Kern- und Teilchenphysik Übung VIII

Prof. Markus Schumacher, Dr. Henrik Nilsen

21. - 25.6.2010

Hausaufgabe von letzter Woche

Aufgabe 46 Magnetische Moment der Proton im Quark-Modell Die Spin- und Flavourwellenfunktion des Proton lautet 6 Punkte

1 lavour well-emailieren des 1 lovel ladeet

$$|p\rangle = \frac{1}{\sqrt{18}} (2 | u \uparrow u \uparrow d \downarrow \rangle + 2 | u \uparrow d \downarrow u \uparrow \rangle + 2 | d \downarrow u \uparrow u \uparrow \rangle$$

$$-|u \uparrow u \downarrow d \uparrow \rangle - |u \downarrow u \uparrow d \uparrow \rangle - |u \uparrow d \uparrow u \downarrow \rangle$$

$$-|u \downarrow d \uparrow u \uparrow \rangle - |d \uparrow u \uparrow u \downarrow \rangle - |d \uparrow u \downarrow u \uparrow \rangle)$$

$$(1)$$

Das magnetische Moment eines punktförmigen Teilchens mit Ladung q und Masse m ist gegeben als

$$\vec{\mu} = \frac{q}{mc}\vec{S},$$

mit einer Projektion an die z-Achse gleich

$$\mu = \frac{q}{mc} S_z.$$

Für Spin- $\frac{1}{2}$ Teilchen ist $S_z = \hbar/2$. Die z-Projektion des gesamten magnetischen Momentes eines Baryons, μ_B , ist gegeben als

$$\mu_B = \langle q_1 q_2 q_3 \mid (\mu_1 + \mu_2 + \mu_3) \mid q_1 q_2 q_3 \rangle,$$

wobei μ_i die z-Projektionen von $\vec{\mu_i}$ für Quark Nummer i von Links in $\mid q_1q_2q_3>$ ist. Berechnen Sie μ für das Proton in Einheiten des Kernmagneton $(e\hbar/2m_pc)$ mittels Gl. 1 und vergleichen Sie mit dem gemessenen Wert $\mu_p=2.793$. Hinweis: Nehmen Sie sie an, daß die Massen der u und d Quarks $m_u=m_d=336~{\rm MeV/c^2}$ sind. Die Basis $\mid u>,\mid d>$ ist ortogonal und normiert, so dass z.B. $< u\uparrow\mid u\uparrow>=1~{\rm und} < u\uparrow\mid u\downarrow>=< u\uparrow\mid d\uparrow>=< u\uparrow\mid d\downarrow>0$.

Anwesenheitsaufgaben

Aufgabe 47 Addition von Spin und Drehimpuls

- (i) Das Elektron in einem Wasserstoffatom befindet sich im Bahndrehimpulszustand |2, -1> und Spinzustand $|\frac{1}{2}, -\frac{1}{2}>$. Welche Messwerte der Quantenzahl j des Gesamtdrehimpulses sind möglich und mit welcher Wahrscheinlichkeit wird der jeweilige Meßwert angenommen? Hinweis: Clebsch-Gordon Koeffizienten sind in Abb. 1 angegeben.
- (ii) 2 Teilchen mit Spin $\frac{3}{2}$ und 2 sind gegeben. Es wird angenommen, die Quantenzahl j des Gesamtdrehimpulses des 2-Teilchensystems betrage $\frac{5}{2}$, die z-Komponente $j_z=-\frac{1}{2}$. Welche mögliche Meßwerte ergeben sich für dei z-Komponente des Spins s_z des Spin-2 Teilchen? Mit welcher Wahscheinlichkeitwerden sie angenommen? Hinweis: Clebsch-Gordon Koeffizienten sind gegeben im Tabelle 1.

Aufgabe 48 G-Parität, Teil 1

Die C-Parität ist nur definiert für neutrale Teilchen und ist deswegen von eingeschränktem Nutzwert wenn man Auswahlregeln für Interaktionen zwischen Teilchen herleiten möchte. Eine nützlige Erweiterung der C-Parität ist die G-Parität, eine Kombination aus C und einer Rotation im Isospinraum um 180 Grad um die I_2 Achse:

$$G = C \times R_2. \tag{2}$$

Für einen Isospin-Triplett, wie π oder ρ , ist

$$R_2 = exp(i\pi I_2) = \begin{pmatrix} 0 & 0 & 1\\ 0 & -1 & 0\\ 1 & 0 & 0 \end{pmatrix}$$
 (3)

während $R_2 = 1$ für einen Isospin-Singlett ist. Für Isospin-Tripletts sind die positivgeladenen Teilchen definiert als (1,0,0), die neutralen als (0,1,0) und die negativen als (0,0,1). Für ein 2-Teilchensystem bestehend aus ein Fermion und dessen Antiferminon gilt $C \mid f\bar{f} > = (-1)^{l+s} \mid f\bar{f} > \text{wo } l$ (s) der Bahndrehimpuls (Spin) des 2-Teilchensystems ist.

