Triple Gauge Couplings and Quartic Gauge Couplings Particle Physics at the LHC

$\mathsf{Gernot}\ \mathrm{Knippen}$

Faculty of Mathematics and Physics University of Freiburg

June 17, 2014

Table of content

Theoretical fundamentals Theory of electroweak interactions Effective field theory 2 Limits on anomalous nTGC Lagrangian and possible contributions $pp \rightarrow ZZ$ analysis Limits from $pp \rightarrow ZZ$ analysis A Limits on cTGC Lagrangian $pp \rightarrow WW$ analysis Limits from $pp \rightarrow WW$ analysis 4 Limits on aQGC Lagrangian $pp \rightarrow W^{\pm}W^{\pm}ii$ analysis Limits from $pp \rightarrow W^{\pm}W^{\pm}ii$ analysis Summary & Outlook

JNI REIBURG

QED Lagrangian

Quantum electrodynamics described by

$$\mathcal{L} = \overline{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi - Q\overline{\psi}\gamma^{\mu}\psi A_{\mu} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}.$$
free fermion propagation (\mathcal{L}_{0}) photon kinetic energy fermion photon interaction

Theory invariant under local phase transformation (U(1))

$$\psi \rightarrow \psi' = e^{iQ\alpha(x)}\psi.$$

 $(A_{\mu} \rightarrow A'_{\mu} = A_{\mu} + \partial_{\mu}\chi)$

Electroweak Lagrangian

Theory invariant under $SU(2)_L \otimes U(1)$

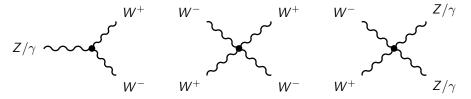
$$\psi \to \psi' = e^{\frac{i}{2}\vec{\tau}\vec{\alpha}(\mathbf{x})}e^{i\frac{\mathbf{Y}}{2}\beta(\mathbf{x})}\psi.$$

$$\mathcal{L} = \bar{\chi}_L \gamma^\mu \left(i\partial_\mu - g\frac{\vec{\tau}}{2}\vec{W}_\mu - g'\frac{Y}{2}B_\mu \right) \chi_L + \bar{\psi}_R \left(i\partial_\mu - g'\frac{Y}{2}B_\mu \right) \psi_R + \mathcal{L}_{kin}$$

with gauge invariant term describing gauge field kinetics:

$$\mathcal{L}_{\textit{kin}} = -rac{1}{4} B_{\mu
u} B^{\mu
u} - rac{1}{4} ec{W}_{\mu
u} ec{W}^{\mu
u}$$

resulting from non-abelian gauge structure

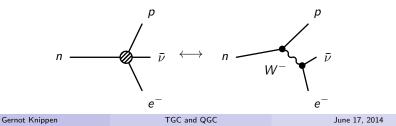

$$B_{\mu\nu} := \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} \qquad \vec{W}_{\mu\nu} := \partial_{\mu}\vec{W}_{\nu} - \partial_{\nu}\vec{W}_{\mu} + \vec{g}\vec{W}_{\mu} \times \vec{W}_{\nu}$$

JNI REIBURG

Gauge boson self-coupling in the electroweak theory

Cubic and quartic interaction terms resulting from \mathcal{L}_{kin} :

$$\begin{split} \mathcal{L}_{3} &= -ie\cot\theta_{W} \Big[\left(\partial^{\mu}W^{\nu} - \partial^{\nu}W^{\mu} \right) W^{\dagger}_{\mu}Z_{\nu} - \left(\partial^{\mu}W^{\nu\,\dagger} - \partial^{\nu}W^{\mu\,\dagger} \right) W_{\mu}Z_{\nu} + W_{\mu}W^{\dagger}_{\nu} \left(\partial^{\mu}Z^{\nu} - \partial^{\nu}Z^{\mu} \right) \Big] \\ &- ie \Big[\left(\partial^{\mu}W^{\nu} - \partial^{\nu}W^{\mu} \right) W^{\dagger}_{\mu}A_{\nu} - \left(\partial^{\mu}W^{\nu\,\dagger} - \partial^{\nu}W^{\mu\,\dagger} \right) W_{\mu}A_{\nu} + W_{\mu}W^{\dagger}_{\nu} \left(\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} \right) \Big] \\ \mathcal{L}_{4} &= - \frac{e^{2}}{2\sin^{2}\theta_{W}} \Big[(W^{\dagger}_{\mu}W^{\mu})^{2} - W_{\mu}^{\dagger}W^{\mu}^{\dagger}W_{\nu}W^{\nu} \Big] - e^{2}\cot^{2}\theta_{W} \Big[W^{\dagger}_{\mu}W^{\mu}Z_{\nu}Z^{\nu} - W^{\dagger}_{\mu}Z^{\mu}W_{\nu}Z^{\nu} \Big] \\ &- e\cot\theta_{W} \Big[2W^{\dagger}_{\mu}W^{\mu}Z_{\nu}A^{\nu} - W^{\dagger}_{\mu}Z^{\mu}W_{\nu}A^{\nu} - W^{\dagger}_{\mu}A^{\mu}W_{n}uZ^{\nu} \Big] \\ &- e^{2} \Big[W^{\dagger}_{\mu}W^{\mu}A_{\nu}A^{\nu} - W^{\dagger}_{\mu}A^{\mu}W_{\nu}A^{\nu} \Big] \end{split}$$



