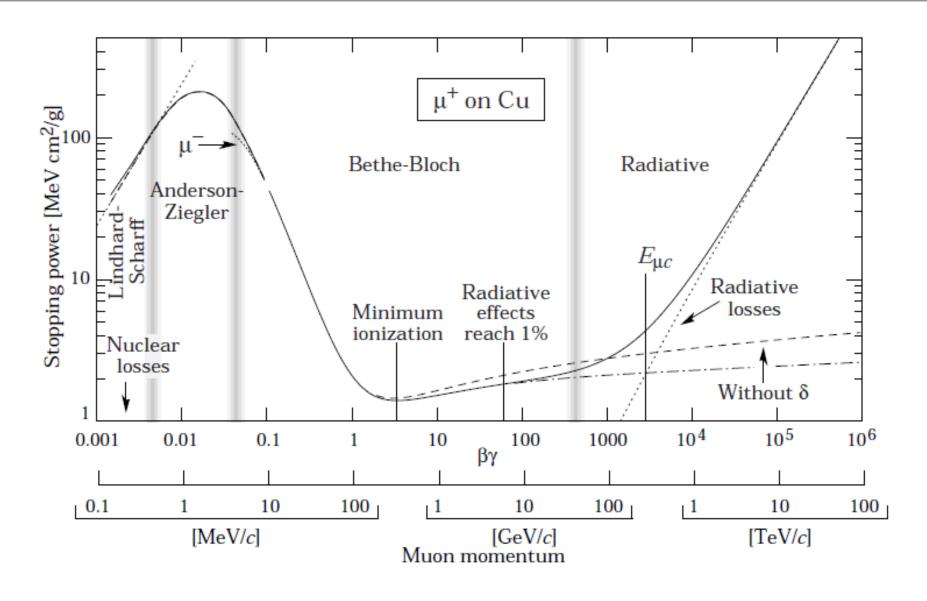
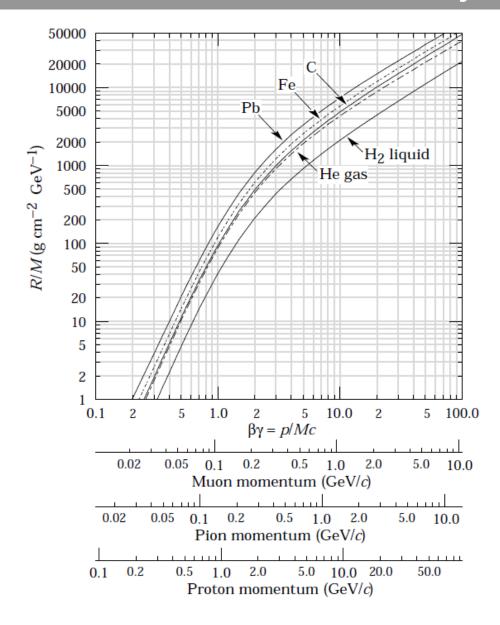
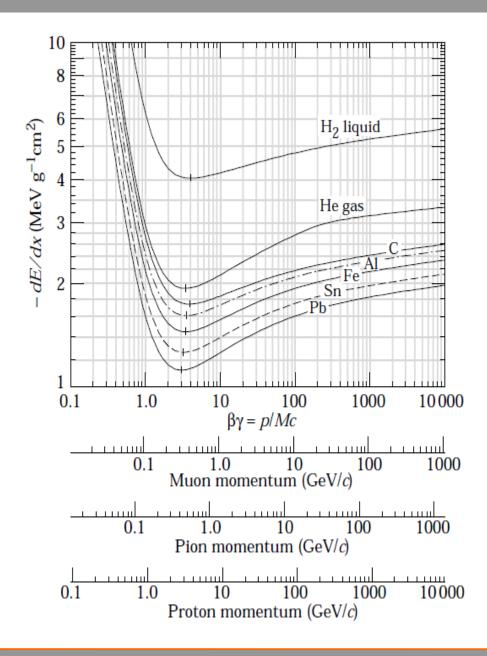
Experimentalphysik VI Kern- und Teilchenphysik


Prof. Markus Schumacher

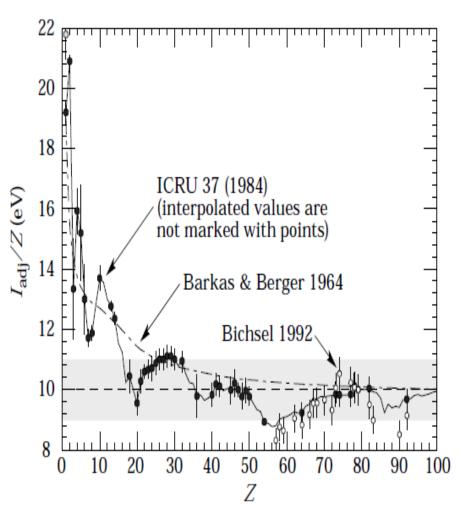
ALU Freiburg, Sommersemsester 2010


Kapitel 7: Nachweis von Teilchen und Detektoren

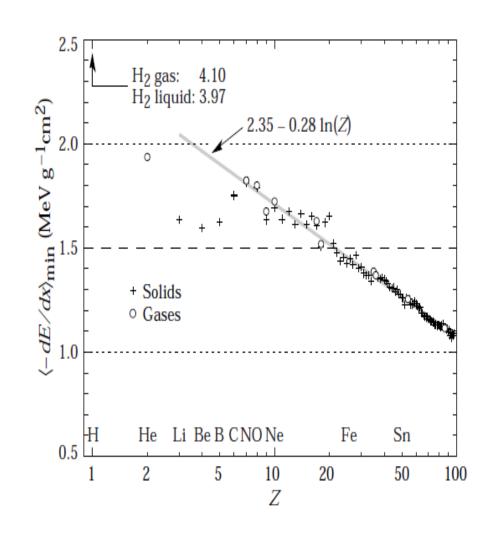
Symbol	Definition	Units or Value					
α	Fine structure constant	1/137.035 999 11(46)					
M	$(e^2/4\pi\epsilon_0\hbar c)$ Incident particle mass	MeV/c^2					
	Incident particle mass Incident part, energy γMc^2	MeV MeV					
T	Kinetic energy						
	Electron mass $\times c^2$	0.510 998 918(44) MeV					
r_e	Classical electron radius	2.817 940 325(28) fm					
	$e^2/4\pi\epsilon_0 m_e c^2$	· /					
N_A	Avogadro's number	$6.0221415(10)\times10^{23}\;\mathrm{mol}^{-1}$					
ze	Charge of incident particle						
Z	Atomic number of absorber						
	Atomic mass of absorber	$\mathrm{g} \; \mathrm{mol}^{-1}$					
K/A	$4\pi N_A r_e^2 m_e c^2/A$	$0.307075~{ m MeV~g^{-1}~cm^2}$					
		for $A = 1 \text{ g mol}^{-1}$					
I	Mean excitation energy	eV (Nota bene!)					
$\delta(eta\gamma)$							
$\hbar\omega_p$		$\sqrt{\rho \langle Z/A \rangle} \times 28.816 \text{ eV}$					
	$(\sqrt{4\pi N_e r_e^3} \ m_e c^2/\alpha)$	$(\rho \text{ in g cm}^{-2})$					
N_c	Electron density	(units of r_e) ⁻³					
w_{j}	Weight fraction of the j th element in a compound or mixture						
n_{j}	\propto number of jth kind of atoms in a compound or mixture						
_	$4\alpha r_e^2 N_A / A$ (716.408 g cm ⁻²) ⁻¹ for $A = 1$ g mol ⁻¹						
X_0	Radiation length	$g cm^{-2}$					
E_c	Critical energy for electrons	MeV					
$E_{\mu c}$	Critical energy for muons	GeV					
E_s	Scale energy $\sqrt{4\pi/\alpha} \ m_e c^2$	$21.2052\;\mathrm{MeV}$					
R_M	Molière radius	${\rm g~cm^{-2}}$					