(i) Was ist der G Parität die Teilchen in den π und ρ Isospin-Tripletts? Und für das Isospin-Singlett ω ? (Hinweis für Tripletts: Fangen Sie mit dem neutralen Teilchen an. Für die geladene Mesonen (m^{\pm}) im Triplett ist die C-Parität nur bis auf ein Vorzeichen definiert, so dass $C \times m^{\pm} = \pm m^{\mp}$. Für jedes geladenes Meson wählen wir das Vorzeichen so dass alle Mesonen im Triplett die gleiche G-Parität hat.)

Hausaufgaben

Aufgabe 49 Elektronspin im klassischen Modell

2 Punkte

Nehmen Sie an, dass ein Elektron eine klassische Kugel ist, mit homogener Ladungs- und Massendichte. Was müsste die Geschwindigkeit eines Punkts am Äquator der Kugel sein, damit der gemessene Spin des Elektrons ($\hbar/2$) gleich den Drehimpuls der Kugel ist? Was schließen Sie daraus im Hinblick auf die Gültigkeit des Kugelmodels? Hinweis: Der Radius eines Elektrons ist experimentell eingeschränkt durch $r < 10^{-18}$ m, was eine untere Grenze für die Geschwindigkeit liefert.

Aufgabe 50 G-Parität, Teil 2

4 Punkte

Fortsetzung zur zweiten Anwesenheitsaufgabe.

- (i) Was ist die G-Parität eines Systems bestehend aus n Pionen?
- (ii) Erklären Sie warum die G-Parität in der starken Wechselwirkung erhalten ist.
- (iii) Wie kann man erklären, dass ρ in 2 Pionen zerfällt, während ω in 3 Pionen zerfällt?

Aufgabe 51 η -Zerfall

4 Punkte

Die häufigsten Zerfälle des η Mesons sind

$$\eta \to 2\gamma(39\%), \quad \eta \to 3\pi(55\%), \quad \eta \to \pi\pi\gamma(5\%)$$
 (4)

- (i) Erklären Sie, warum der Zerfall $\eta\to 2\pi$ verboten ist für sowohl die starke als auch die elektromagnetische Wechselwirkung.
- (ii) Erklären Sie, warum der Zerfall $\eta \to 3\pi$ verboten ist für die starke Wechselwirkung.
- (iii) Wie lang würde man daher erwarten, ist die Lebensdauer des η Mesons, verglichen mit der des ρ Mesons? Hinweis: ρ s zerfallen zu $\approx 100\%$ in 3π über die starke Wechselwirkung.

Hinweise zu (i) und (ii): betrachten Sie Parität und G-Parität im Anfangs- und Endzustand.

Aufgabe 52 Drehimpuls und Spin

2 Punkte

Wir betrachten der Zerfall $\Delta^{++} \to p + \pi^+$. Welche Bahndrehimpulse sind im Endzustand möglich?

Aufgabe 53 *Isospin:* πp *-Streuung*

8 Punkte

Betrachten Sie die Pion-Nukleon Streuung:

(a)
$$\pi^+ + p \to \pi^+ + p$$

(b)
$$\pi^- + p \to \pi^- + p$$

(c)
$$\pi^- + p \to \pi^0 + n$$

(i) Was sind die Isospin-Quantenzahlen (I,I_3) a) der einzelen Teilchen? b) der Anfangs- und Endzustände? Hinweis für Teil b): Clebsch-Gordon Koeffizienten sind gegeben im Abb. 1.

Die Übergangsamplitude (\mathcal{M}) von Anfangszustand | $I_a, I_{a,3} >$ in den Endzustand | $I_e, I_{e,3} >$ ist gegeben mit der Übergangsmatrix H als $\mathcal{M} = \langle I_e, I_{e,3} | H | I_a, I_{a,3} >$. Die Wirkungsquerschnitt (σ) des Prozesses ist proportional zu \mathcal{M}^2 . Wir definieren $\mathcal{M}_3 \equiv \langle \frac{3}{2}, \frac{3}{2} | H | \frac{3}{2}, \frac{3}{2} >$ und $\mathcal{M}_1 \equiv \langle \frac{1}{2}, \frac{1}{2} | H | \frac{1}{2}, \frac{1}{2} >$.

