Higgs-Physik und Phänomenologie jenseits des Standardmodells Dr. Jochen Dingfelder und Prof. Markus Schumacher Freiburg / Sommersemester 2009

Kapitel 1: Higgs-Physik im Standardmodell

1.1 Theorie und Phänomenologie
1.2 Stand der Suche und Entdeckungspotenzial am LHC
1.3 Untersuchung des Higgs-Sektors am LHC und ILC
1.4 Probleme des SM-Higgs-Sektors und möglicher Erweiterungen und Alternativen

Potenzial für Higgs-Suchen mit ATLAS am LHC

Falls ein SM-artiges Higgs in der Natur realisiert ist, wird der LHC es nach wenigen Jahren entdecken"

Literatur

LHC/ATLAS:

Expected Performance of the ATLAS Experiment : Detector, Trigger and Physics By ATLAS Collaboration, arXiv:0901.0512; CERN-OPEN-2008-020

LHC/CMS: CMS Physics TDR: Volume II (PTDR2), Physics Performance CERN-LHCC-2006-021, J. Phys. G: Nucl. Part. Phys. 34 995-1579,

Übersichtsartikel:

a) Higgs bosons at the LHC by Karl Jakobs, Eur.Phys.J.C59:463-495,2009.

b) Prospects for Higgs Boson Searches at LHC, Karl. Jakobs u. Markus Schumacher, Int. Journal of Mod. Physics A, Volume 23, Issue 32, (2008) 5093 http://db0.worldscinet.com/worldscistaging/Files/20090428175625625906%5B500372@132.230.190.15 8%5D@page.pdf

Entdeckung ist nur der erste Schritt

"This could be the discovery of the century. Depending, of course, on how far down it goes."

- ist es wirklich ein Higgs-Boson?
- ist es der Begleiter der Massenerzeugung?
- ist die Symmetrie spontan gebrochen?
- ist es das Higgs-Boson des SM?
- Bestimmung der Masse
 - \rightarrow Profil im SM festgelegt
- Spin = 0 ? CP = + ?
- Kopplung ~ Masse?
- Selbstwechselwirkung?
- Konsistenz oder Abweichung vom SM?

Bestimmung der Masse

- Genauigkeit ideal gegeben durch: Massenauflösung/SQRT(Signal)
- Systematische Effekte:
 - Kenntnis der absoluten Energieskala (Bias?)
 - Kenntnis des Untergrundes und dessen Form

- wichtigste Zerfälle
 - $H \rightarrow gg$ S/B = 1/40
 - $H \rightarrow ZZ \rightarrow IIII$ $S/B \sim O(1)$
- Massenauflösung ∆M/M~1.5%
- Genauigkeit für 30fb-1
 - 0.1 bis 1 %
 - (ohne syst. Unsicherheit)

Sensitivste Kanäle für Massenmessung

relative Massenauflösung ~1.5%

Zum Vergleich: H→tau tau 10% und H→bb 15%

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

Bestimmung der Masse des Higgs-Boson: mehr Daten

Higgs-Physik und BSM-Phänomenologie

Kapitel 1: Higgs-Physik im SM

Bestimmung der totalen Breite

aus Massen-Peak wenn natürliche Breite ~ Massenauflösung

■ nur möglich in H→ZZ→ 4 Leptonen für M_H >200 GeV

- Beobachtung von H→γγ or gg→H schliessen Spin=1 aus (Young-Landqau Theorem: Spin1 Teilchen können nicht an ein paar masseloser identischer Spin 1 Teilchen koppeln) und fixieren C auf +
- Spin= 0 → flache Verteilung der Zerfälle im Higgs-Ruhesystem generell: andere Spinhypothesen ändern Winkelverteilungen
- CP-Eigenschaften → transversale Spinkorrelationen brauchen Spinanalysator
 - → instabile Teilchen im Higgs-Bosonzerfall z.B. H→ZZ oder H→tau tau
 - → assoziierte Produktion mit anderen Teilchen