Energieverlust schwerer Teilchen

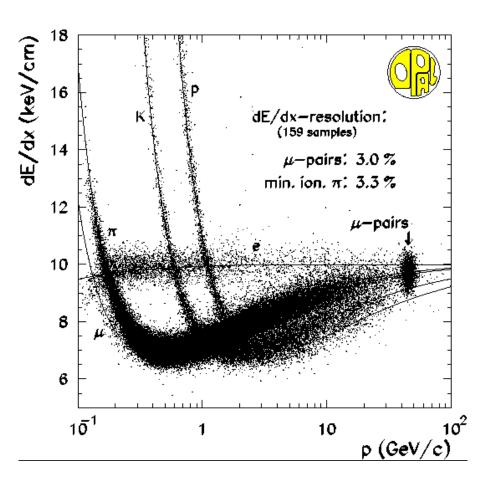
Reichweite/Dichte/Masse des Projektils

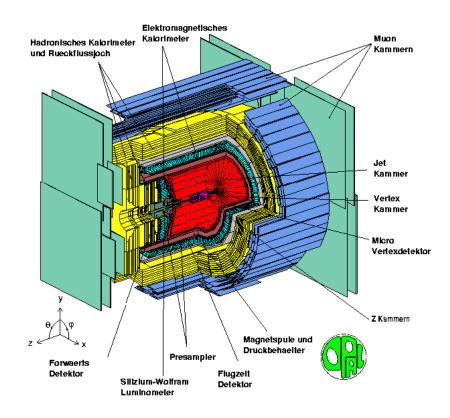


Bethe-Bloch-Kurven in unterschiedlichen Materialien



Materialanhängigkeiten


Mittlere Ionisationsnergie/Z



Minimales dE/dx

Teilchenidentifikation mittels dE/dx- vs Impuls-Messung

Landau-Verteilung für Häufikeit von -dE/dx in Einzelkollisionen

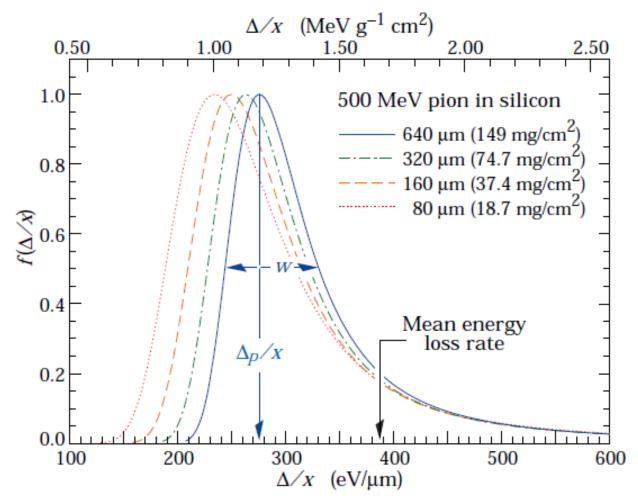
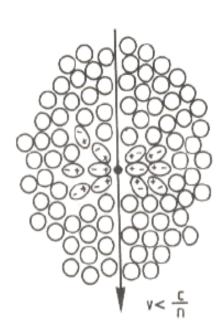


Figure 27.7: Straggling functions in silicon for 500 MeV pions, normalized to unity at the most probable value δ_p/x . The width w is the full width at half maximum.

dE/dx-für Elektronen

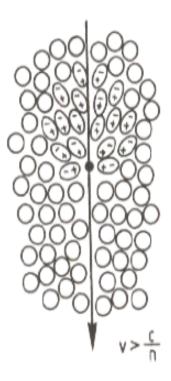
Ionisationsverlust für Elektronen:


$$-\frac{dE}{dx} = 4\pi \frac{e^2 N_L}{m_e c^2} \rho \frac{Z}{A} \frac{1}{\beta^2}.$$

$$\cdot \left[\ln \frac{\gamma m_e c^2 \beta \sqrt{\gamma - 1}}{\sqrt{2} < I >} + \frac{1}{2} (1 - \beta^2) - \frac{2\gamma - 1}{2\gamma^2} ln2 + \frac{1}{16} \left(\frac{\gamma - 1}{\gamma} \right)^2 \right]$$

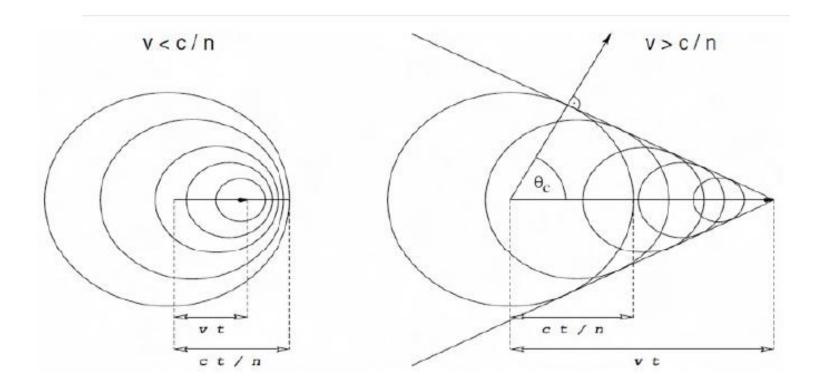
Bethe Bloch Formel gilt nicht für Elektronen

(gleiche Massen, ununterscheidbare Teilchen)


Cherenkovstrahlung: Polarisation des Mediums

Teilchen polarisiert das Medium

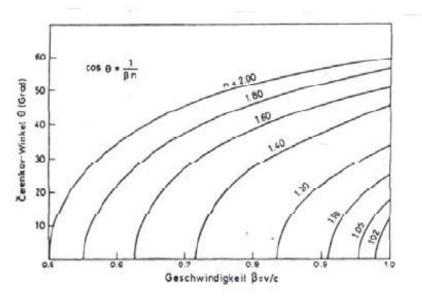
$$v_{pol} = c/n > v$$


- → symmetrisch in Vorwärts- und Rückwärtsrichtung
- → kein resultierendes Dipolmoment

Atome in Rückwärtsrichtung bleiben polarisiert, keine Polarisation in Vorwärtsrichtung

- → resultierendes Dipolmoment am Ort des Teilchens
- → el. magn. Strahlung

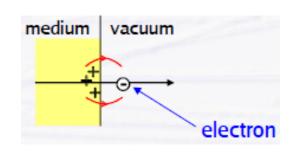
Cherenkovstrahlung: Abstrahlung in Kegel

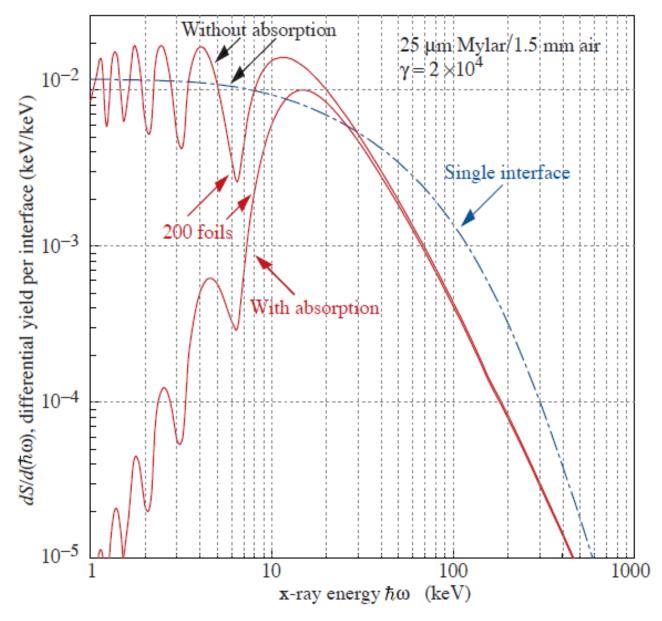

 Abstrahlung von Photonen, wenn ein geladenes Teilchen schneller ist als die Lichtgeschwindigkeit im Medium: Konstruktive Interferenz

Abstrahlung unter einem charakteristischen Winkel:

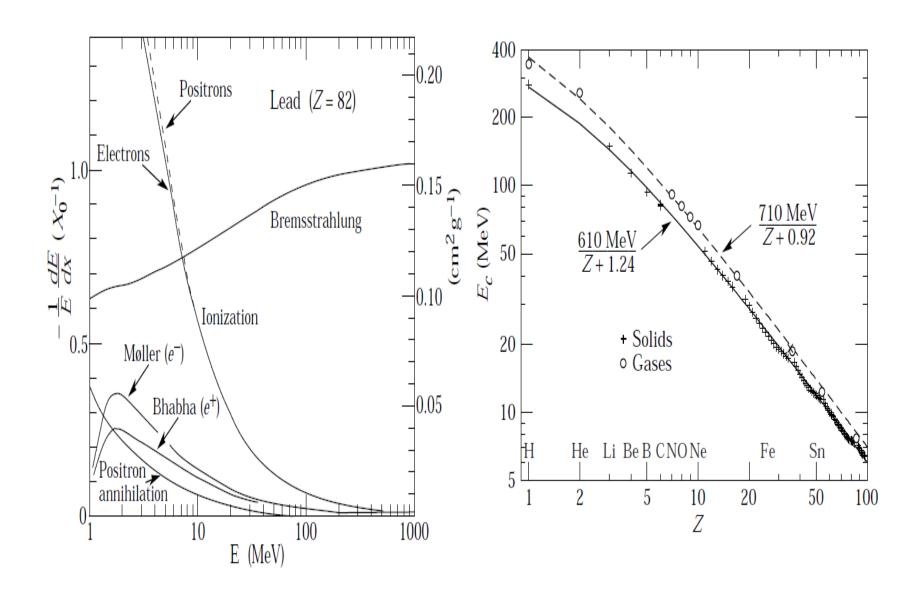
$$\cos\theta_c = \frac{ct/n}{vt} = \frac{1}{n\beta}$$

