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Theoretical fundamentals Theory of electroweak interactions

QED Lagrangian

Quantum electrodynamics described by

L = ψ̄(iγµ∂µ −m)ψ − Qψ̄γµψAµ −
1

4
FµνF

µν .

free fermion propagation (L0)

fermion photon interaction

photon kinetic energy

Theory invariant under local phase transformation (U(1))

ψ → ψ′ = e iQα(x)ψ.

(Aµ → A′µ = Aµ + ∂µχ)
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Theoretical fundamentals Theory of electroweak interactions

Electroweak Lagrangian

Theory invariant under SU(2)L ⊗ U(1)

ψ → ψ′ = e
i
2
~τ~α(x)e i

Y
2
β(x)ψ.

L = χ̄Lγ
µ

(
i∂µ − g

~τ

2
~Wµ − g ′

Y

2
Bµ

)
χL + ψ̄R

(
i∂µ − g ′

Y

2
Bµ

)
ψR + Lkin

with gauge invariant term describing gauge field kinetics:

Lkin = −1

4
BµνB

µν − 1

4
~Wµν

~W µν

Bµν ..= ∂µBν − ∂νBµ ~Wµν
..= ∂µ ~Wν − ∂ν ~Wµ + g ~Wµ × ~Wν

resulting from non-abelian gauge structure
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Theoretical fundamentals Theory of electroweak interactions

Gauge boson self-coupling in the electroweak theory

Cubic and quartic interaction terms resulting from Lkin:

L3 =− ie cot θW

[ (
∂
µWν − ∂νWµ)W†µZν −

(
∂
µWν† − ∂νWµ†

)
WµZν + WµW†ν

(
∂
µZν − ∂νZµ) ]

− ie
[ (
∂
µWν − ∂νWµ)W†µAν −

(
∂
µWν† − ∂νWµ†

)
WµAν + WµW†ν

(
∂
µAν − ∂νAµ) ]

L4 =−
e2

2 sin2 θW

[
(W†µWµ)2 −Wµ

†Wµ†WνWν
]
− e2 cot2

θW

[
W†µWµZνZν −W†µZµWνZν

]
− e cot θW

[
2W†µWµZνAν −W†µZµWνAν −W†µAµWnuZ

ν
]

− e2
[
W†µWµAνAν −W†µAµWνAν

]

Z/γ

W−

W+

W+

W−

W−

W+

W+

W−

Z/γ

Z/γ
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Theoretical fundamentals Effective field theory

Effective field theory (EFT)

Assumption: New physics separated by different (energy) scale Λ
from accessible region. (s � Λ2)

→ Describe observations by parametrized, most general Lagrangian
which recovers the Standard Model in the limit Λ→∞.
(Unitary should be preserved.)

→ Model independent approach for physics BSM.

Example: Fermi theory of β decay (quartic coupling with coupling
strength GF , describing two weak interaction vertices at low
energies s � MW .)

n

e−

ν̄

p

←→
W−

n

e−

ν̄

p
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Limits on anomalous nTGC

Limits on
anomalous neutral

triple gauge couplings
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Limits on anomalous nTGC Lagrangian and possible contributions

Neutral triple gauge couplings (nTGC)

Forbidden in Standard Model but possibly realized as “anomalous”
coupling (in EFT approach).

Construct Lagrangian from general process properties:

• 9 total helicity states but only 7 valid (angular momentum
conservation)

• bose statistics have to be respected

→ Effective ZZV Lagrangian:

LZZV =
e2

M2
Z

(
−
[
fγ4 (∂µF

µν) + fZ
4 (∂µZ

µν)
]
Zσ (∂σZν)

−
[
fγ5 (∂ρFρλ) + fZ

5 (∂ρZρλ)
]
Z̃λξZξ

)
violating CP invariance

conserving CP invariance
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Limits on anomalous nTGC Lagrangian and possible contributions

SM and some new physics contributions to nTGC

SM

NLO and higher order contributions
(only CP conserving f V5 )

Z∗/γ∗

Z

Z

MSSM

1-loop (and higher order) contributions from charginos and neutralinos

New bosons

CP violating coupling f V4 sensitive to two-Higgs-doublet model in 1-loop
corrections.
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Limits on anomalous nTGC pp → ZZ analysis

Limits on anomalous nTGC from ZZ production in pp
collisions

Strategy:
Obtain limits on anomalous ZZZ and ZZγ couplings from differential

cross section
dσZZ

dpZT
.

Analyse ZZ signal channels: ZZ (∗) → l+l−l+l− and ZZ → l+l−νν̄

CERN-PH-EP-2012-318
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Limits on anomalous nTGC pp → ZZ analysis

Extended-lepton selection

Aim: Increase selection acceptance in the
ZZ (∗) → l+l−l+l− channel by using leptons
which are normally not used due to detector
geometry.

