Higgs-Physik und Phänomenologie jenseits des Standardmodells Dr. Jochen Dingfelder und Prof. Markus Schumacher Freiburg / Sommersemester 2009

Kapitel 1: Higgs-Physik im Standardmodell

1.1 Theorie und Phänomenologie
1.2 Stand der Suche und Entdeckungspotenzial am LHC
1.3 Untersuchung des Higgs-Sektors am LHC und ILC
1.4 Probleme des SM-Higgs-Sektors und möglicher Erweiterungen und Alternativen

Verzweigungsverhältnisse des SM Higgs Bosons

für M<135 GeV: H \rightarrow bb, $\tau\tau$ dominant

für M>135 GeV: H → WW, ZZ dominant

klein: $H \rightarrow \gamma\gamma$ aber wichtig am LHC

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

Tevatron: Proton-Antiproton-Kollisionen bei 1.96 TeV

Higgs-Physik und BSM-Phänomenologie

Kapitel 1: Higgs-Physik im SM

Produktion und Suchtopologien am TEVATRON

- <mark>■</mark> gg→H ~ 10 x WH
- Trigger und Untergrundunterdrückung
 - \rightarrow verlange ein Lepton im Endzustand (kein gg \rightarrow H \rightarrow bb)
- $M_H < 135$ GeV: W(Z)H mit H→bb
- M_H>135 GeV: gg→H mit H→WW

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

Signal- und Untergrundwirkungsquerschnitte

Die wichtigsten Suchtopologien und ihre Untergründe

WH→Ivbb

- Lepton (e,µ), 2 Jets und fehlende Transversalenergie
- b-tagging reduziert den W+Jet (uds) Untergrund

Kein Hinweis auf Existenz des Higgs-Bosons

$gg \rightarrow H \rightarrow WW \rightarrow I_V I_V$

Higgs-Physik und BSM-Phänomenologie

Kapitel 1: Higgs-Physik im SM

CDF und D0: individuelle Ausschlussgrenzen

	95% CL limits, $M_H = 160 \ GeV \ (\times \sigma_{SM})$		
Both experiments are		Expected	Observed
reaching SM sensitivity	CDF	1.5	1.5
cacinity on sensitivity	D0	1.8	1.7

Kombination von 75 Suchen bei CDF und D0

We exclude an Higgs boson in the 160-170 GeV/c² mass range!

- Expected limits of 1.1 and 1.4 x $\sigma_{_{SM}}$ at 160 and 170 GeV/c²

Projektion der Sensitivität: 3- σ **Evidenz**

Projektion der Sensitivität: 95% CL Ausschluss

Zusammenfassung: Massenschranken im SM

Theorie:

- Unitarität: M<750 GeV
- Trivialität und Vakuumstabilität:

Λ	M_H
1 TeV	$60~{ m GeV}~\lesssim M_H \lesssim 700~{ m GeV}$
$10^{19}~{ m GeV}$	$130~{ m GeV}\ \lesssim M_H \lesssim 190~{ m GeV}$

Experiment:

- aus Präszisonmesungen: M< 163 GeV mit 95% CL
- aus direkten Suchen:

M< 163 GeV mit 95% CL</p>
M< 114.4 GeV (LEP)</p>
160 < M < 170 GeV (TEVATRON)</p>
ausgeschlossen mit 95% CL

Achtung: die Massenschranken gelten nur im SM!

Literatur

Theorie:

The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model. By Abdelhak Djouadi Phys.Rept.457:1-216,2008, hep-ph/0503172

LEP:

Search for the standard model Higgs boson at LEP. By LEP Working Group for Higgs boson searches and ALEPH Collaboration and DELPHI Collaboration and L3 Collaboration and OPAL Collaboration (R. Barate et al.). Phys.Lett.B565:61-75,2003, hep-ex/0306033

TEVATRON:

Combined CDF and DZero Upper Limits on Standard Model Higgs-Boson Production with up to 4.2 fb-1 of Data By Tevatron New Phenomena, Higgs working group, for the CDF collaboration, DZero collaboration arXiv:0903.4001

Der Large Hadron Collider LHC

pp-Kollisonen bei 14 TeV und instantaner Lumi = $10^{33} (^{34})$ cm⁻²s⁻¹ integrierte Luminosität pro Jahr 10 (100) fb⁻¹ Neustart Oktober 2009 bei 10 TeV, Ziel 0.2 fb⁻¹ bis Ende 2010