Wellenlängen-Maximum im UV-Bereich

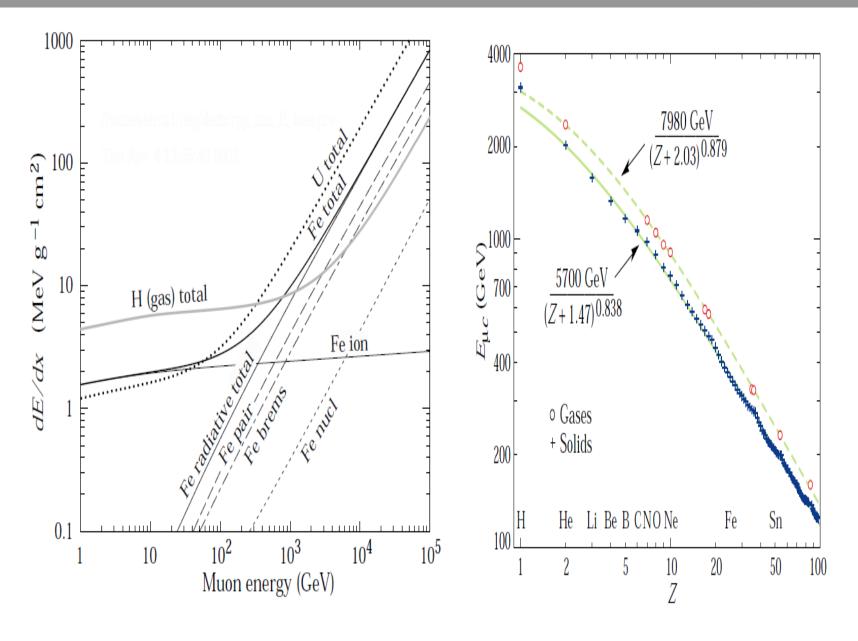

Cherenkovstrahlung: Polarisation des Mediums

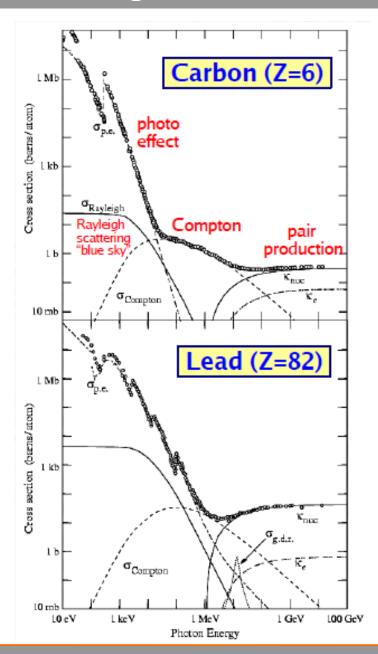


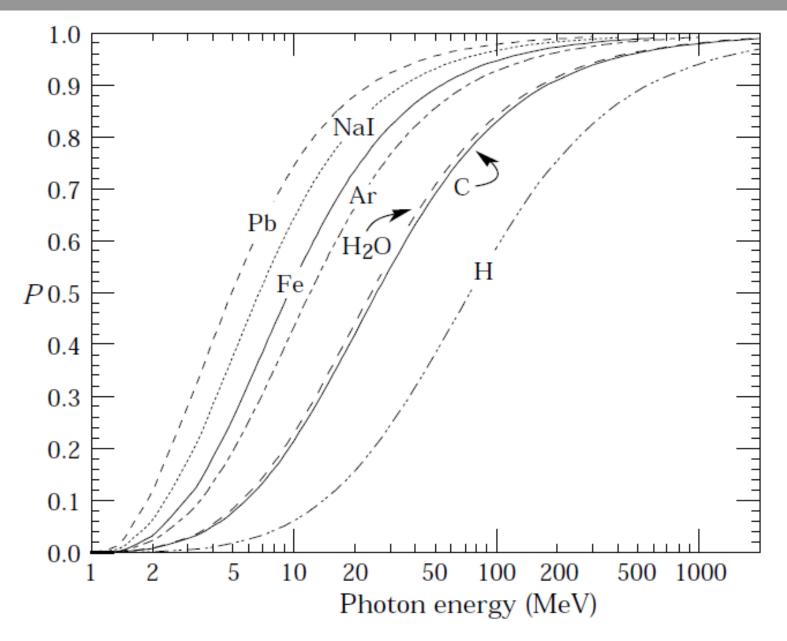
Material	n-1	β -Schwelle	γ -Schwelle
festes Natrium	3.22	0.24	1.029
Bleisulfit	2.91	0.26	1.034
Diamant	1.42	0.41	1.10
Zinksulfid $(ZnS(Ag))$	1.37	0.42	1.10
Silberchlorid	1.07	0.48	1.14
Flintglas (SFS1)	0.92	0.52	1.17
Bleifluorid	0.80	0.55	1.20
Clerici-Lösung	0.69	0.59	1.24
Bleiglas	0.67	0.60	1.25
Thalliumformiat-Lösung	0.59	0.63	1.29
Szintillator	0.58	0.63	1.29
Plexiglas	0.48	0.66	1.33
Borsilikatglas	0.47	0.68	1.36
Wasser	0.33	0.75	1.52
Aerogel	0.025 - 0.075	0.93 - 0.976	4.5 - 2.7
Pentan (STP)	$1.7 \cdot 10^{-3}$	0.9983	17.2
CO2 (STP)	$4.3 \cdot 10^{-4}$	0.9996	34.1
Luft (STP)	$2.93 \cdot 10^{-4}$	0.9997	41.2
H_2 (STP)	$1.4 \cdot 10^{-4}$	0.99986	59.8
He (STP)	$3.3 \cdot 10^{-5}$	0.99997	123


Tabelle 6.2: Cherenkov-Radiatoren [94, 32, 313]. Der Brechungsindex für Gase bezieht sich auf $0^{\circ}C$ und 1 atm (STP). Festes Natrium ist für Wellenlängen unterhalb von 2000 Å transparent [373, 209].

Übergangsstrahlung: Photonenergiespektrum



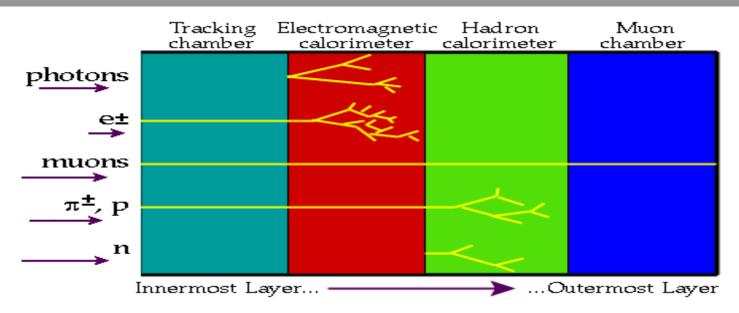

Bremsstrahlung für Elektronen und kritische Energie

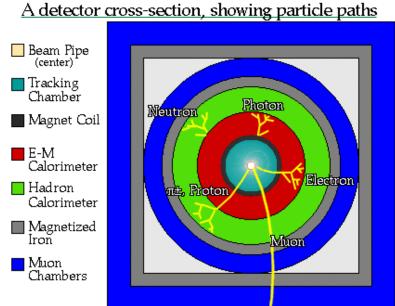

Bremsstrahlung vn Myonen und kritische Energie

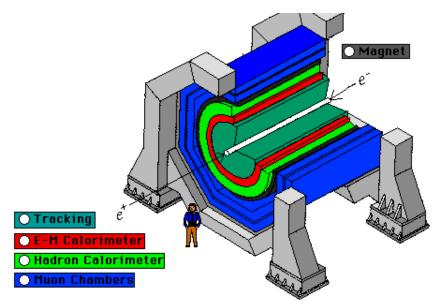
Wechselwirkung von Photonen mit Materie

Anteil von Paarbildung an Wechselwirkung von Photonen mit Materie

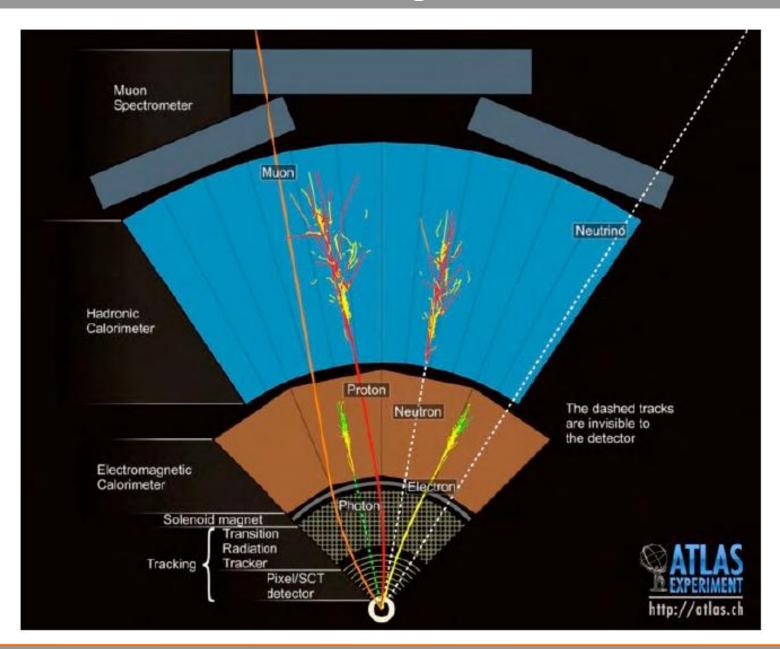
Materialabhängigkeit:

