Determination of Electroweak Parameters Seminar 'Particle Physics at the LHC'

Freiburg, 27.05.2014

Albert-Ludwigs-Universität Freiburg

Ralf Gugel

Contents

Introduction

Template Method

Mass of the W Boson

Mass of the top Quark

Test of the Standard Model

Template Method Mass of the W Boson Mass of the top Quark Test of the

Introduction

Introduction

- el.weak interaction: unification of electromagnetism
 (γ) and weak interaction (Fermi / V-A theory / W[±])
- structure: $SU(2)_L \times U(1)_Y$ (fields: W_1, W_2, W_3, B)
- predicts additional particle (Z⁰) → first evidence in bubble chamber at CERN (v
 µe⁻ scattering, 1973)
- discovery of Higgs boson (→ m_H) allows for constistency check.

Introduction

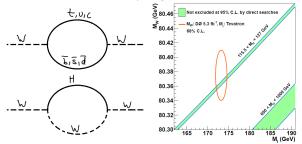
Template Method Mass of the W Boson Mass of the top Quark Test of the Standard

Introduction

- experimental fact: m_Z well known (LEP), m_Z = 91 188 ± 2 MeV [3]
- relations in el. weak theory (Born level):

$$e = g \sin \theta_W = g' \cos \theta_W, \ m_W = m_Z \cos \theta_W,$$
$$G_F = \frac{\sqrt{2}g^2}{8m_W^2}, \ \alpha = \frac{e^2}{4\pi}, \ m_H = v\sqrt{2\lambda} = \frac{\sqrt{8\lambda}m_W}{g}$$

 \Rightarrow 4 independent parameters



Introduction

Template Method Mass of the W Boson Mass of the top Quark Test of the Standard

Introduction

• additional relations by higher orders:

Introduction

Template Method Mass of the W Boson Mass of the top Quark Test of the Standard

Model

 \rightarrow contributions to m_W : ~ $(m_u - m_d)^2$ and ~ $\log m_H/m_W$ respectively.

- significant contribution from m_t
- additional contributions from new particles (SUSY)

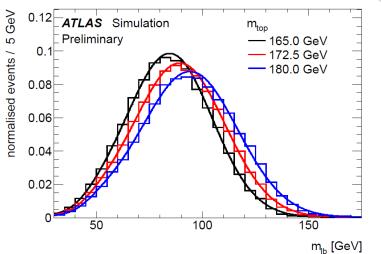
Template Method

UNI FREBURG

 Iues of
 Template

 miss
 Mass of the W

 Mass of the W
 Boson


Mass of the top Quark

Test of the Standard Model

create simulations (distributions) for multiple values of physics parameter *m* in observable $d(p_T, m_T, E_T^{\text{miss}}, ...)$ interpolate between samples with continuous function (fitting, determine arbitrary parameters p_j), axis: *m*, *d* $f(m, d, p_j)$ \downarrow

fit function to data with fixed p_j , determine m $f(m, d, p_i)$

Template Method

Introduction Template Method Mass of the W Boson Mass of the top Quark Test of the Standard Model

BURG

Mass of the W Boson

- ▶ main production channel: $q\bar{q'} \rightarrow W + X$ (X=hadr. recoil, gluon ISR)
- ▶ decay channel for measurement: $W \rightarrow \ell \nu$, $\ell = e, \mu$ (low background, BR ≈ 22%)
- *m_W* measurement via kinematic distributions
- so far: only Tevatron results ($\sqrt{s} = 1.96$ TeV, $\sim 2-5$ fb⁻¹, $p\bar{p}$)

ntroduction

Template Method

Mass of the W Boson

Mass of the top Quark

Mass of the W Boson - Variables

frequently used variables:

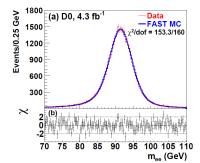
- transverse momentum $p_T^{\ell} = p^{\ell} \cdot \cos \theta$
- transverse mass (for $W \rightarrow e\nu$):

$$m_T = \sqrt{2p_T^e p_T^\nu (1 - \cos \Delta \phi)}$$

missing transverse momentum / energy:

$$p_T^{\text{miss}} = E_T^{\text{miss}} = \left| \sum_{i \in \text{event}} \vec{p}_T^i \right| = p_T^{\nu}$$

ntroduction


Template Method

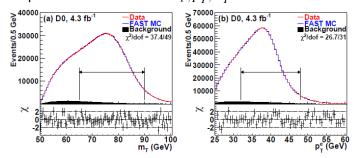
Mass of the W Boson

Mass of the top Quark

Mass of the W Boson @ D0 (2012)