Erfolgreiche erste Strahlzirkulation ab 10. September 2008

ATLAS

und

CMS

	B=2T	B=4T
TRACKER	$\sigma/p_{\rm T} \sim 5 \mathrm{x} 10^{-4} \mathrm{p}_{\rm T} \oplus 0.01$	$\sigma/p_{\rm T} \sim 1.5 {\rm x} 10^{-4} p_{\rm T} \oplus 0.005$
EM CALO	$\sigma/E \sim 10\%/\sqrt{E}$ uniform longitudinal segmentation	$\sigma/E \sim 2-5\%/\sqrt{E}$ no longitudinal segm.
HAD CALO	$\sigma/E \sim 50\%/\sqrt{E \oplus 0.03}$	$\sigma/E \sim 100\%/\sqrt{E \oplus 0.05}$
MUON	Air $\rightarrow \sigma/p_T \sim 7 \%$ at 1 TeV standalone	Fe $\rightarrow \sigma/p_T \sim 5\%$ at 1 TeV combining with tracker
Higgs-Physik und BSM-I	Phänomenologie Kapitel 1: Higgs-Physik im SM	Uni. Freiburg / SoSe09

Produktion des SM Higgs-Bosons am LHC

Higgs-Physik und BSM-Phänomenologie Kapitel

Kapitel 1: Higgs-Physik im SM

Uni. Freiburg / SoSe09

Vergleich von TEVATRON und LHC

TEVATRON: ppbar-Kollisionen bei 2 TeV

LHC: pp-Kollisonen bei 14 TeV

Antiquarks am LHC nur aus See: qqbar \rightarrow W/Z-Produktion kleiner

LHC: Gluonen haben absolut höhere Energie
 → Gluonwechselwirkungen wichtiger

Uni. Freiburg / SoSe09

Vergleich: Signalproduktion und Untergrundraten

nur 1 Higgs boson pro 1 000 000 000 000 Protonkollisionen !!

Higgs-Physik und BSM-Phänomenologie

Kapitel 1: Higgs-Physik im SM

Entdeckung = signifikante Abweichung von SM-Erwartung

signifikant: Wahrscheinlichkeit einer Untergrundfluktuation <2.9x10⁻⁷ äquivalent to "5 sigma" für Gauss-Vtlg.

Abweichung:

- neuer Peak in Massenverteilung
- Überschuss in kinematischer Vtlg.

für Entdeckung:

- nur Kenntnis des Untergrundes
- falsche Modellierung des Signals
 - \rightarrow nicht optimale Suchstrategie
 - \rightarrow mehr Daten benötigt

für Ausschluss:

- zusätzlich Kenntnis des Signals nötig
- Ziel: Selektionskriterien liefern Signal-zu-Untergrund-Verhältnis von 1:1 (1:20)

Die Komplexität eines Ereignisses am LHC

+ ~23 überlappende pp-Wechselwirkungen pro Strahldurchkreuzung

- \rightarrow ~10⁹ pp-Kollisionen/s \rightarrow ~1600 charged Teilchen im Detektor
 - + Effekte von "pile up": Auslesezeit > ∆t zwischen Strahlkreuzungen

Signalraten für Kombinationen von Produktion und Zerfall

kleine Signalraten a priori nicht ungeeignet

Ziel: Untergrundunterdrückung bis zu S/B von 1 zu 1 (20)

Welche Kombination von Produktion + Zerfall?

- ausreichende Produktionsrate?
- effizienter Trigger?
- Untergrund unterdrückbar?
- Untergrund kontrollierbar?

σ_{prod}xVerzweigungsverhältnis
 Leptonen, Photonen, Taus + MET
 Mass rekosntruierbar, gutes S/B
 Bestimmung aus Daten

Entdeckungskanäle am LHC

- inklusive Suchen: nur Higgszerfallsprodukte werden selektiert dominiert durch Gluonfusion, andre Beiträge berücksichtigt <u>H→γγ, ZZ→4I,</u> WW→Iv Iv
- exclusive Suchen: zusätzliche Signaturen werden ausgenutzt <u>VBF with $H \rightarrow \tau \tau$, WW, $\gamma \gamma$, <u>tth $H \rightarrow bb$ </u></u>

Untergrundkategorien

- reduzibler Untergrund:
 - andere Endzustandsteilchen, Selektion durch Fehlidentifikation
 - → Optimierung der Identifikation für Photonen ,Leptonen,Taus, b-Jets
- irreduzibler Untergrund:
 - selber Endzustand im Detektor, Unterscheidung durch Masse, Spin
 - \rightarrow Optimierung der Massenrekonstruktion

$H \rightarrow 2$ Photonen

Signal: zwei energiereiche Photonen

Untergründe:

lumi:

irreduzible $\gamma\gamma$ (30pb)

 \rightarrow Massenrekonstruktion Higgs-Physik und BSM-Phänomenologie reduzibel: γ -jet 180 nb + jet-jet (480 μ b)

 \rightarrow Unterscheidung von Photon + Jet

Kapitel 1: Higgs-Physik im SM

Uni. Freiburg / SoSe09

Trennung von Photonen und Jets (einzelne pi0)