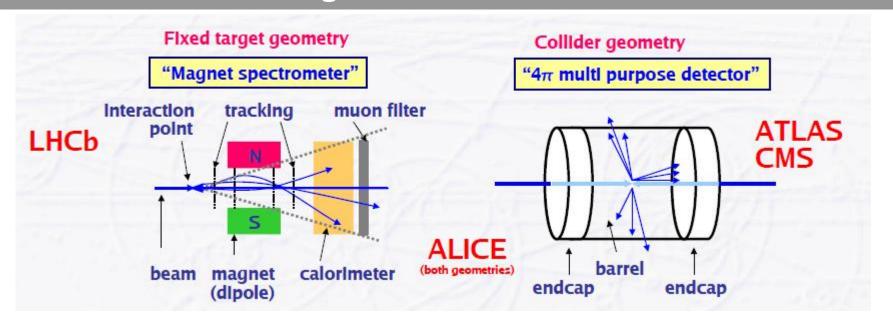

Material	Z	A	$X_0[g/cm^2]$	X_0/ϱ [cm]	$E_c[MeV]$
Wasserstoff	1	1.01	63	700000	350
Helium	2	4.00	94	530000	250
Lithium	3	6.94	83	156	180
Kohlenstoff	6	12.01	43	18.8	90
Stickstoff	7	14.01	38	30500	85
Sauerstoff	8	16.00	34	24000	75
Aluminium	13	26.98	24	8.9	40
Silizium	14	28.09	22	9.4	39
Eisen	26	55.85	13.9	1.76	20.7
Kupfer	29	63.55	12.9	1.43	18.8
Silber	47	109.9	9.3	0.89	11.9
Wolfram	74	183.9	6.8	0.35	8.0
Blei	82	207.2	6.4	0.56	7.40
Luft	7.3	14.4	37	30000	84
SiO ₂	11.2	21.7	27	12	57
Wasser	7.5	14.2	36	36	83


Charakeristische Größen von Materialien


Table 6.1 Abridged from pdg.1bl.gov/AtomicNuclearProperties by D. E. Groom (2007). See web pages for more detail about entries in this table including chemical formulae, and for several hundred other entries. Quantities in parentheses are for NTP (20°C and 1 atm), and square brackets indicate quantities evaluated at STP. Boiling points are at 1 atm. Refractive indices n are evaluated at the sodium D line blend (589.2 mm); values $\gg 1$ in brackets are for $(n-1) \times 10^6$ (gases).

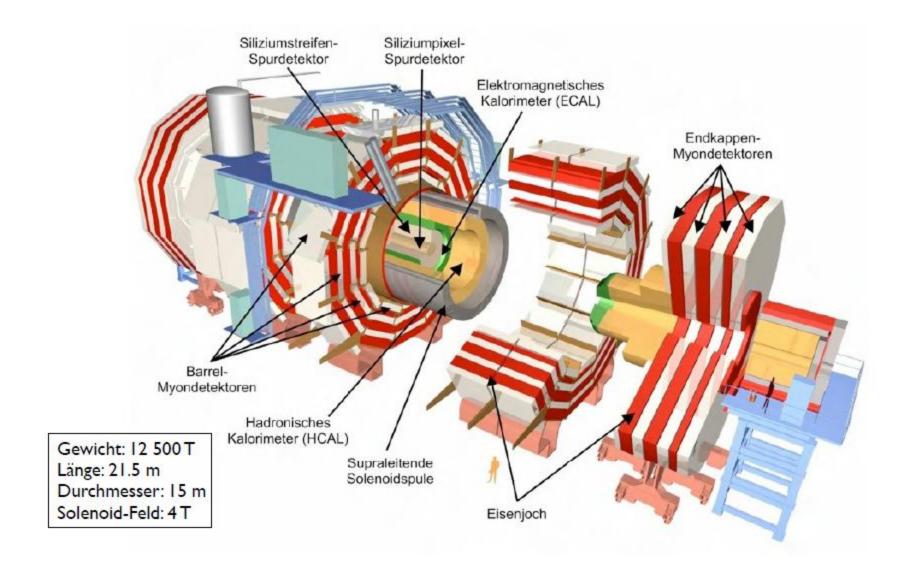
Material	Z	A	$\langle Z/A \rangle$		Nucl.inter.				Melting	Boiling	Refract
					length λ_I	X ₀	{ MeV	{g cm ⁻³ }	point	point	index
				{g cm ⁻² }	$\{\mathrm{g~cm}^{-2}\}$	$\{\mathrm{g}\mathrm{cm}^{-2}\}$	$g^{-1}cm^{2}$	$(\{g\ell^{-1}\})$	(K)	(K)	(@ Nn I
H_2	1	1.00794(7)	0.99212	42.8	52.0	63.04		0.071(0.084)	13.81	20.28	1.11[132
O_2	1	2.01410177803(8)	0.49650	51.3	71.8	125.97		0.169(0.168)	18.7	23.65	1.11[138
le .	2	4.002602(2)	0.49967	51.8	71.0	94.32		0.125(0.166)	450.0	4.220	1.02[35.
i Be	3	6.941(2)	0.43221	52.2 55.3	71.3 77.8	82.78 65.19	1.639 1.595	0.534 1.848	453.6 1560.	1615. 2744.	
diamond	6	9.012182(3) 12.0107(8)	0.49955	59.2	85.8	42.70	1.725	3.520	1300.	2144.	2.42
graphite	6	12.0107(8)	0.49955	59.2	85.8	42.70	1.742	2.210			2.42
V ₂	7	14.0067(2)	0.49976	61.1	89.7	37.99		0.807(1.165)	63.15	77.29	1.20[29
02	8	15.9994(3)	0.50002	61.3	90.2	34.24		1.141(1.332)	54.36	90.20	1.22 27
72	9	18.9984032(5)	0.47372	65.0	97.4	32.93		1.507(1.580)	53.53	85.03	[195.]
Ve	10	20.1797(6)	0.49555	65.7	99.0	28.93		1.204(0.839)	24.56	27.07	1.09[67.
AI.	13	26.9815386(8)	0.48181	69.7	107.2	24.01	1.615	2.699	933.5	2792.	
ši	14	28.0855(3)	0.49848	70.2	108.4	21.82	1.664	2.329	1687.	3538.	3.95
\mathbb{I}_2	17	35.453(2)	0.47951	73.8	115.7	19.28	(1.630)	1.574(2.980)	171.6	239.1	[773.]
\r	18	39.948(1)	0.45059	75.7	119.7	19.55		1.396(1.662)	83.81	87.26	1.23 28
ľi	22	47.867(1)	0.45961	78.8	126.2	16.16	1.477	4.540	1941.	3560.	
le .	26	55.845(2)	0.46557	81.7	132.1	13.84	1.451	7.874	1811.	3134.	
Ou .	29	63.546(3)	0.45636	84.2	137.3	12.86	1.403	8.960	1358.	2835.	
Ge .	32	72.64(1)	0.44053	86.9	143.0	12.25	1.370	5.323	1211.	3106.	
in Ce	50 54	118.710(7)	0.42119	98.2	166.7 172.1	8.82	1.263	7.310	505.1	2875.	1 90/20
Ve V	74	131.293(6)	0.41129	100.8	172.1	8.48		2.953(5.483)	161.4	165.1 5828.	1.39[70
n Pt		183.84(1)	0.40252	110.4		6.76	1.145	19.300	3695.	5828. 4098.	
	78	195.084(9)	0.39983	112.2	195.7	6.54	1.128	21.450	2042.		
Au Pb	79 82	196.966569(4) 207.2(1)	0.40108	112.5 114.1	196.3 199.6	6.46 6.37	1.134	19.320 11.350	1337. 600.6	3129. 2022.	
J	92	[238.02891(3)]	0.38651	118.6	209.0	6.00	1.081	18.950	1408.	4404.	
		200012002(0)									
Air (dry, 1 a			0.49919	61.3	90.1	36.62	(1.815)	(1.205)		78.80	
Shielding cor Sorosilicate			0.50274	65.1 64.6	97.5 98.5	26.57 28.17	1.711 1.696	2.300 2.230			
end glass	gmas (F)	yrex)	0.42101	95.9	158.0	7.87	1.255	6.220			
standard roc	k		0.50000	66.8	101.3	26.54	1.688	2.650			
Methane (Cl	Ha)		0.62334	54.0	73.8	46.47	(2.417)	(0.667)	90.68	111.7	[444.]
Sthane (Col			0.59861	55.0	75.9	45.66	(2.304)	(1.263)	90.36	184.5	[***.]
ropane (C ₃			0.58962	55.3	76.7	45.37		0.493(1.868)	85.52	231.0	
Butane (C ₄ F			0.59497	55.5	77.1	45.23	(2.278)	(2.489)	134.9	272.6	
Octane (CsF	I ₁₈)		0.57778	55.8	77.8	45.00	2.123	0.703	214.4	398.8	
Paraffin (CH	$I_3(CH_2)_1$	1≈23CH ₃)	0.57275	56.0	78.3	44.85	2.088	0.930			
Nylon (type	6, 6/6)		0.54790	57.5	81.6	41.92	1.973	1.18			
olycarbona			0.52697	58.3	83.6	41.50	1.886	1.20			
olyethylene			0.57034	56.1	78.5	44.77	2.079	0.89			
		halate (Mylar)	0.52037	58.9	84.9	39.95	1.848	1.40			
olyimide fil			0.51264	59.2	85.5	40.58	1.820	1.42			
		late (acrylic)	0.53937	58.1	82.8	40.55	1.929	1.19			1.49
Polypropyler Polystyrene		HCH _{ala})	0.55998	56.1 57.5	78.5 81.7	44.77 43.79	2.041 1.936	0.90 1.06			1.59
Polystyrene Polytetraflu			0.33708	63.5	94.4	34.84	1.671	2.20			1.49
Polyvinyltoh		an (action)	0.54141	57.3	81.3	43.90	1.956	1.03			1.58
Aluminum o		anhina)	0.49038	65.5	98.4	27.94	1.647	3.970	2327.	3273.	1.77
Sarium flour			0.49038	90.8	149.0	9.91	1.303	4.893	1641.	2533.	1.47
sarium nour Bismuth gen			0.42207	96.2	159.1	7.97	1.251	7.130	1317.	zodo.	2.15
Sarbon diox			0.42003	60.7	88.9	36.20	1.819	(1.842)	arrai.		[449.]
olid carbon			0.49989	60.7	88.9	36.20	1.787	1.563	Sublime	nt 194.7	
lesium iodio		()	0.41569	100.6	171.5	8.39	1.243	4.510	894.2	1553.	1.79
ithium fluo		7)	0.46262	61.0	88.7	39.26	1.614	2.635	1121.	1946.	1.39
ithium hyd			0.50321	50.8	68.1	79.62	1.897	0.820	965.		
ead tungstr			0.41315	100.6	168.3	7.39	1.229	8.300	1403.		2.20
		, fused quartz)	0.49930	65.2	97.8	27.05	1.699	2.200	1986.	3223.	1.46
odium chlo		C1)	0.55509	71.2	110.1	21.91	1.847	2.170	1075.	1738.	1.54
odium iodio			0.42697	93.1	154.6	9.49	1.305	3.667	933.2	1577.	1.77
Water (H ₂ O))		0.55509	58.5	83.3	36.08	1.992	1.000(0.756)	273.1	373.1	1.33
ilica aeroge			0.50093	65.0	97.3	27.25	1.740	0.200	(n nn 11	O, 0.97 Si	-