- Z boson mass for calibration of el.mag.-calorimeter and hard.-calorimeter, only $W \rightarrow e\nu$ for measurement
- el.mag.-calorimeter: $E^{\text{meas}} = \alpha E^{\text{true}} + \beta \rightarrow \text{fit of } m_{ee}, E_e, \phi_{ee} \text{ for } Z \rightarrow ee \text{ events}$
- ► hadr.-cal.: use projection of $\vec{p}_T^{ee} + \vec{u}_T$ (u_T = E-deposits w/o p_T^{ee}) onto axis $\vec{e}^{\ell_1} + \vec{e}^{\ell_2}$

ntroduction


Template Method

Mass of the W Boson

Mass of the top Quark

Mass of the W Boson @ D0 (2012)

- event requirements: high $p_T^e, E_T^{\text{miss}} > 25 \text{ GeV}$, small (hadronic) recoil (< 15 GeV), $m_T \in (50, 200) \text{ GeV}$
- template method with $d = m_T, p_T^e, E_T^{\text{miss}}$

Introduction

BURG

Template Method

Mass of the W Boson

Mass of the top Quark

Test of the Standard Model

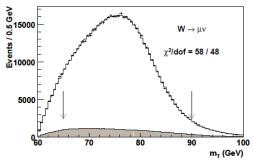
• combined result: $m_W = 80.367 \pm 0.013 \pm 0.022$ GeV [1]

Mass of the W Bosons @ D0 (2012)

 ΔM_W (MeV) Source p_T^e E_{T} m_T Electron energy calibration 161716Electron resolution model 2 $\mathbf{2}$ 3 Electron shower modeling Electron energy loss model Hadronic recoil model 56 14Electron efficiencies 3 $\mathbf{5}$ Backgrounds $\mathbf{2}$ 2 $\mathbf{2}$ Experimental subtotal 18 $\overline{20}$ 24PDF 11 11 14QED 9 $\mathbf{2}$ Boson p_T 25 Production subtotal 131417 Total 222429

TABLE II: Systematic uncertainties of the M_W measurement.

ntroduction


Template Method

Mass of the W Boson

Mass of the top Quark

Mass of the W Boson @ CDF (2013)

- ▶ momentum scale calibration: $J/\psi, \Upsilon \rightarrow \mu\mu$, compair simulation + data
- energy scale: use E/p peak in $Z \rightarrow ee$ (S_E extracted through likelihood fit)
- W → eν and W → μν used, same kinematic variables as D0

Introduction

BURG

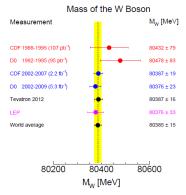
Template Method

Mass of the W Boson

Mass of the top Quark

Mass of the W Boson @ CDF (2013)

m_T fit uncertainties								
Source	$W \rightarrow \mu \nu$	$W \to e v$	Common					
Lepton energy scale	7	10	5					
Lepton energy resolution	1	4	0					
Lepton efficiency	0	0	0					
Lepton tower removal	2	3	2					
Recoil scale	5	5	5					
Recoil resolution	7	7	7					
Backgrounds	3	4	0					
PDFs	10	10	10					
W boson p_T	3	3	3					
Photon radiation	4	4	4					
Statistical	16	19	0					
Total	23	26	15					



Introduction
Template Method
Mass of the W Boson
Mass of the top Quark
Test of the Standard Model

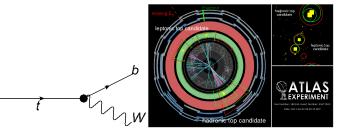
result: $m_W = 80.387 \pm 0.012 \pm 0.015 \text{ GeV} [2] (2.2 \text{ fb}^{-1})$

Mass of the W Boson @ Tevatron (2013)

 combination→ account for correlations (collider, simulation software, calibration method,...)

FREIBURG

ntroduction


Template Method

Mass of the W Boson

Mass of the top Quark

Mass of the top Quark

- decay mainly via $t \rightarrow bW$
- analysis channels (tt̄): di lep (WW → ℓνℓ'ν', BR = 4%), lep+jets (WW → ℓνqq̄', BR = 29%), all jets (BR = 45 %)
- event selection via *b-tagging*, ATLAS: neural-net using topology of *t* decay (efficiency: ~ 70% of *b*-jets, ~ 1/130 light quark jets)

ntroduction

Template Method Mass of the W Boson

Mass of the top Quark

- $\sqrt{s} = 7 \text{ TeV}, 4.7 \text{ fb}^{-1}$
- ▶ requirements: = 2 b-tagged jets, high E_T^{miss} , = 2 op. charge leptons, ≥ 2 central jets with $p_T > 25 \text{ GeV}$
- main backgrounds: single *t* via *Wt* production, $Z \rightarrow \ell^+ \ell^-$