Unterschiedliche Schauerform: z.B. Breite des Cluster in 2. Lage

Massenauflösung: Ursprung der Photonen entlang Strahlachse

Photon-Vertex: - Photon Richtung aus Kalorimeter (+ Konversion)

$H \rightarrow 2$ Photonen: Optimierung der Analyse

Einteilung in Ereigniskategorien bzgl. Massenauflösung

Ergebnis: inklusive Analyse

Signal Process	Cross-section (fb)	Background Process	Cross-section (fb)
gg ightarrow H	21	γγ	562
VBF H	2.7	Reducible γ <i>j</i>	318
ttH	0.35	Reducible <i>j j</i>	49
VH	1.3	$Z \rightarrow e^+ e^-$	18

Higgs-Physik und BSM-Phänomenologie

Uni. Freiburg / SoSe09

H + 0,1,2 Jetanalysis: Verbesserung von S/B

1 Jet: S/B = 1/12

selektiertes Signal = 4fb

2 Jets:

S/B = 1/2

selektiertes Signal = 1fb

besseres S/B, aber kleiners Signal \rightarrow Steigerung der Senistivität

H → 2 Photonen: Entdeckungspotenzial

 Zählexperiment = Fit inkl. Formunsicherheit und syst. Fehler
 Kombination der Analysen + zusätzliche Variablen steigern Signifikanz um 50%

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

$H \rightarrow ZZ^{(*)} \rightarrow 4$ Leptonen

Signal: σ = 6fb bei M = 130 GeV

Signatur: 4 isolierte Leptons , $1(2) M_{\parallel} = M_Z$

Higgs-Physik und BSM-Phänomenologie

Kapitel 1: Higgs-Physik im SM

Uni. Freiburg / SoSe09

H→ ZZ^(*)→4 Myonen (Goldener Kanal)

$H \rightarrow ZZ^{(*)} \rightarrow 4$ Leptonen: Untergrund

■ irreduzibel: $ZZ \rightarrow 4$ Leptonen (56fb)

exzellente Rekonstruktion der invarianten Vierleptonemasse

reduzibel: tt→bbllvv (6pb) Zbb (810fb): 2 Leptonen aus B-Zerfällen

→Unterscheide direkte Leptone aus Z-Zerfälle und oder B→IX Zerfall

Higgs-Physik und BSM-Phänomenologie

Unterdrückung des reduziblen Untergrundes

$H \rightarrow ZZ^{(*)} \rightarrow 4$ Leptonen: Massenrekonstruktion

4 Leptons (je 2 Ladung +/- u. selben Flavor) pt_{1,2}>20 pt_{3,4}>7GeV
 |M₁₂-M_Z|<15 GeV M₃₄>30GeV (150 GeV) |M₁₂₍₃₄₎ -M_Z|<12GeV (300 GeV)
 bessere Massenauflösung durch M₇ c-Zwangsbedingung

Schlechtere Massenauflösung für Elektronen:

4e: σ =2.2GeV 2e2 μ : σ =1.9 GeV

wegen Bremsstrahlung

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

Massenverteilung nach allen Schnitten

- grosses S/B ratio
- ▲M/M~1.5%
- ZZ dominant background
- M<170GeV: small + flat BG</p>
- M>170GeV: Form des ZZ
- Kontinuums wichtig
- M>250: Breite dominiert
- durch natürliche Breite des H

Uni. Freiburg / SoSe09

H→ZZ→4 Leptonen: Entdeckungspotenzial

aus Ereignissen in 1.4σ Massenfenster

Effekt des pile-up → Effizienz kleiner um10% → Signifikanz runter um 5%
 inkl. UG-Unsicherheit: Signifkanz vermindert um 10%
 Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM Uni. Freiburg / SoSe09

Vektorbosonfusion pp \rightarrow qqH mit H \rightarrow tau tau \rightarrow II 4 $_{\rm V}$ / I had 3 $_{\rm V}$

Signatur:

- 2 Jets in der Nähe der Strahlachse, keine weiteren Jets
- Higgs-Boson-Zerfallsprodukte in der Zentralregion
- fehlende transversale Energie aus den Neutrinos

Higgs-Physik und BSM-Phänomenologie

Kapitel 1: Higgs-Physik im SM

Vektorbosonfusion pp \rightarrow qqH mit H \rightarrow tau tau \rightarrow II 4 $_{\rm V}$ / I had 3 $_{\rm V}$

Kinematik, Farbfluss, ...

Massenrekonstruktion

reduzibler Untergrund besitzt zentrale Jets

Unterdrückung des reduziblen Untergrundes: Kinematik

Forward tagging jets

Higgs-Physik und BSM-Phänomenologie

Kapitel 1: Higgs-Physik im SM

Uni. Freiburg / SoSe09

Zentrales Jet-Veto

unterscheidlicher Farbfluss in EW und QCD Prozessen

Higgs-Physik und BSM-Phänomenologie

Kapitel 1: Higgs-Physik

Rekonstruktion der Higgs-Bosonmasse

kollineare N\u00e4herung trotz 4 Neutrinos

Higgssignal auf Schulter des Z-Peaks

 \rightarrow wie extrahiert man Signal?