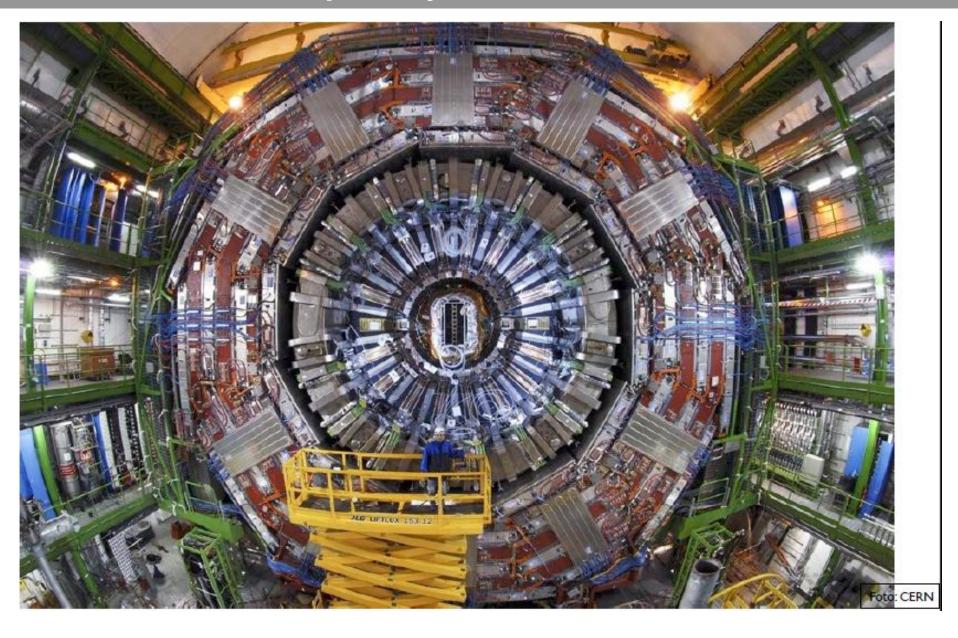

Prinzipieller Aufbau eines Kolliderdetektors

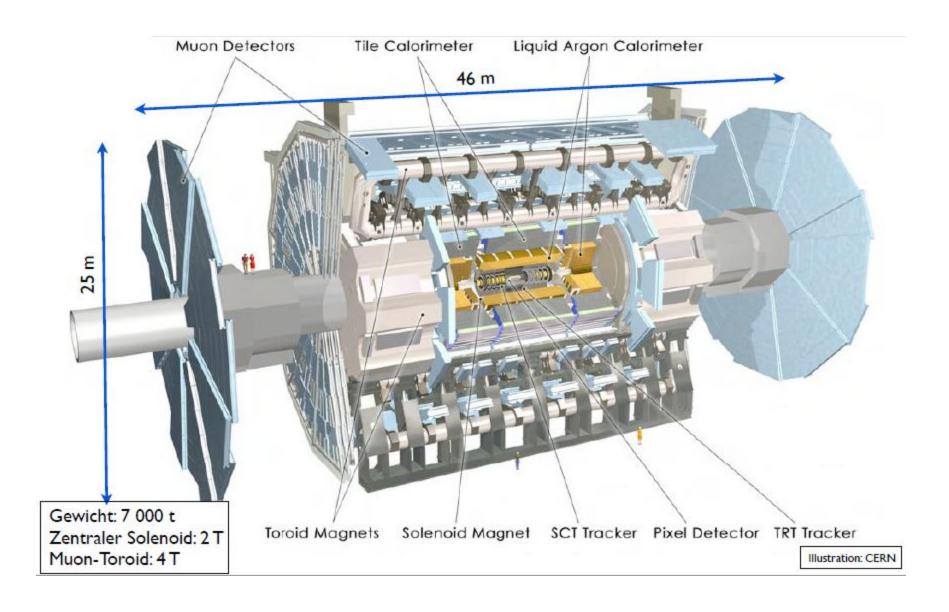


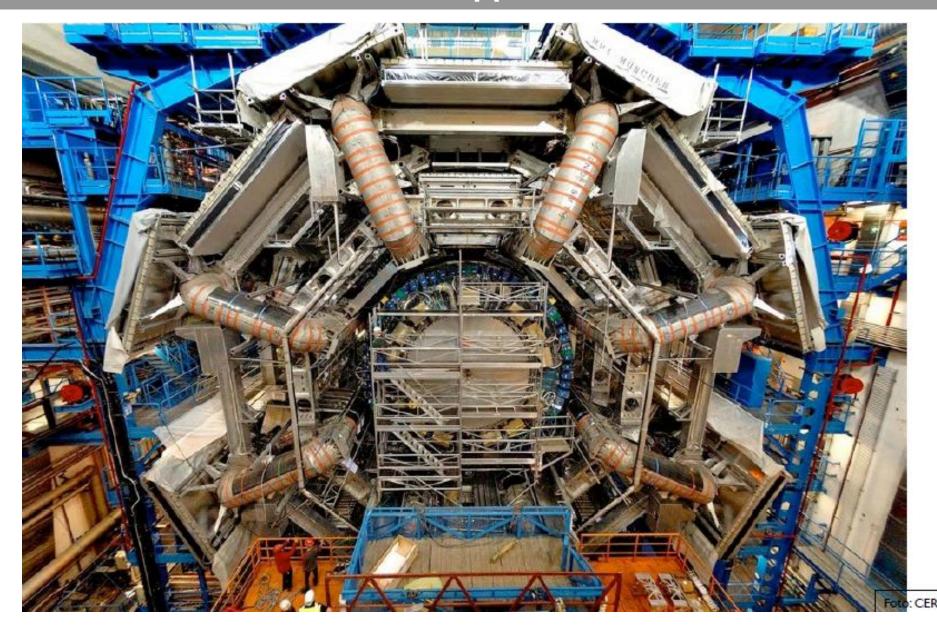
Teilchenwechselwirkung im Kolliderdetektor