- strict selection → background is small
- method: template method

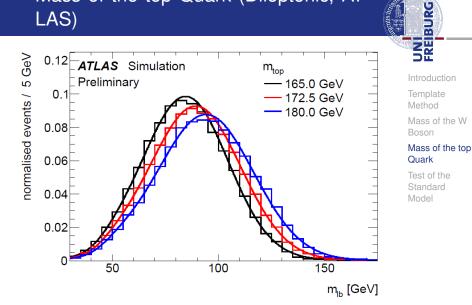
Mass of the W

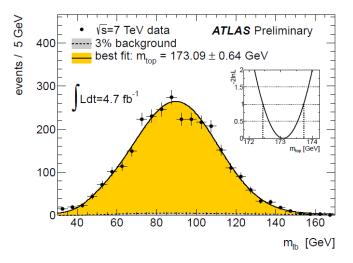
Mass of the top

Quark

kinematic variable $m_{\ell b}$:

- two possible combinitons of $\ell + b$ per event
- two invariant masses per combination → calculate average
- $m_{\ell b}$ is the lower avg. inv. mass


BURG


Introduction

Template Method

Mass of the W Boson

Mass of the top Quark

Mass of the W Boson

Mass of the top Quark

Description	Value [GeV]
Measured value	173.09
Statistical uncertainty	0.64
Method calibration	0.07
Signal MC generator	0.20
Hadronisation	0.44
Underlying event	0.42
Colour reconnection	0.29
ISR/FSR	0.37
Proton PDF	0.12
Background	0.14
Jet energy scale	0.89
b-jet energy scale	0.71
b-tagging efficiency and mistag rate	0.46
Jet energy resolution	0.21
Missing transverse momentum	0.05
Pile-up	0.01
Electron uncertainties	0.11
Muon uncertainties	0.05
Total systematic uncertainty	1.50
Total uncertainty	1.63

Introduction Template Method Mass of the W Boson

Mass of the top Quark

Test of the Standard Model

Table 2: The measured value of m_{top} and the contributions of the various sources detailed in the text to the total systematic uncertainty.

Mass of the top Quark (lep+jets, AT-LAS)

- $\sqrt{s} = 7 \text{ TeV}, \ 1.04 \text{ fb}^{-1}$
- requirements: 2 b-jets, \geq 4 central jets with $p_T > 25$ GeV, = 1 lepton, $E_T^{\text{miss}} > 20$ GeV
- most precise channel, advantages compared to dilep full reconstruction (only 1 ν) all jets easier matching
- two subanalyses

Introduction

Template Method Mass of the W

Boson

Mass of the top Quark

Mass of the top Quark (lep+jets, AT-LAS): 1d

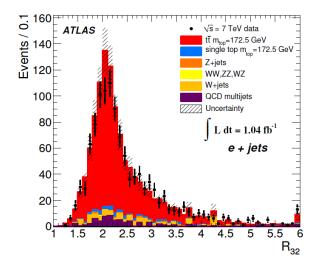
1d-analysis:

• variable (for $t \rightarrow bW$, $W \rightarrow$ had):

$$R_{32} \equiv \frac{m_{\rm top}^{\rm reco}}{m_W^{\rm reco}}$$

 \rightarrow cancellation of uncertainties

selection of jets via kinematic likelihood fit


Introduction

Template Method

Mass of the W Boson

Mass of the top Quark

Mass of the top Quark (lep+jets, AT-LAS): 1d

Introduction Template Method Mass of the W Boson Mass of the top

BURG

Mass of the top Quark

Mass of the top Quark (lep+jets, AT-LAS): 2d

2d-analysis:

- fitting probability density functions in $(m_{top}^{reco}, m_W^{reco})$ plane to data
- use known m_W and Γ_W for m_{top}^{reco} reconstruction
- free fit parameters: *m_t*, *JSF*, *n*_{bkg} → "in situ jet scaling"
 ⇒ shifting syst. → stat. uncertainty

Introduction Template Method Mass of the W

BURG

Mass of the top Quark

Mass of the top Quark (lep+jets, AT-LAS)

results:

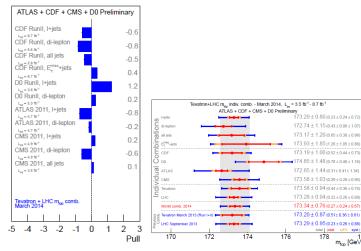
$m_{t,1d} = 174.4 \pm 0.9 \pm 2.5 \text{ GeV}, \ m_{t,2d} = 174.5 \pm 0.6 \pm 2.3 \text{ GeV}$ [5]