Forward spectrometer muons

Muons outside the nominal ID range with 2.5 < |η| < 2.7.
Are required to have a) full track in muon spectrometer, b) pT > 10 GeV and c)∑

ET of calorimeter deposites inside ∆R = 0.2 smaller that 15 % of muon pT .

Calorimeter-tagged muons

Muons in the muon spectrometer limited coverage range |η| < 0.1.
Are required to a) have calorimeter deposit consistent with muon which is
matched to ID track b) have pT > 20 GeV and c) fulfill same impact parameter
and isolation criteria as “standard muons”.
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Limits on anomalous nTGC pp → ZZ analysis

Extended-lepton selection

Aim: Increase selection acceptance in the
ZZ (∗) → l+l−l+l− channel by using leptons
which are normally not used due to detector
geometry.

Calorimeter-only electrons

Electrons outside the ID range with 2.5 < |η| < 3.16.
Are required to a) have pT > 20 GeV and b) pass the tight identification
requirement.
pT is calculated from calorimeter energy and electron direction.
Charge is assigned depending on the charge of the other electron(s).

At most one lepton from each extended category!
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Limits on anomalous nTGC pp → ZZ analysis

Signal region definitions

ZZ(∗) → l+l−l+l−:

• exactly 4 isolated leptons, two same-flavour opposite charge pairs
(e+e−e+e−, e+e−µ+µ− or µ+µ−µ+µ−)

• ∆R(l1, l2) > 0.2

• ambiguity in lepton combinations removed by choosing combination with
lowest |ml+l− −MZ |

• at least one lepton pair fulfills 66 < ml+l− < 116 GeV (the other
ml+l− > 20 GeV)
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Limits on anomalous nTGC pp → ZZ analysis

Signal region definitions

ZZ → l+l−νν̄:

• exactly 2 leptons of same flavour with
pT > 20 GeV

• ∆R(l1, l2) > 0.3

• 76 < ml+l− < 106 GeV

• axial-Emiss
T = −~Emiss

T · ~pZ
/pZ

T > 75 GeV and
|Emiss

T −pZ
T |/pZ

T < 0.4

• jet veto

• no additional lepton with
10 < pT ≤ 20 GeV
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Limits on anomalous nTGC pp → ZZ analysis

Background estimation for the ZZ (∗) → l+l−l+l− channel

Background estimated via data-driven (dd.) method

N(BG ) = [N(lllj)− N(ZZ )]× f − N(lljj)× f 2,

where

• N(lllj) = number of events with 3 leptons and 1 lepton-like jet
satisfying all selection criteria

• N(lljj) = number of events with 2 leptons and 2 lepton-like jet
satisfying all selection criteria

• N(ZZ ) = MC estimate for real leptons classified as lepton-like jet

• f = ratio of the probability for a non-lepton to satisfy the full lepton
selection criteria to the probability for a non-lepton to satisfy the
lepton-like jet criteria.
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Limits on anomalous nTGC Limits from pp → ZZ analysis

Determining limits on anomalous nTGC

• Couplings are parametrized in form-factor
approach

f Vi =
1

(1 + ŝ/Λ2)n
f Vi ,0 −→s→∞

0

with n = 3 and Λ = 3 TeV to ensure
unitarity is not violated at LHC energies.

• To obtain simulated pZT distributions for
different f Vi a reweighting method
(|M|2/|MSM |2) is used.

• Dependency of couplings on the expected
number of events in each pZT bin is
parametrized.

• Limits on couplings are obtained by using a
maximum likelihood fit.
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Limits on anomalous nTGC Limits from pp → ZZ analysis

Limits on anomalous nTGC

The limit(s) on the coupling(s) is/are obtained
assuming all other couplings are zero (as in SM).
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Limits on cTGC

Limits on
charged

triple gauge couplings
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Limits on cTGC Lagrangian

Charged triple gauge couplings (cTGC)

Already realized as ZWW and γWW in Standard Model but further
coupling contributions from new physics possible in EFT approach.

Construct Lagrangian from general process properties:

• 9 total helicity states but only 7 valid (angular momentum
conservation)

• demand C and P conservation

→ Effective WWV Lagrangian (V = Z and γ):

LWWV = igWWV

(
gV

1

(
W+
µνW

−µ −W+µW−
µν

)
V ν + κVW

+
µ W−

ν V µν

+
λV
M2

W

V µνW+
ν
ρ
W−
ρµ

)
with gγ1 = 1.
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Limits on cTGC Lagrangian

The values of cTGC

In the SM the general cTGC couplings are given by

gZ
1 = κZ = κγ = 1

λZ = λγ = 0.