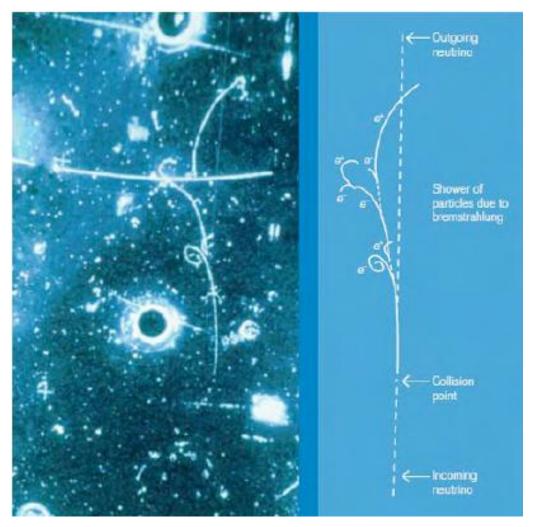

Fixed-Target und Kollider-Detektor


Fixed-Target Detector


Collider Detector

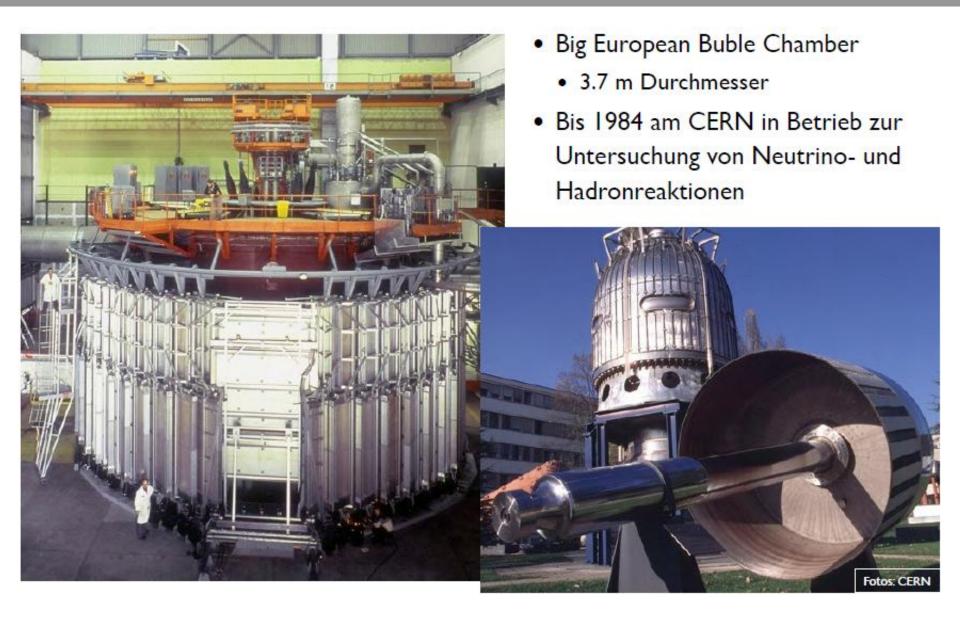

Compact Myon Solenoid


Compact Myon Solenoid CMS

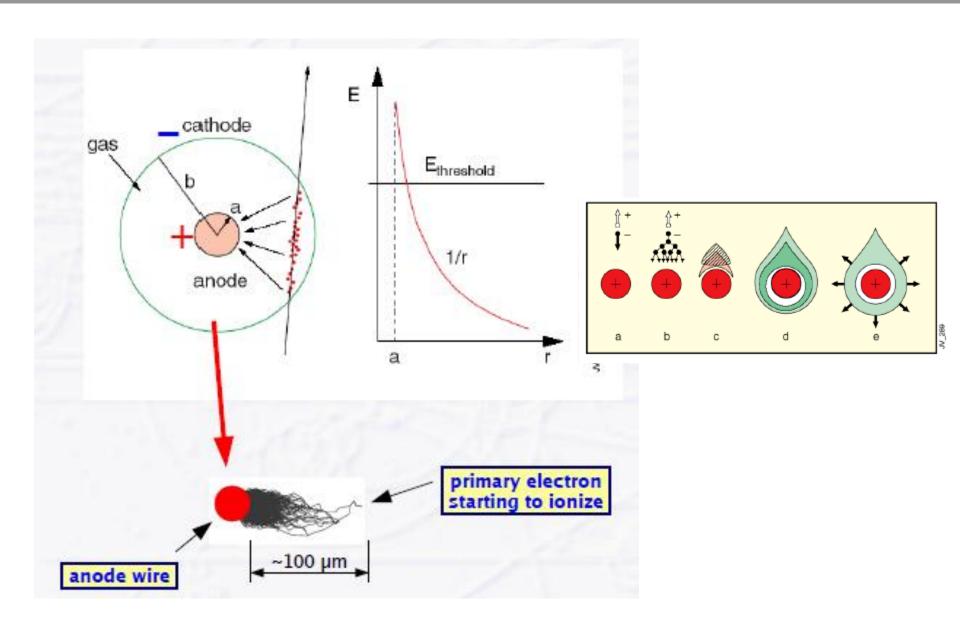

A Toridal LHC Apparatus ATLAS

A Toridal LHC Apparatus ATLAS

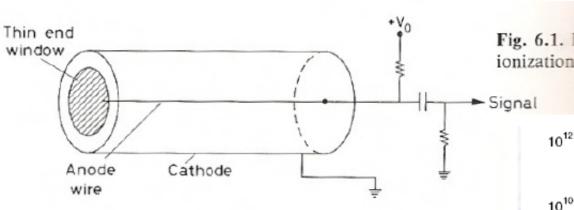
Ionisation in Blasenkammer

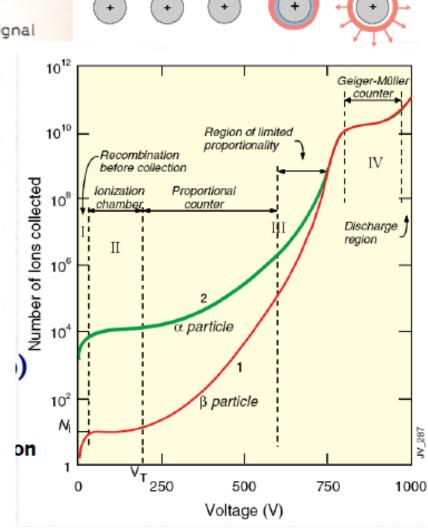


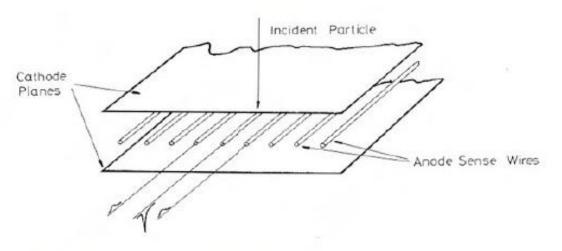
- Meistens mit überhitztem flüssigen H₂ gefüllte Kammer, in der Teilchenspuren durch Blasenbildung sichtbar werden
 - Überhitzung wird durch schnelle Expansion erreicht


Donald Glasser 1952 (NP 1960)

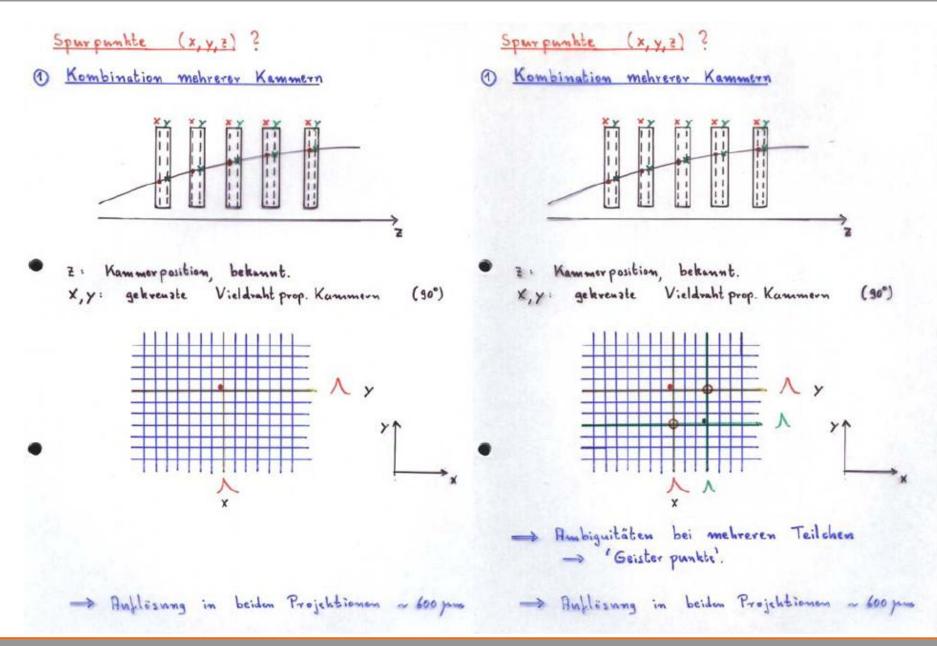
Entdeckung der neutralen Ströme Gargamelle, 1972