	1d-analysis		2d-analysis		Combinations		Correlation
	e+jets	μ +jets	e+jets	μ +jets	1d	2d	ρ
Measured value of m_{top}	172.93	175.54	174.30	175.01	174.35	174.53	
Data statistics	1.46	1.13	0.83	0.74	0.91	0.61	
Jet energy scale factor	na	na	0.59	0.51	na	0.43	0
Method calibration	0.07	< 0.05	0.10	< 0.05	< 0.05	0.07	0
Signal MC generator	0.81	0.69	0.39	0.22	0.74	0.33	1
Hadronisation	0.33	0.52	0.20	0.06	0.43	0.15	1
Pileup	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	1
Underlying event	0.06	0.10	0.42	0.96	0.08	0.59	1
Colour reconnection	0.47	0.74	0.32	1.04	0.62	0.55	1
ISR and FSR (signal only)	1.45	1.40	1.04	0.95	1.42	1.01	1
Proton PDF	0.22	0.09	0.10	0.10	0.15	0.10	1
W+jets background normalisation	0.16	0.19	0.34	0.44	0.18	0.37	1
W+jets background shape	0.11	0.18	0.07	0.22	0.15	0.12	1
QCD multijet background normalisation	0.07	< 0.05	0.25	0.33	< 0.05	0.20	(1)
QCD multijet background shape	0.14	0.12	0.38	0.30	0.09	0.27	(1)
Jet energy scale	1.21	1.25	0.63	0.71	1.23	0.66	1
b-jet energy scale	1.09	1.21	1.61	1.53	1.16	1.58	1
b-tagging efficiency and mistag rate	0.21	0.13	0.31	0.26	0.17	0.29	1
Jet energy resolution	0.34	0.38	0.07	0.07	0.36	0.07	1
Jet reconstruction efficiency	0.08	0.11	< 0.05	< 0.05	0.10	< 0.05	1
Missing transverse momentum	< 0.05	< 0.05	0.12	0.16	< 0.05	0.13	1
Total systematic uncertainty	2.46	2.56	2.31	2.57	2.50	2.31	
Total uncertainty	2.86	2.80	2.46	2.68	2.66	2.39	

BURG

Template Method

Mass of the W Boson


Mass of the top Quark

Test of the Standard Model

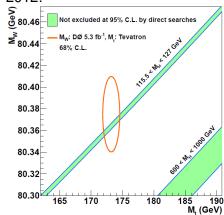
stat. correlation $1d \leftrightarrow 2d$: < 50% (different jet triplet selection + m_{top} estimator)

Mass of the top Quark (Combination)

consistent results:

Mass of the W

Mass of the top Quark

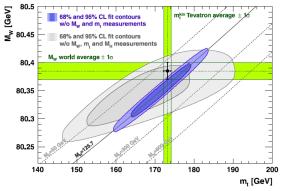

Model

total I (stat. IJES syst.)

m_{ton} [Ge'

178

m_W and *m_t* give constraints on *m_H* before summer 2012:

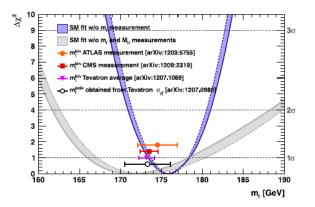

Introduction

Template Method

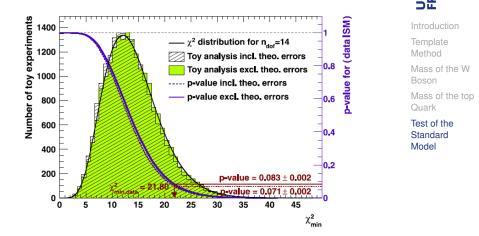
Mass of the W Boson

Mass of the top Quark

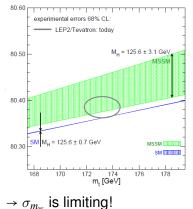
and after:



Model


shifted focus: prediction of $m_H \rightarrow$ testing consistency of SM $\rightarrow \sigma_{m_w}$ is limiting!

Template Method Mass of the W Boson Mass of the top Quark Test of the


Standard Model

BURG

Test of the Standard Model - new physics?

for light (m_H = 125.6 GeV) CP even Higgs boson (MSSM: 5 Higgs bosons)

Introduction

BURG

Template Method

Mass of the W Boson

Mass of the top Quark

Summary

- W-mass: 80385 ± 15 MeV (syst. limited!)
- top-mass: 173340 ± 760 MeV (syst. limited!)
- standard model compatible with measurements $(p \approx 8\%)$
- exclusions/hints on new physics limited by m_W precision

Template Method Mass of the W Boson Mass of the top Quark Test of the Standard Model

The End

Introduction

Template Method Mass of the W Boson Mass of the top Quark

Standard Model

Thanks for your attention!

