LEP

Tevatron: Proton-Antiproton-Kollisionen bei 1.96 TeV

Higgs-Physik und BSM-Phänomenologie

Suchtopologien am TEVATRON

■ $M_H < 135$ GeV: W(Z)H mit H→bb ■ $M_H > 135$ GeV: gg→H mit H→WW

Signal- und Untergrundwirkungsquerschnitte

Die wichtigsten Suchtopologien und ihre Untergründe

WH→Ivbb

- Lepton (e,µ), 2 Jets und fehlende Transversalenergie
- b-tagging reduziert den W+Jet (uds) Untergrund

Kein Hinweis auf Existenz des Higgs-Bosons

$gg \rightarrow H \rightarrow WW \rightarrow I_V I_V$

Higgs-Physik und BSM-Phänomenologie

CDF und D0: individuelle Ausschlussgrenzen

	95% CL limits, $M_H = 160 \ GeV \ (\times \sigma_{SM})$			
Both experiments are		Expected	Observed	
reaching SM sensitivity	CDF	1.5	1.5	
reaching Sm Schshavity	D0	1.8	1.7	

Kombination von 75 Suchen bei CDF und D0

We exclude an Higgs boson in the 160-170 GeV/c² mass range!

- Expected limits of 1.1 and 1.4 x $\sigma_{_{SM}}$ at 160 and 170 GeV/c²

Projektion der Sensitivität der Higgs-Suchen

Zusammenfassung: Massenschranken im SM

Theorie:

- Unitarität: M<750 GeV
- Trivialität und Vakuumstabilität:

Λ	M_H
1 TeV	$60~{ m GeV}~\lesssim M_H \lesssim 700~{ m GeV}$
$10^{19}~{ m GeV}$	$130~{ m GeV}\ \lesssim M_H \lesssim 190~{ m GeV}$

Experiment:

- aus Präszisonmesungen: M< 163 GeV mit 95% CL
- aus direkten Suchen:

M< 163 GeV mit 95% CL
M< 114.4 GeV (LEP)
160 < M < 170 GeV (TEVATRON)
ausgeschlossen mit 95% CL</pre>

Achtung: die Massenschranken gelten nur im SM!

Literatur

Theorie:

The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model. By Abdelhak Djouadi Phys.Rept.457:1-216,2008, hep-ph/0503172

LEP:

Search for the standard model Higgs boson at LEP. By LEP Working Group for Higgs boson searches and ALEPH Collaboration and DELPHI Collaboration and L3 Collaboration and OPAL Collaboration (R. Barate et al.). Phys.Lett.B565:61-75,2003, hep-ex/0306033

TEVATRON:

Combined CDF and DZero Upper Limits on Standard Model Higgs-Boson Production with up to 4.2 fb-1 of Data By Tevatron New Phenomena, Higgs working group, for the CDF collaboration, DZero collaboration arXiv:0903.4001