Beispiel für ein Blasenkammer: BEBC


Prinzip der Signalverstärkung


Nachweis der Ionisation

- Teilchendurchgang erzeugt Elektron-Ionen-Paare in Gasvolumen
- Elektronen werden in einem starken Elektrischen Feld beschleunigt, es kommt zu einer Lawinenverstärkung
- Je nach Spannung ist das Signal proportional zur ursprünglich deponierten Ladung oder geht in Sättigung


Vieldrahtproportionalkammer (MWPC)

0.4 0.5 0.6 0.7 0.80 0.85 0.90 0.5

- Vieldraht-Proportionalkammer
 MWPC
- G. Charpak 1968 (Nobel-Preis 1992)

Vieldrahtproportionalkammer (MWPC)

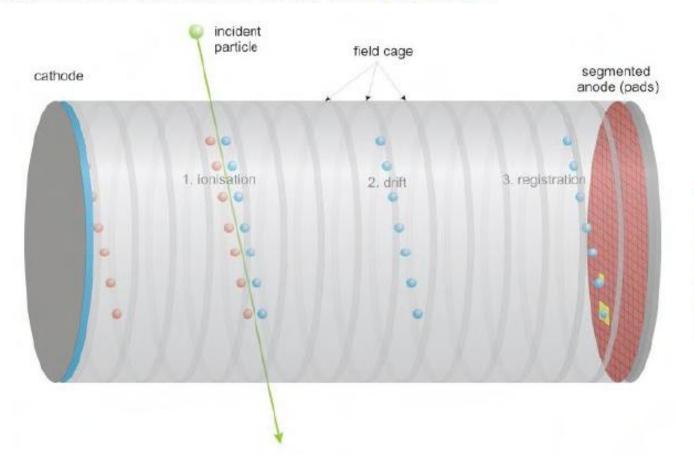
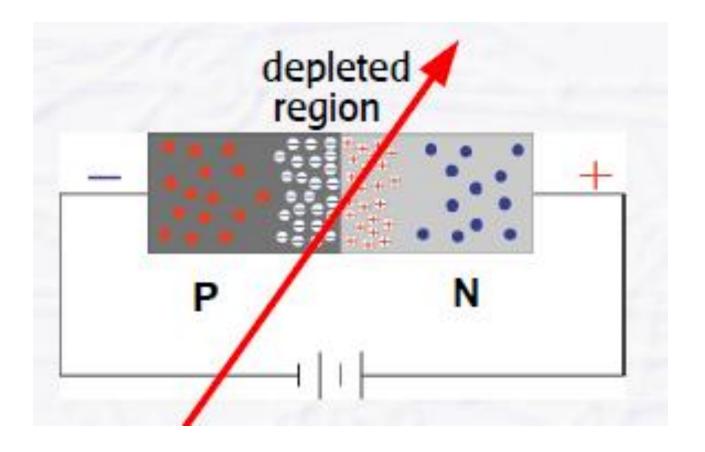
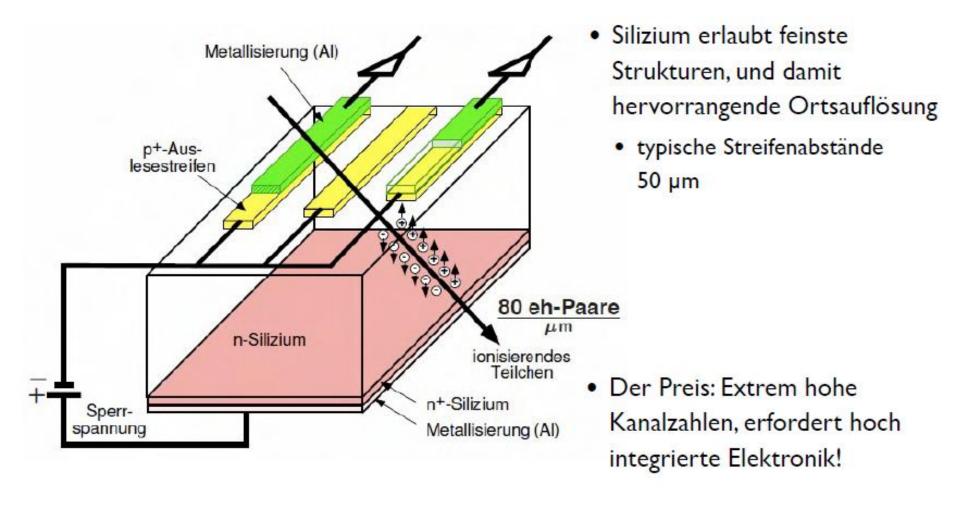

Prinzip des Aufbaus einer Driftkammer

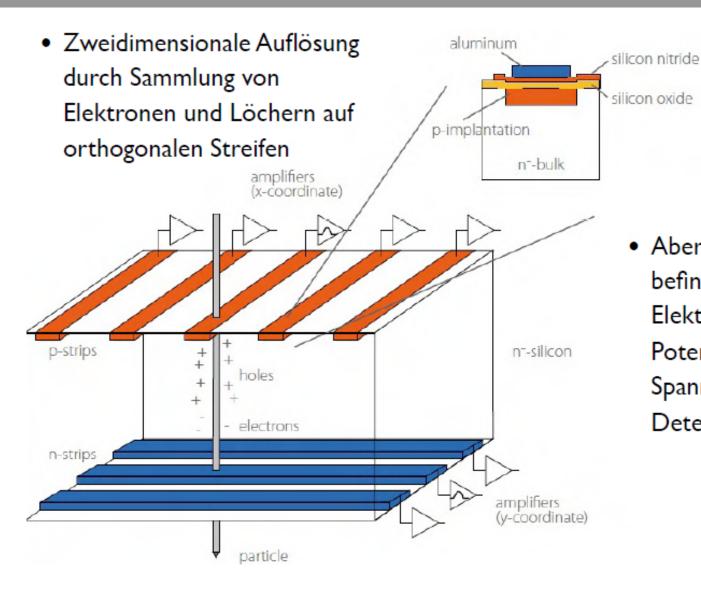
Abb. 4.41 Prinzipieller Aufbau einer zylindrischen Driftkammer. Die Abbildung zeigt einen Schnitt durch die Kammer senkrecht zu den Drähten.


Prinzip des Aufbaus einer Zeitprojektionskammer TPC

 Das Driftkammer-Prinzip weitergedacht: Kombination von 2D-Ortsinformation und Zeit zur echten 3D-Punkt-Rekonstruktion

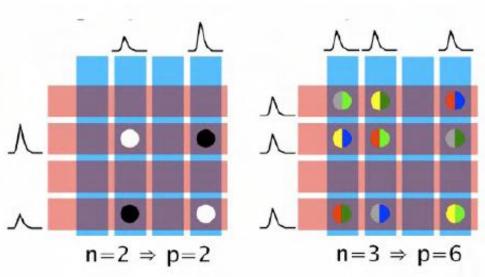

Auslese an der Anode meist über MWPCs, inzwischen auch neue Entwicklungen

Prinzip des Halbleiterdetektors: Diode in Sperrrichtung

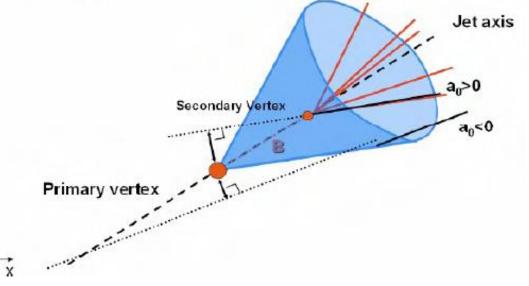


charged particle can create new electron/hole pairs in depletion area sufficient to create a signal typically 20'000 - 30'000 electron/hole pairs in 300 µm thick material

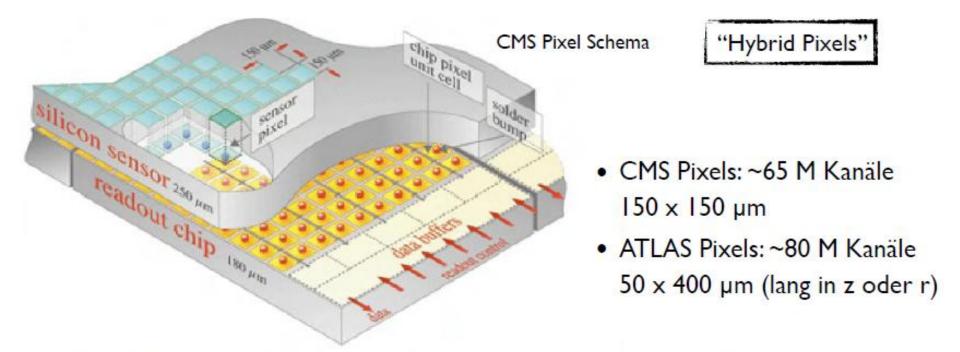
Prinzip des Streifendetektors



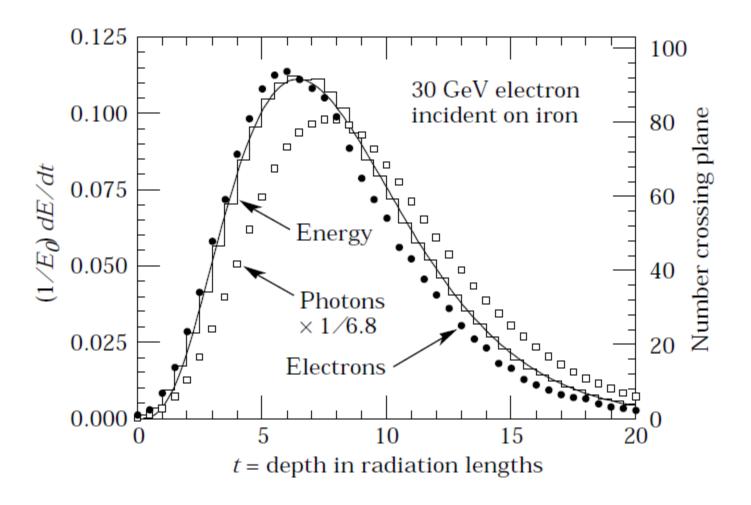
2D-Information: Doppelseitige Streifendetektoren