Analyse von $H \rightarrow ZZ$ am LHC

Ruhesystem des Higgs-Bosons

Φ:Winkel zwischen den Zerfallsebenen

 Winkel zwischen Lepton und Z-Flugrichtung im Z-Ruhesystem

(Gottfried Jackson-Winkel

diese Winkelverteilungen abhängig von Spin und CP-Quantenzahlen

 $G(\theta) = L\sin^2(\theta) + T(1 + \cos^2(\theta))$

L (T) Anteil von longitudinal (tranversall) polarisieten Z-Bosonen

 $R = \frac{L - T}{L + T}$

Spin und CP: Unterscheidungsvermögen

Unterscheidung dominiert durchi
 θ für masses > 250 GeV

Unterscheidung > 2 σ für alle
 Spin, CP Hypothesen
 und M_H>200 GeV

Struktur des HVV Vertex

Vertex zwischen Higgs-Bospnen elektroschwachen Eichbosonen

 $\frac{\text{SM Higgs}}{\mathcal{L}_I} \sim H V_\mu V^\mu$

+ neu Terme in effektiver Lagrangedichte:

- Untersuchung in zwei Schritten
 - 1) Dominater Kopplungsterm? reines SM o. CP gerade o. CP ungerade
 - 2) SM + kleine anomaler Beitrag

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

CP-Quanzenzahl

wenn SM-Form dominant → skalares Feld besitzt vev ("Higgs")
 wenn CP erhalten: CP der Kopplung = CP Quantenzahl des Teilchens

Sensitivität für Ausschluss von CPE/CPO- nicht SM-Beiträgen

- $H \rightarrow WW$ (160 GeV): ~ 5 σ mit 10 fb⁻¹
- $H \rightarrow \tau \tau$ (120GeV): ~ 2.5 σ mit 30 fb⁻¹

Bestimmung der Kopplungen

Borninveau-Kopplungen:

Fermionen $g_f = m_f / v$ W/Z Bosonen: $g_v = 2 M_v / v$

Schleigeninduzierte Kopplungen: (sensitiv auf neue Physik)

Photon: $g_{\gamma} = g_{W}$ "+" g_{t} "+"...

Gluon: $g_{\gamma} = g_t "+" g_b "+"...$

■ Kopplungen in Produktion σ_{Hx} = const x Γ_{Hx} u. Zerfall BR(H → yy) = Γ_{Hy}/Γ_{tot}

- Experiment: nur Ereignisraten
- Schwierigkeiten:
 - Trennung der Beiträge von Produktion und Zerfall
 - Bestimmung der gesamten Zerfallsbreite

z.B. alle bekannten Partialbreiten Faktor 2 grösser und neue

Zerfallsbreite mit 50% totale SM-Zerfallsbreite

 \rightarrow totale Breite = 4x SM und alle Raten gleich

Higgs-Physik und BSM-Phänomenologie Kapitel 1:

Kapitel 1: Higgs-Physik im SM

Bestimmung der Ereignisraten

Signalraten: Signal= $N_{OBS} - N_{BG} = (eff_{VBF} \sigma_{VBF} + eff_{GGF \rightarrow VBF} \sigma_{GGF}) \times lumi.$ braucht: - Effizienzen für Signal und Übersprechen

- Untergrund (aus Seitenbändern, Kontrolldatensätzen)
- Luminosität

- Bestimmung mit Genauigkeiten von bis zu 10%
- hier noch alte vielversprechende ttH, $H \rightarrow$ bb Studie
- mit 300 fb⁻¹: Faktor 2 Verbesserung, VBF-Kanäle nur mit 30fb⁻¹

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

Bestimmung der Verhältnisse von Zerfallsbreiten

- totale Zerfallsbreite eliminiert
 - in Verhältnissen von Raten mit gleichem Zerfall o. Produktion
 - Redundanz in 13 Analysen

$\frac{\mathrm{BR}(H \to ZZ)}{\Gamma_Z} = \frac{\Gamma_Z}{\Gamma_Z}$	$(\sigma \cdot \mathrm{BR})_{gg \to H(H \to WW)}$
$\frac{\mathrm{BR}(H \to WW)}{\mathrm{BR}(H \to \gamma \gamma)} = \frac{\Gamma_W}{\Gamma_{\gamma}}$	$(\sigma \cdot \mathrm{BR})_{qqH(H\to WW)}$
$\frac{1}{\mathrm{BR}(H \to WW)} \equiv \frac{1}{\Gamma_W}$	$(\sigma \cdot \mathrm{BR})_{t\bar{t}H(H\to WW)}$
$\frac{\mathrm{BR}(H \to \tau \tau)}{\mathrm{BR}(H \to WW)} \equiv \frac{\Gamma_{\tau}}{\Gamma_{W}}$	$(\sigma \cdot BR)_{WH(H \rightarrow WW)}$
$\frac{\overline{\mathrm{BR}}(H \to b\overline{b})'}{\Gamma_b} = \frac{\Gamma_b}{\Gamma_b}$	$(\sigma \cdot BR)_{ZH(H \to WW)}$
$BR(H \rightarrow WW) = \Gamma_W$	(, , , , , , , , , , , , , , , , , , ,