Questions? Remarks?

backup

Template Method Mass of the W Boson Mass of the top Quark Test of the Standard Model

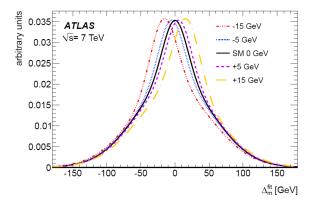
Introduction

top-Mass ($\Delta m_{t,\bar{t}}$)

- CPT invariance requires $\Delta m = m_t m_{\bar{t}} = 0$
- ATLAS: $\sqrt{s} = 7 \text{ TeV}, 4.7 \text{ fb}^{-1}$, template method, variable

$$\Delta_m^{\text{fit}} = q_\ell \cdot \left(m_{b\ell\nu}^{\text{fit}} - m_{bjj}^{\text{fit}} \right)$$

- → cancellation of systematic uncertainties. Result: $\Delta m = 0.67 \pm 0.61 \pm 0.41$ [8]
- other results (from [8]):
 - CDF: $\Delta m = 3.3 \pm 1.4 \pm 1.0 \text{ GeV}$
 - D0 : $\Delta m = 0.8 \pm 1.8 \pm 0.5 \text{ GeV}$
 - CMS: $\Delta m = -0.44 \pm 0.46 \pm 0.27 \text{ GeV}$
- \Rightarrow compatible with $\Delta m = 0$



ntroduction

Template Method Mass of the W

Mass of the top Quark

top-Mass ($\Delta m_{t,\bar{t}}$)

Template Method Mass of the W Boson

Mass of the top Quark

References I

- [1] D0 Collaboration, Measurement of the W Boson Mass with the D0 Detector, arXiv:1203.0293v2, 14. Apr 2012
- [2] CDF Collaboration, A precise measurement of the W-boson mass with the Collider Detector Fermilab, arXiv:1311.0894v2, 29 Apr 2014
- [3] CDF Collaboration, D0 Collaboration, Combination of CDF and D0 W-Boson Mass Measurements, arXiv:1307.7627v2, 1 Aug 2013

ntroduction

Template Method

Mass of the W Boson

Mass of the top Quark

References II

- [4] ATLAS Collaboration, *Measurement of the Top Quark* Mass in Deleptonic Top Quark Pair Decays with $\sqrt{s} = 7$ TeV ATLAS Data, ATLAS-CONF-2013-077, 18 July 2013
- [5] ATLAS COllaboration, Measurement of the Top Quark Mass with the Template Method in the tt → lepton+jets Channel using ATLAS Data, arXiv:1203.5755v2, 12 Jun 2012
- [6] ATLAS Collaboration, CMS Collaboration, Combination of ALTAS and CMS results on the mass of the top-quark using up to 4.9 fb⁻¹ of \sqrt{s} = 7 TeV LHC data, ATLAS-CONF-2013-102, 18 Sep 2013

Introduction Template Method Mass of the W Boson Mass of the top Quark Test of the Standard Model

References III

- [7] ATLAS, CDF, CMS and D0 Collaborations, First combination of Tevatron and LHC measurements of the top-quark mass, arXiv:1403.4427v1, 18 Mar 2014
- [8] ALTAS Collaboration, Measurement of the mass difference between top and anti-top quarks in ppcollisions at $\sqrt{s} = 7$ TeV using the ATLAS detector, arXiv:1310.6527v3, 9 Dec 2013
- [9] Gfitter Group, The electroweak fit of the standard model after the discovery of a new boson at the LHC, Eur. Phys. J. C (2012) 72:2205, 3 Nov 2012

UN FREBURG

Template Method Mass of the W Boson Mass of the top Quark Test of the Standard Model

References IV

- [10] A.Pich, IFIC, University of València CSIC, The Standard Model of Electroweak Interactions, arXiv:1201.0537v1, 2 Jan 2012
- [11] S.Heinemeyer et al., Implications of LHC search results on the W boson mass prediction in the MSSM, arXiv:1311.1663v1, 7 Nov 2013
- [12] ATLAS Collaboration, *Evidence for the associated production of a W boson and a top quark in ATLAS at* $\sqrt{s} = 7$ TeV, arXiv:1205.5764v2, 16 Aug 2012

Introduction

Method Mass of the W Boson Mass of the top Ouark

Test of the Standard