 Aber: Auf einer Seite befindet sich dann die Elektronik auf hohem Potential (durch Bias-Spannung über dem Detektor)

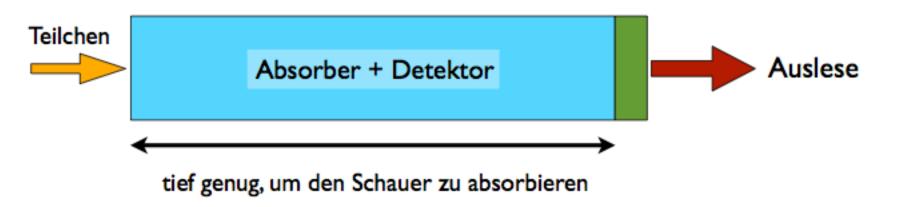
Limitierungen von Streifendetektoren


 Bei hoher Teilchendichte gibt es Ambiguitäten bei der Streifenauslese: Spurrekonstruktion bricht zusammen

 Ortsauflösung ist nur in einer Koordinate gut, meist nicht ausreichend, um sekundäre Zerfalls-Vertices zu rekonstruieren


Soft lepton

Oprinzip des Pixeldetektors


- Pixel-Detektoren ermöglichen Spurrekonstruktion bei hoher Teilchendichte ohne Ambiguitäten
- Gute Ortsauflösung in zwei Koordinaten (abhängig von Pixelgröße und Ladungsteilung zwischen Pixeln)
- Extrem hohe Kanalzahl: Komplexe Auslese, vor allem wenn es schnell gehen muss

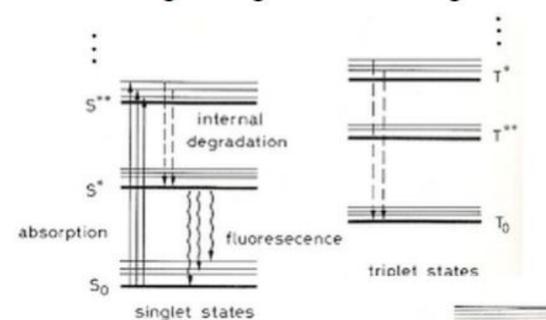
Longitudinales Schauerprofil

Homogene Kalorimeter

- Grundsätzlich unterscheiden wir zwei Arten von Kalorimetern (je nach verwendeter Technik):
 - Homogene Kalorimeter
 - Das Absorber-Material ist aktiv; die gesamte deponierte Energie wird in ein Detektor-Signal umgewandelt
 - Pro: Sehr gute Energieauflösung
 - Kontra: Segmentierung schwierig, Wahl der Materialien eingeschränkt, sehr kompakte Kalorimeter meist nicht möglich

Sampling Kalorimeter

- Sampling-Kalorimeter
 - Eine Schichtstruktur aus passivem Absorber-Material und aktivem Detektor-Material; nur ein kleiner Teil der deponierten Energie wird "gesehen"
 - Pro: Segmentierung (transversal und lateral), kompakte Detektoren durch sehr dichte Absorber
 - Kontra: Energieauflösung wird durch Fluktuationen begrenzt

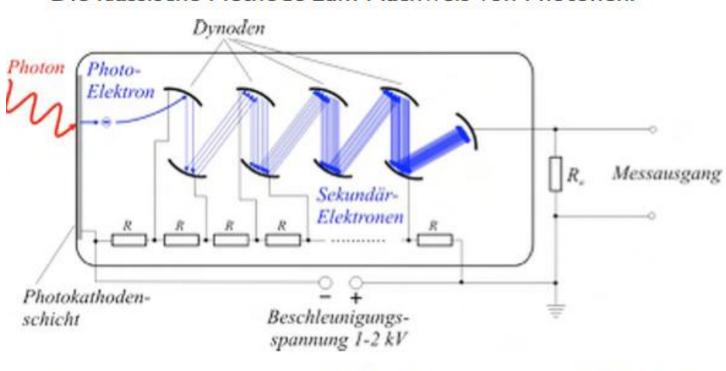

Wichtige Größe: Sampling Fraction

Bestimmt, welcher Anteil der Energie einesdurchgehenden Teilchens im aktiven Material gesehen wird.

Typischerweise im Prozentbereich

Energiemessung in Kalorimeter: Szintillator

Am häufigsten angewendet: Messung der Energiedeposition durch Szintillation

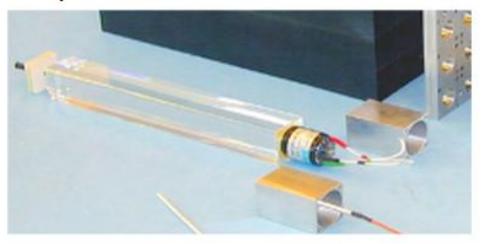


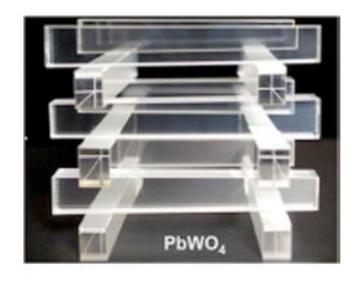
- Szintillatoren geben Licht ab, wenn sie von ionisierenden Teilchen durchquert werden
- Anregung von metastabilen
 Zuständen in Molekülen
 (organischer Szint) oder
 Störstellen in Kristallen
 (anorganische Szint)

anorganisch:

Energiemessung in Kalorimeter: Photomultiplier

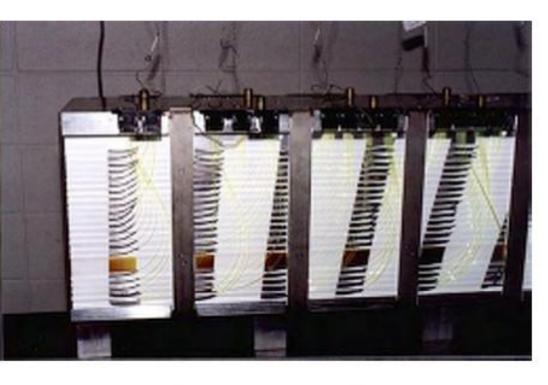
Die klassische Methode zum Nachweis von Photonen:

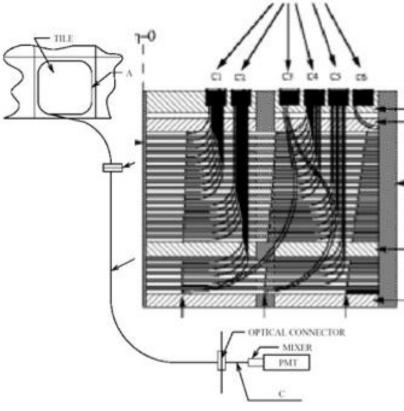

Konversion des
 Photons in ein
 Elektron durch den
 Photo-Effekt auf
 der Photokathode,
 dann Verstärkung
 durch die Dynoden


- Einsetzbar in einem weiten Wellenlängenbereich, von UV bis IR, gute Effizienzen erreichbar: bis zu ~ 25%, einzelne Photonen können detektiert werden
- Grosse aktive Flächen möglich: SuperKamiokande verwendet PMTs mit einer aktiven Fläche mit einem Durchmesser von 460 mm

Homogene Kalorimeter II

- Hohe Reinheit: Gute Transmission des Szintillationslichts
- Hohe Dichte: Bestimmt die Tiefe des Kalorimeters


Beispiel: CMS ECAL



- PbWO₄: Schneller, dichter Szintillator,
 - Dichte ~ 8.3 g/cm³ (!)
 - ρ_м 2.2 cm, X₀ 0.89 cm
 - niedrige Lichtausbeute: ~ 100 photons / MeV, Temperaturabhängigkeit -2%/℃

Sampling Kalorimeter II

Optical connectors

- Scintillatorplatten zwischen Blei-Absorbern
- Das Licht jeder Platte wird von einer Wellenlängenschieber-Faser gesammelt
- Fasern leiten das Licht zu PMTs ausserhalb des Magnetfeldes