alle Signalraten durch 9 Parameter

$$\frac{\sigma_{\mathsf{VBF}} \times \mathsf{BR}(\mathsf{H} \to \mathsf{WW})}{\sigma_{\mathsf{VBF}} \times \mathsf{BR}(\mathsf{H} \to \tau\tau)} = \frac{\Gamma_{W}\Gamma_{W}\Gamma_{tot}}{\Gamma_{W}\Gamma_{\tau}\Gamma_{tot}} = \frac{\Gamma_{W}}{\Gamma_{\tau}}$$

- Normiert auf Partialbreite für H→WW, weil am besten bestimmbar
- Genauigkeit für Eichbosonbreiten im Bereich 10% zu 30%
- Genauigkeit f
 ür Fermionbreiten im Bereich 30 bis 60%

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

Einschränkung der Totale Zerfallsbreite Γ_H

• für M_H >200 GeV, Γ_{tot} >1GeV

 \rightarrow Messung von Peak-Breite in H \rightarrow ZZ \rightarrow 4 l

■ für M_H<200 GeV, Γ_{tot} << Massenauflösung → brauchen indirekte Einschränkung für Γ_{tot}

untere Grenzen aus beobachtete Raten: $\Gamma_{tot} > \Gamma_{W} + \Gamma_{Z} + \Gamma_{t} + \Gamma_{g} + \dots$

■ obere Grenze durch theoretische Annahme: $g_V < g_V^{SM}$ gültig in Modellen mit nur Higgs-Dubletts und -Singuletts Rate(VBF, H→WW) ~ $\Gamma_V^2 / \Gamma_{tot} < (\Gamma_V^2 \text{ in SM}) / \Gamma_{tot}$ $\rightarrow \Gamma_{tot} < rate/(\Gamma_V^2 \text{ in SM})$

Absolute Kopplungen mit $g_v < g_v^{SM}$ Bedingung

 $\Delta g/g = \frac{1}{2} \Delta (g^2)/g^2$

Γ_{inv} für nicht detektierbare Zerfälle

Γ_{photon} (new), Γ_{gluon} (new) in Schleifenkopplung

Higgs-Physik und BSM-Phänomenologie

Kapitel 1: Higgs-Physik im SM

International Linear Collider

Linearer Elektron-Positron-Kollider mit supraleitenden Kavitäten

- Energie 500 GeV mit Ausbaumöglichkerit auf 1 TeV
- hohe Luminosität: > 500 fb⁻¹ in 4 Jahren
- flexibel: Energie einstellebar zwischen 90 (GIGAZ) und 500 GeV
- Polarisation: Elektronen (90%) + Positronen (60%)
- Vorteil: Energie und Quantenzahlen im Anfangszustand bekannt

Komplemenarität der Beschleuniger

Signal-zu-Untergrund < 10⁻¹⁰ Trigger benötigt für Reduktion um10⁻⁶ höchste Energie → Entdeckungen Signal-zu-Untergrund: ~ 10⁻² Kein Trigger nötig

Präzisionsuntersuchungen

Higgs-Physik und BSM-Phänomenologie

Kapitel 1: Higgs-Physik im SM

Higgs Produktion am ILC

Higgs-Physik und BSM-Phänomenologie

Kapitel 1: Higgs-Physik im SM

Modell- und zerfallskanalunabhängige Beobachtung

Masse: aus Peak-Position Genauigkeit ~ 50 MeV

Wirkungsquerschnitt aus Höhe: $\Delta \sigma_{ZH} \sim \Gamma_{Z\sim} \sim 2\% \rightarrow g_Z \sim 2$ bis 3 %

liggs-Physik im SM

Verzweigungsverhältnisse

- Selektiere t ZH→qq qq Ereignisse
- Bestimmte Likelihood for H→bb,cc,gg aus präzisen Spurinformation
- Anpassung von MC-Verteilungen an Daten → Ereignisraten für jeden Zerfall

H→bb

H→gg

Kapitel 1: Higgs-Physik im SM

Verzweigungverhältnisse

Experiment: Messung von $\sigma_{ZH}xBR(H\rightarrow ff)$ aus Zählrate

 σ_{ZH} modelunabhängig \rightarrow BR(H \rightarrow ff)