- (ii) Warum ist $<\frac{3}{2}, -\frac{3}{2}\mid H\mid \frac{3}{2}, -\frac{3}{2}>=\mathcal{M}_3$ und $<\frac{1}{2}, -\frac{1}{2}\mid H\mid \frac{1}{2}, -\frac{1}{2}>=\mathcal{M}_1$? Hinweis: Für Pion-Nukleon Streuung beschreibt H eine starke Wechselwirkung.
- (iii) Was sind die Verhältnisse der Wirkungsquerschnitte der drei Prozesse (a), (b) und (c), $\sigma_a : \sigma_b : \sigma_c$, ausgedrückt durch \mathcal{M}_1 und \mathcal{M}_3 ?
- (iv) Für eine Schwerpunktsenergie (\sqrt{s}) von 1232 MeV formen das Pion und das Nukleon eine Δ^{++} (für (a)) oder Δ^0 Baryon (für (b) und (c)). Die Δ -Baryonen haben Isospin $I=\frac{3}{2}$, und als Konsequenz davon ist $\mathcal{M}_3 >> \mathcal{M}_1$ für $\sqrt{s} \approx 1232$ MeV. Schätzen Sie das Verhältnis $\sigma_a : \sigma_b : \sigma_c$ für diese Energie ab.
- (v) Experimentell ist es einfacher den totalen Wirkungsquerschnitt für (b) und (c) $(\sigma_{tot}(\pi^- + p))$ zu messen als für jeden Prozess einzeln. Was ist das Verhältnis

$$\frac{\sigma_{tot}(\pi^+ + p)}{\sigma_{tot}(\pi^- + p)}? \tag{5}$$

Vergleichen Sie ihre Antwort mit den gemessenen Wirkungsquerschnitten im Abb. 2.

34. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS, AND d FUNCTIONS

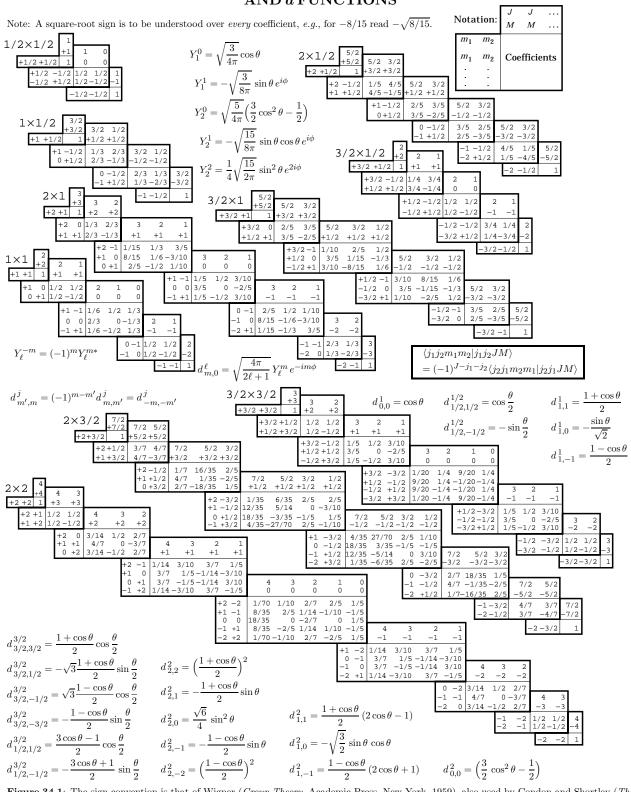
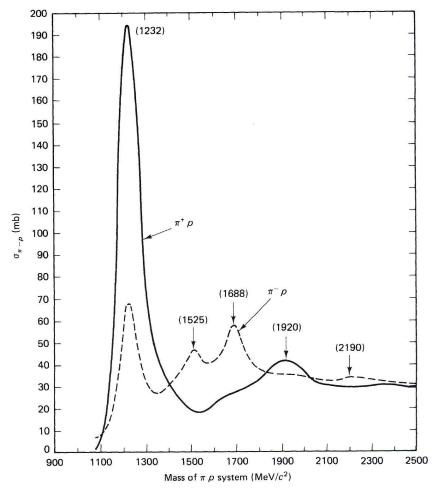


Figure 34.1: The sign convention is that of Wigner (*Group Theory*, Academic Press, New York, 1959), also used by Condon and Shortley (*The Theory of Atomic Spectra*, Cambridge Univ. Press, New York, 1953), Rose (*Elementary Theory of Angular Momentum*, Wiley, New York, 1957), and Cohen (*Tables of the Clebsch-Gordan Coefficients*, North American Rockwell Science Center, Thousand Oaks, Calif., 1974). The coefficients here have been calculated using computer programs written independently by Cohen and at LBNL.



Total cross sections for π^+p (solid line) and π^-p (dashed line) scattering. (Source: Gasiorowicz, S. (1966) Elementary Particle Physics, John Wiley & Sons, New York, p. 294. Reprinted by permission of John Wiley and Sons, Inc.)

Abbildung 2: Totaler Wirkungsquerschnitt für π^+p (durchgezogen) und π^-p (gestrichelt) Streuung als Funktion der Schwerpunktsenergie.