Higgs-Physik und BSM-Phänomenologie

Kapitel 1: Higgs-Physik im SM

Uni. Freiburg / SoSe09

VBF, H\rightarrow \tau\tau: Bestimmung des Untergrundes aus Daten

Idee: $jjZ \rightarrow \mu\mu$ und $jjZ \rightarrow \tau\tau \rightarrow \mu\mu$ haben identische Toplogie

- Myonen sind MIPS \rightarrow selbe Energiedeposition in Kalorimetern

- Unterschied nur in Impulspektren der Myonen

• Methode: 1) selektiere $Z \rightarrow \mu\mu$ Ereignisse

2) "würfele" μ -Impulse gemäß Z $\rightarrow \tau\tau \rightarrow \mu\mu4\nu$ MC

3) wende "normale" Selektion und Massenrekonstruktion an

Higgs-Physik und BSM-Phänomenologie

Kapitel 1: Higgs-Physik im SM 12

Uni. Freiburg / SoSe09

Entdeckungspotential VBF

ttH with H→bb

Signal:

Lepton (→ Trigger)
 Fehlende Energie
 Jets (4 aus bs)

Untergrund:

reducible: tt+jets (200pb)

irreducible: ttbb (2370+250fb)

→ Rekonstruktion der Higgs-Boson-Masse

 \rightarrow b-tagging

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

Herausforderung für die Identifikation von b-Quarks

ttH, H→bb: Identifikation von b-Quarks

nutze lange Lebensdauer der B: Stossparameter, Zerfallslänge

0.55

0.6

0.65

Arbeitspunkt: Eff.(b) = 65% Eff.(c) 1/6 Eff.(udsg) = 1/60

nysik im SM

0.8

0.75

b-tag efficiency

0.35

Rekonstruktion der Masse

nur Signal

Reinheit: 34% (zufällig16%) Auflösung: 20 GeV Effizienzienz: 2.3% S/B= 1/10 S/sqrt(B) = 1.95 Signal- und Untegrundvtlg. sehr ähnlich

Signal und Untergrund

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

ttH, H→bb: Signifikanz

Signifikanz für 30fb⁻¹ ohne systematische Unsicherheiten <2.2

- kleines S/B=1/10 und schlechtes Verständnis des Untergrundes
- zur Zeit nicht als Entdeckungskanal betrachtet
- aber wichtig f
 ür Messung der Kopplung von Higgs an b-Quark

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

Erwartung für 10 fb⁻¹

- Entdeckung von 124 to 440 GeV
- kleine Massen am schwierigsten

- $H \rightarrow \gamma \gamma$ und $\tau \tau$ jeweils alleine

keine Entdeckung bis 30 fb⁻¹

Potenzial für Ausschluss mit 95% CL

Erwartung für 2 fb⁻¹

mit 2fb⁻¹: Ausschluss von from M_H = 115 bis 460 GeV

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

Uni. Freiburg / SoSe09

Potenzial für Higgs-Suchen mit ATLAS am LHC

Für 5o Entdeckung, braucht man

Für 95% CL Ausscluss, braucht man

Entdeckung ist nur der erste Schritt

"This could be the discovery of the century. Depending, of course, on how far down it goes."

- ist es wirklich ein Higgs-Boson?
- ist es der Begleiter der Massenerzeugung?
- ist die Symmetrie spontan gebrochen?
- ist es das Higgs-Boson des SM?
- Bestimmung der Masse
 - \rightarrow Profil im SM festgelegt
- Spin = 0 ? CP = + ?
- Kopplung ~ Masse?
- Selbstwechselwirkung?
- Konsistenz oder Abweichung vom SM?

Literatur

LHC/ATLAS:

Expected Performance of the ATLAS Experiment : Detector, Trigger and Physics By ATLAS Collaboration, arXiv:0901.0512; CERN-OPEN-2008-020

LHC/CMS: CMS Physics TDR: Volume II (PTDR2), Physics Performance CERN-LHCC-2006-021, J. Phys. G: Nucl. Part. Phys. 34 995-1579,

Übersichtsartikel:

a) Higgs bosons at the LHC by Karl Jakobs, Eur.Phys.J.C59:463-495,2009.

b) Prospects for Higgs Boson Searches at LHC, Karl. Jakobs u. Markus Schumacher, Int. Journal of Mod. Physics A, Volume 23, Issue 32, (2008) 5093 http://db0.worldscinet.com/worldscistaging/Files/20090428175625625906%5B500372@132.230.190.15 8%5D@page.pdf