Kopplung an das W-Boson

Fit an das Spektrum der fehlenden Masse:

 $\sigma \sim g_w^2 x BR(H \rightarrow bb)$

Nach Messung von BR($H \rightarrow bb$) in ZH modellunabhängige Messung von g_w

 $\Delta g \sim 3$ bis 13%

Totale Zerfallsbreite

a) M < 180 GeV

 Γ_{tot} << Detektorauflösung →Indirekte Bestimmung $\Gamma_{tot} = \Gamma(H \rightarrow xx) / BR(H \rightarrow xx)$ $\Gamma(H \rightarrow WW)$ aus Messung des WQ in WW-Fusion BR(H→WW) aus Higgsstrahlung ZH, H→WW

 $\Delta\Gamma/\Gamma$ = 6 bis 13 % für M_H=120 bis 160GeV

Totale Zerfallsbreite

Top-Quark-Yukawa-Kopplung

Kleiner Wirkungsquerschnitt und "viel Masse" im Endzustand \rightarrow grosse E_{CM} = 800 GeV \rightarrow Hohe Luminosität L = 1 ab⁻¹

Top Kopplung: Synergie von LHC und ILC

LHC: Messung von $\sigma_{tth} \times BR(H \rightarrow bb)$ $\sigma_{tth} \times BR(H \rightarrow WW)$ \rightarrow g_t² x BR(H \rightarrow xx)

Bestimmung der Quantenzahlen

Vorhersage des SM: Spin = 0, CP = ungerade

Spin J: "Schwellenscan" des Wirkungsquerschnitt ee→ZH→II X (modellunabhängig)

CP:

aus Winkelverteilungen Von Z und f aus $Z \rightarrow ff$ in ee $\rightarrow ZH$ (a LHC)

(modellunabhängig)

Bestimmung von CP

- CP gerade h oder CP ungerade A ?
- CP-Natur aus Polarisation der Higgs-Zerfallsprodukte
- \rightarrow Untersuche H $\rightarrow \tau \tau \rightarrow \nu \rho \nu \rho$

> 8σ Trennung zwischen CP+ and CPfür 120 GeV Higgs (350 GeV u. 1 ab⁻¹)

Higgs-Selbstkopplung

Ist die elektroschwache Symmetrie spontan gebrochen ? Rekonstruktion des Potenzials = Messung der Triple-Higgs-Kopplung

winziger Wirkungsquerschnitt: 0.15 fb \rightarrow hohe Luminosität Komplexer Endzustand: ZH \rightarrow ZHH \rightarrow qq bb bb

Higgs-Selbstkopplung

$ZH \rightarrow ZHH \rightarrow qq$ bb bb

Neurale-Netz-Analyse: $S/\sqrt{B=6}$

Higgs-Selbstkopplung

Als einziger sensitiv auf $\lambda \rightarrow \Delta \sigma / \sigma = 13 \% \rightarrow \Delta \lambda / \lambda = 23 \%$

Higgs-Physik und BSM-Phänomenologie

Kapitel 1: Higgs-Physik im SM

Absolute Kopplungen: Überblick

Kopplungen modellunabhängig auf Niveau von wenigen % bestimmbar

Kopplung an unterschiedliche Fermionsorten auch aus 2. Generation

Higgs-Selbstkopplung auf Niveau von 20 bis 30% bestimmbar

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-

Kapitel 1: Higgs-Physik im SM

Warum die Präzision?

■ Test des bisher unentdeckten und unbekannten Higgs-Sektors
 ■ wenn Abweichung → Hinweis auf neue Physik und deren Ursprung

erwartete Präzision für SM-artiges Higgs-Boson (120 GeV) am LHC am ILC

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

Welches Higgs?

Higgs-Physik und BSM-Phänomenologie

Boran University M SM

Warum die Präzision?

