Fortgeschrittene Experimentalphysik für Lehramtsstudierende Teil II: Kern- und Teilchenphysik



Prof. Markus Schumacher Sommersemester 2013

Kapitel 3: Eigenschaften stabiler Kerne

### **Mattauchsches Massenspektrometer**



Th. Mayer-Kuckuck, Kernphysik, Teubner Verlag

# **Bindungsnergie pro Nukleon**



Bindungsenergie B/A vs A

| Kern     | $^{2}_{1}H_{1}$<br>(d) | $_{(t)}^{^{3}H_{2}}$ | <sup>3</sup> <sub>2</sub> He <sub>1</sub> | $^{4}_{2}\text{He}_{2}$<br>( $\alpha$ ) | 3Li3  | 3114  | $^{8}_{4}\text{Be}_{4}$<br>( $\rightarrow 2\alpha$ ) | <sup>9</sup> <sub>4</sub> Be <sub>5</sub> | <sup>10</sup> <sub>5</sub> B <sub>5</sub> | <sup>11</sup> <sub>5</sub> B <sub>6</sub> | <sup>12</sup> 6C <sub>6</sub> |
|----------|------------------------|----------------------|-------------------------------------------|-----------------------------------------|-------|-------|------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------|
| B<br>B/A | 2,225                  | 8,482                | 7,718                                     | 28,29                                   | 31,99 | 39,24 | 56,49                                                | 58,16                                     | 64,75                                     | 76,20                                     | 92,16                         |
| Sn       | 2,22                   | 6,25                 | -                                         | 20,6                                    | 5,66  | 7,25  | 18,9                                                 | 1,67                                      | 8,44                                      | 11,4                                      | 18,7                          |
| Sp       | 2,22                   | -                    | 5,49                                      | 19,8                                    | 4,65  | 9,98  | 17,2                                                 | 16,9                                      | 6,59                                      | 11,2                                      | 15,9                          |

Tab. 2 Bindungsenergie pro Nukleon für die leichtesten Kerne.

 $S_n$ ,  $S_p$  = Separationsenergien für Neutronen und Protonen

# **Bethe-Weizsäcker-Formel/Tröpchenodell**



### Paarungsterm und Separationsenergie



Separationsenergie für verschiedene Isotope von Ba. Der Sprung bei N= 82 kommt von der abgeschlossenen Schale.

# **Bethe-Weizsäckerformel**

$$m(Z,A) = Zm_H + (A-Z)m_n - \alpha_V A + \alpha_S A^{\frac{2}{3}} + \alpha_C Z^2 A^{-\frac{1}{3}} + \alpha_A \frac{(Z-\frac{A}{2})^2}{(Z-\frac{A}{2})^2} \pm \delta$$

| sung dieser Formel a<br>Beitrag<br>$\alpha_V = 15.85 \text{ MeV}/c^2$ | n die gem $\alpha_s \stackrel{a}{=} 18.3$ | $4 \text{ MeV}^2$                       |
|-----------------------------------------------------------------------|-------------------------------------------|-----------------------------------------|
| $MeV/\partial qlumen 11.46$                                           | $Met / c^2$ .                             | 15.56                                   |
| der <b>Øberfläfthe</b> nel                                            | as                                        | 17.23                                   |
| che Massenfarmel lie                                                  | fert <b>g</b> ine g                       | ute <b>d'is pr</b> eins                 |
| fur A > 20 und eign<br>Asymmetrie<br>en sich viele Effekte            | et sich gut<br>der Kernt                  | tur technisci<br>23.285<br>hvsik anscha |
| Paarung                                                               | ap                                        | 12.0                                    |

### Magische Kerne



Bindungsenergie B/A pro Nukleon. Schwarze Kreise: Messungen; Kurve: Massenformel. Beachten Sie die unterdrückte vertikale Skala

#### Tal der Stabilität



Stabilitätslinie von Kernen.

Tal der Stabilität



# Drehimpulskopplung

Vergleich von L-S und J-I Kopplung:



"Zeeman-Bereich" schwaches B-Feld "Paschen-Back-Bereich"

starkes **B-Feld** 

# Hyperfeinstruktur und Aufspaltung im externen Feld



Fig. 100

# Hyperfeinstruktur und Aufspaltung im externen Feld

1-3/2



Schema der HFS-Aufspaltung für I =  $\frac{3}{2}$ , J =  $\frac{3}{2}$  im schwachen und starken Feld. Q = 0. (Nach H. Kopfermann, Kernmomente, Akademische Verlagsgesellschaft, Frankfurt 1956)



# Hyperfeinstruktur und Aufspaltung im externen Feld

1-3/2



Schema der HFS-Aufspaltung für I =  $\frac{3}{2}$ , J =  $\frac{3}{2}$  im schwachen und starken Feld. Q = 0. (Nach H. Kopfermann, Kernmomente, Akademische Verlagsgesellschaft, Frankfurt 1956)



## Schmidtlinine für ungepaarte Protonen



Gemessene magnetische Momente für Kerne mit einem ungepaarten Proton.

Die Schmidt-Linien (\*) geben die Genzwerte für Einteilchenzustände an.

\* Theo Schmidt, 1937, Prof. in Freiburg

j ——>

# Schmidtlinien für ungepaarte Protonen



Gemessene magnetische Momente für Kerne mit einem ungepaarten Proton.

Die Schmidt-Linien (\*) geben die Genzwerte für Einteilchenzustände an.

\* Theo Schmidt, 1937, Prof. in Freiburg

### Schmidtlinien für ungepaarte Neutronen



Gemessene magnetische Momente für Kerne mit einem ungepaarten Neutron

Die Schmidt-Linien geben die Genzwerte für Einteilchenzustände an.