UNI FREIBURG

6 / 26

Effective field theory (EFT)

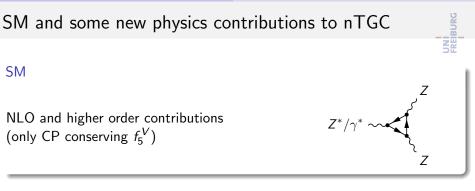
- **Assumption**: New physics separated by different (energy) scale Λ from accessible region. ($s \ll \Lambda^2$)
- \rightarrow Describe observations by parametrized, most general Lagrangian which recovers the Standard Model in the limit $\Lambda \rightarrow \infty$. (Unitary should be preserved.)
- \rightarrow Model independent approach for physics BSM.
- **Example**: Fermi theory of β decay (quartic coupling with coupling strength G_F , describing two weak interaction vertices at low energies $s \ll M_W$.)

Limits on anomalous neutral triple gauge couplings

Neutral triple gauge couplings (nTGC)

Forbidden in Standard Model but possibly realized as "anomalous" coupling (in EFT approach).

Construct Lagrangian from general process properties:


- 9 total helicity states but only 7 valid (angular momentum conservation)
- bose statistics have to be respected
- \rightarrow Effective ZZV Lagrangian:

violating CP invariance

$$\mathcal{L}_{ZZV} = \frac{e^2}{M_Z^2} \left(- \left[\mathbf{f}_{\mathbf{4}}^{\gamma} \left(\partial_{\mu} F^{\mu\nu} \right) + \mathbf{f}_{\mathbf{4}}^{\mathbf{Z}} \left(\partial_{\mu} Z^{\mu\nu} \right) \right] Z_{\sigma} \left(\partial^{\sigma} Z_{\nu} \right) \right.$$

$$\xrightarrow{\text{ving CP invariance}} - \left[\mathbf{f}_{\mathbf{5}}^{\gamma} \left(\partial^{\rho} F_{\rho\lambda} \right) + \mathbf{f}_{\mathbf{5}}^{\mathbf{Z}} \left(\partial^{\rho} Z_{\rho\lambda} \right) \right] \tilde{Z}^{\lambda\xi} Z_{\xi} \right)$$

conser

MSSM

1-loop (and higher order) contributions from charginos and neutralinos

New bosons

CP violating coupling f_4^V sensitive to two-Higgs-doublet model in 1-loop corrections.

Limits on anomalous nTGC from ZZ production in pp collisions

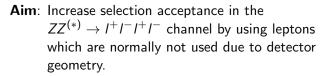
CERN-PH-EP-2012-318

Strategy:

Obtain limits on anomalous ZZZ and ZZ γ couplings from differential cross section $\frac{\mathrm{d}\sigma_{ZZ}}{\mathrm{d}p_T^Z}$. Analyse ZZ signal channels: $ZZ^{(*)} \rightarrow l^+ l^- l^+ l^-$ and $ZZ \rightarrow l^+ l^- \nu \bar{\nu}$

Extended-lepton selection

Aim: Increase selection acceptance in the $ZZ^{(*)} \rightarrow I^+I^-I^+I^-$ channel by using leptons which are normally not used due to detector geometry.


Forward spectrometer muons

Muons outside the nominal ID range with 2.5 $< |\eta| < 2.7$. Are required to have a) full track in muon spectrometer, b) $p_T > 10 \text{ GeV}$ and c) $\sum E_T$ of calorimeter deposites inside $\Delta R = 0.2$ smaller that 15% of muon p_T .

Calorimeter-tagged muons

Muons in the muon spectrometer limited coverage range $|\eta| < 0.1$. Are required to *a*) have calorimeter deposit consistent with muon which is matched to ID track *b*) have $p_T > 20 \text{ GeV}$ and *c*) fulfill same impact parameter and isolation criteria as "standard muons".

Extended-lepton selection

JNI REIBURG

Calorimeter-only electrons

Electrons outside the ID range with $2.5 < |\eta| < 3.16$. Are required to a) have $p_T > 20 \text{ GeV}$ and b) pass the tight identification requirement.

 p_T is calculated from calorimeter energy and electron direction.

Charge is assigned depending on the charge of the other electron(s).

At most one lepton from each extended category!