Often the differences from the SM

∆gZ
1 = gZ

1 − 1

∆κZ = κZ − 1

∆κγ = κγ − 1

and not the absolute values are denoted.
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Limits on cTGC pp → WW analysis

Limits on anomalous charged TGC from W+W−

production in pp collisions

Analysis strategy:

• Select W+W− events by “ll ′ + Emiss
T ”.

• Measure differential cross section
dσWW

dpT
in selection phase space

region.

• Extract limits on couplings from differential cross section.

CERN-PH-EP-2012-242
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Limits on cTGC pp → WW analysis

Selection criteria

• two opposite charged leptons
(at least one matched to trigger reconstructed lepton)

(→ 3 channels: ee, eµ, µµ)

• cut on invariant lepton mass mll ′ and Emiss
T ,Rel ,

where

Emiss
T ,Rel =

{
Emiss
T × sin(∆φ) if ∆φa < π/2

Emiss
T if ∆φ ≥ π/2

(to remove Drell-Yan background)

• jet veto

• pT (ll ′) > 30 GeV

a∆φ = azimutal angle difference between Emiss
T and nearest lepton or jet
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Limits on cTGC Limits from pp → WW analysis

“Coupling-scenarios” investigated

equal coupling scenario

∆κZ = ∆κγ , λZ = λγ and gZ
1 = 1

LEP scenario

∆κγ =
cos2 θW

sin2 θW

(
∆gZ

1 −∆κZ

)
and λZ = λγ

HISZ scenario

∆gZ
1 =

1

cos2 θW − sin2 θW
∆κZ ,

∆κγ = 2∆κZ
cos2 θW

cos2 θW − sin2 θW
and λZ = λγ
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Limits on cTGC Limits from pp → WW analysis

Obtaining limits on cTGC

Similar to the pp → ZZ analysis (form factor approach, reweighting
method, dependency of pT (l1) on couplings).

Limits are obtained by the maximum likelihood principle.
(Point in parameter space is discarded if the negative log-likelihood function
increases by more that 1.92 units above the minimum.)
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Limits on cTGC Limits from pp → WW analysis

Limits on cTGC
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Limits on aQGC

Limits on
anomalous

quartic gauge couplings
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Limits on aQGC Lagrangian

Quartic gauge couplings (QGC)

In SM realized as WWWW , WWZZ , WW γZ
and WW γγ. Further contributions from physics
BSM in EFT approach possible.

Construct Lagrangian from following
constraints:

• Consider couplings to logitudinal
polarization degree of gauge bosons only.

• Custodial symmetry

ρ =

(
MW

MZ cos θW

)2

= 1

should be respected.

W+

W−

W−

W+

W+

W−

Z/γ

Z/γ
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Limits on aQGC Lagrangian

Quartic gauge couplings (QGC)

→ Two effective anomalous vector boson scattering (VBS)
Lagrangian terms:

L4 =
α4

16π2
Tr(VµVν) Tr(V µV ν)

L5 =
α5

16π2
Tr(VµV

µ) Tr(VνV
ν)

with Vµ = −igWν + ig ′Bµ (in unitary gauge)
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Limits on aQGC pp → W±W±jj analysis

Limits on aQGC from W±W±jj production in pp collisions

“Evidence of the electroweak production of W±W±jj in pp collisions at√
s = 8 TeV with the ATLAS detector” (ATLAS-CONF-2014-013)

• Published in March 2014.

• First analysis being able to give direct constraints on QGC from VBS.

• Limits on aQGC determined from measured cross section in signal
region phase space.

W±W±jj electroweak W±W±jj strong
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Limits on aQGC pp → W±W±jj analysis

Signal region definition

• 2 same electric charge leptons

• 2 jets with pT > 30 GeV & |η| < 4.5

• additional loose lepton veto

• mll > 20 GeV

• |mee −MZ | > 10 GeV

• Emiss
T > 40 GeV

• b-jet veto

• mjj > 500 GeV

• |∆yjj | > 2.4
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Limits on aQGC Limits from pp → W±W±jj analysis

Limits on aQGC
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Summary & Outlook

Summary & Outlook

Summary

• Effective field theory approach yields possibility to probe physics BSM
in model independent way.

• LHC experiments could improve the limits on anomalous nTGC from
LEP and reach a similar precision on limits on cTGC.

• New analysis (03/2014) gives first direct constraints on aQGC from
pp →W±W±jj .

• No physics BSM observed! (But higher precision may show
contributions!)

Outlook

• Run 2 of LHC will probably increase sensitivity.

• Triboson production analysis (yielding limits on aQGC) may be
realizable for new phase.
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The END

The END
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