Beispiele f
ür ver
änderte Kopplungen in erweiterten Higgs-Sektoren

Higgs-Physik und BSM-Phänomenologie

Kapitel 1: Higgs-Physik im SM

Fragen/Probleme des Higgs-Sektors u. des SM

Hierarchieproblem: alle Massen im SM propotional zu v=246 GeV Planckskala M_{Pl} =10¹⁹ GeV woher kommt diese große Hierarchie?

warum ist Massenparameter im Higgs-Potenzial negativ?

$$\mathbf{V} = -\mu^2 \left[\phi^+ \phi \right] + \lambda \left[\phi^+ \phi \right]^2$$
$$\mu^2 \lambda > 0$$

keine Vereinigung der Kopplungen

Fragen/Probleme des Higgs-Sektors u. des SM

Energieinhalt des Universums

keine geeignete Kandidaten für dunke Materie im SM

Neutrinos nur Prozentniveau

keine Erklärung für dunkle Energie Higgs-Hintegrundfeld in naivem Modell liefert Beitrag der um Faktor -10⁵² falsch ist (kann man fein adjustieren)

Selbstenergiekorrekturen (I): Photon

Propagatorkorrektur

Integration über innere Impulse k bis Abschneideskala bzw. unendlich

$$\begin{aligned} \pi^{\mu\nu}_{\gamma\gamma}(0) &= -\int \frac{d^4k}{(2\pi)^4} \text{tr} \left[(-ie\gamma^{\mu}) \frac{i}{\not{k} - m_e} \left(-ie\gamma^{\nu} \right) \frac{i}{\not{k} - m_e} \right] \\ &= -4e^2 \int \frac{d^4k}{(2\pi)^4} \frac{2k^{\mu}k^{\nu} - g^{\mu\nu} \left(k^2 - m_e^2\right)}{\left(k^2 - m_e^2\right)^2} \\ &= 0. \end{aligned}$$

Korrekturen verschwinden in allen Ordnungen der Störungstheorie

Photon bleibt exakt masselos

Grund: Eichsymmetrie schützt Photonmasse

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

Selbstenergiekorrekturen (II): Elektron

Elektron

$$e^{- \frac{\gamma}{k^{2} - m_{e}}(0)} = \int \frac{d^{4}k}{(2\pi)^{4}} (-ie\gamma_{\mu}) \frac{i}{k^{2} - m_{e}} (-ie\gamma_{\nu}) \frac{-ig^{\mu\nu}}{k^{2}}$$
$$= -e^{2} \int \frac{d^{4}k}{(2\pi)^{4}} \frac{1}{k^{2} (k^{2} - m_{e}^{2})} \gamma_{\mu} (k + m_{e}) \gamma^{\mu}$$
$$= -4e^{2}m_{e} \int \frac{d^{4}k}{(2\pi)^{4}} \frac{1}{k^{2} (k^{2} - m_{e}^{2})}.$$

logarithmische Divergenz: $\Delta M \sim \log \Lambda$ moderate Korrektur für $\Lambda_{Cut} = M_{Pl}$: $\delta m_e \simeq 2 \frac{\alpha_{em}}{\pi} m_e \log \frac{M_{Pl}}{m_e} \simeq 0.24 m_e$,

Grund: für m_e=0 hat Theorie chirale Symmetrie $\psi_e \rightarrow \exp(i\gamma_5 \varphi)\psi_e$ m_e<>0 bricht die Symmetrie leicht, aber dennoch schützt ursprüngliche Symmetrie gegen grosse Divergenzen

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

Selbstenergiekorrekturen (III): Higgs-Boson

- erster Term: quadratisch divergent $\Delta M^2 \sim \Lambda^2$
- Grund: keine Symmetrie schützt Higgs-Bosonmasse oder Symmetriegruppe nicht grösser für M_H=0

Für $\Lambda_{Cut} = M_{Pl}$ ist Korrekur ~10³⁰ (Vgl: Unitarität verlangt M<1TeV) kein prinzipielles Problem in Renormierung, aber Feinabstimmung auf diesem Niveau erscheint extrem feinabgestimmt und unnatürlich (Finetuning, Natureleness) Nach Renormierung: endlicher Beitrag: $N(f)m_f^2\lambda_f^2/8\pi$ Im SM: moderate Korrektur, neue Fermionen bei M_{GUT} \rightarrow gr. Korrektur

Higgs-Physik und BSM-Phänomenologie

Kapitel 1: Higgs-Physik im SM

Selbstenergiekorrekturen (IIIb): Higgs-Boson

Higgs-Boson:Eichbosonschleifen

Quadratische Divergenz von linkem Beitrag, logarithmische von rechtem

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM

Selbstenergiekorrekturen (IIIc): Higgs-Boson

Higgs-Boson:Higgsbosonschleifen

Quadratische Divergenz von linkem Beitrag, logarithmische von rechtem $\Delta M_{H}^{2} = \frac{\lambda_{S}N_{S}}{16\pi^{2}} \Big[-\Lambda^{2} + 2m_{S}^{2}\log\left(\frac{\Lambda}{m_{S}}\right) \Big] - \frac{\lambda_{S}^{2}N_{S}}{16\pi^{2}}v^{2} \Big[-1 + 2\log\left(\frac{\Lambda}{m_{S}}\right) \Big] + O\left(\frac{1}{\Lambda^{2}}\right)$

- alle Teilchenschleifen f
 ühren zu quadratischen Divergenzen
- natürlicher Wert der Higgs-Boson-Masse = Skala neuer Physik
- **–** für Λ_{neu} =M_{PI}: Korrektur ~ 10³⁰ GeV²
- nur elementare skalare Teilchen haben dieses Problem

Mögliche Auswege

Fermionkorrekturen Skalarfeldkorrekturen

$$\Delta M_H^2 = N_f \frac{\lambda_f^2}{8\pi^2} \left[-\Lambda^2 + 6m_f^2 \log \frac{\Lambda}{m_f} - 2m_f^2 \right] + \mathcal{O}(1/\Lambda^2)$$
$$\Delta M_H^2 = \frac{\lambda_s N_s}{16\pi^2} \left[-\Lambda^2 + 2m_s^2 \log \left(\frac{\Lambda}{m_s}\right) \right] - \frac{\lambda_s^2 N_s}{16\pi^2} v^2 \left[-1 + 2\log \left(\frac{\Lambda}{m_s}\right) \right] + \mathcal{O}\left(\frac{1}{\Lambda^2}\right)$$

- Einführung einer neuen Symmetrie
 - Masse des Higgs-Boson geschützt
 - neue Teilchen mit angepassten Kopplungen kompensieren Divergenz Beispiele: Supersymmetrie, Little Higgs etc.

$$\lambda_f^2 = 2m_f^2/v^2 = -\lambda_S,$$

$$\Delta M_H^2 = \frac{\lambda_f^2 N_f}{4\pi^2} \left[(m_f^2 - m_S^2) \log\left(\frac{\Lambda}{m_S}\right) + 3m_f^2 \log\left(\frac{m_S}{m_f}\right) \right] + \mathcal{O}\left(\frac{1}{\Lambda^2}\right)$$

Mögliche Auswege

Abschneideskala M $_{Pl}$ ist bei etwa TeV \rightarrow Korrektur moderat

- zumindest Gravitation lebt in neuen Raumdimensionen
- dort is M_{PL} bei TeV, in drei Dimensionen ist M_{Pl}=10¹⁹GeV Beispiele: ADD-Modell, RS-Modell, Universal Extra Dimensions, ...

- Vermeide elementare skalare Teilchen im Spektrum
 - "Higgs-Boson" ist zusammengesetzt

Beispiel: Technicolor, aus Techniquarks mittels TC-Wechselwirkung (Analogie: Pion ein Quarkantiquarkbindungszustand in QCD)

- "Higgs Boson" ist 5. Komponente eines Eichfeldes in höheren Dim.
 Beispiel: Higgsless Models

Literatur

Die Artikel aus vorherigem Kapitel

Theorie:

- 1) An Introduction to supersymmetry. By Manuel Drees , hep-ph/9611409
- 2) The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model. By Abdelhak Djouadi , Phys.Rept.459:1-241,2008, hep-ph/0503173

ILC:

- 1) TESLA: The Superconducting electron positron linear collider Technical design report. Part 3. Physics at an e+ e- linear collider. By ECFA/DESY LC Physics Working Group, hep-ph/0106315
- 2) Higgs physics at a future e+ e- linear collider. By Markus Schumacher, hep-ph/0107273

Additional small coupling: "SM + g_{5E} CPE"

- (i) different total cross section and (ii) distorsion of $\Delta \phi_{ii}$ distribution
 - SM+CPE: interference significant in $\Delta \phi_{ii}$ distribution
 - SM+CPO: no interference effects in the $\Delta \phi_{ii}$ distribution

 \rightarrow only SM+ g_{5E} CPE contribution studied here

 $\Delta g_{5E} = 0.11$ at m_H = 160 GeV in H \rightarrow WW for 30 fb⁻¹ $\Delta g_{5E} = 0.24$ at m_H = 120 GeV in H $\rightarrow \tau\tau$ for 30 fb⁻¹

systematic uncertainty from BG normalisation < 0.02 caveats: LO MC generators, gluon fusion from PYTHIA

Higgs-Physik und BSM-Phänomenologie Kapitel 1: Higgs-Physik im SM