Signal region definitions

REIBURG


$ZZ^{(*)} \rightarrow I^+I^-I^+I^-$:

- exactly 4 isolated leptons, two same-flavour opposite charge pairs $(e^+e^-e^+e^-, e^+e^-\mu^+\mu^- \text{ or } \mu^+\mu^-\mu^+\mu^-)$
- $\Delta R(l_1, l_2) > 0.2$
- ambiguity in lepton combinations removed by choosing combination with lowest $|m_{l^+l^-}-M_Z|$
- at least one lepton pair fulfills 66 $< m_{l^+l^-} <$ 116 GeV (the other $m_{l^+l^-} >$ 20 GeV)

Signal region definitions

 $ZZ \rightarrow I^+I^- \nu \bar{\nu}$:

- exactly 2 leptons of same flavour with $p_T > 20 \text{ GeV}$
- $\Delta R(l_1, l_2) > 0.3$
- $76 < m_{I^+I^-} < 106 \, \text{GeV}$
- axial- $E_T^{miss} = -\vec{E}_T^{miss} \cdot \vec{p}^z/p_T^z > 75 \text{ GeV}$ and $|E_T^{miss} p_T^z|/p_T^z < 0.4$
- jet veto
- no additional lepton with $10 < p_T \le 20 \text{ GeV}$

Background estimation for the $ZZ^{(*)} \rightarrow I^+I^-I^+I^-$ channel

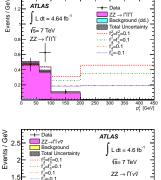
Background estimated via data-driven (dd.) method

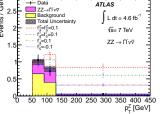
$$N(BG) = [N(IIIj) - N(ZZ)] \times f - N(IIjj) \times f^2,$$

where

- *N*(*IIIj*) = number of events with 3 leptons and 1 lepton-like jet satisfying all selection criteria
- N(IIjj) = number of events with 2 leptons and 2 lepton-like jet satisfying all selection criteria
- N(ZZ) = MC estimate for real leptons classified as lepton-like jet
- *f* = ratio of the probability for a non-lepton to satisfy the full lepton selection criteria to the probability for a non-lepton to satisfy the lepton-like jet criteria.

Determining limits on anomalous nTGC

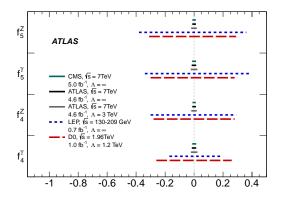

• Couplings are parametrized in form-factor approach

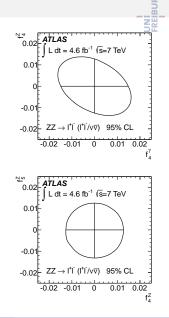

$$f_i^V = \frac{1}{\left(1 + \hat{s}/\Lambda^2\right)^n} f_{i,0}^V \xrightarrow[s \to \infty]{} 0$$

with n = 3 and $\Lambda = 3$ TeV to ensure unitarity is not violated at LHC energies.

- To obtain simulated p^Z_T distributions for different f^V_i a reweighting method (|M|²/|M_{SM}|²) is used.
- Dependency of couplings on the expected number of events in each p_T^Z bin is parametrized.
- Limits on couplings are obtained by using a maximum likelihood fit.

Gernot Knippen





$\text{Limits from } pp \to ZZ$

Limits on anomalous nTGC

The limit(s) on the coupling(s) is/are obtained assuming all other couplings are zero (as in SM).

Limits on charged triple gauge couplings

Charged triple gauge couplings (cTGC)

Already realized as ZWW and γ WW in Standard Model but further coupling contributions from new physics possible in EFT approach.

Construct Lagrangian from general process properties:

- 9 total helicity states but only 7 valid (angular momentum conservation)
- demand C and P conservation
- \rightarrow Effective WWV Lagrangian (V = Z and γ):

$$\begin{aligned} \mathcal{L}_{WWV} &= i g_{WWV} \Big(g_1^V \left(W_{\mu\nu}^+ W^{-\mu} - W^{+\mu} W_{\mu\nu}^- \right) V^\nu + \kappa_V W_{\mu}^+ W_{\nu}^- V^{\mu\nu} \\ &+ \frac{\lambda_V}{M_W^2} V^{\mu\nu} W_{\nu}^{+\rho} W_{\rho\mu}^- \Big) \end{aligned}$$

with $g_1^{\gamma} = 1$.

The values of cTGC

In the SM the general cTGC couplings are given by

$$egin{aligned} g_1^Z &= \kappa_Z = \kappa_\gamma = 1 \ \lambda_Z &= \lambda_\gamma = 0. \end{aligned}$$

Often the differences from the SM

$$\Delta g_1^Z = g_1^Z - 1$$

 $\Delta \kappa_Z = \kappa_Z - 1$
 $\Delta \kappa_\gamma = \kappa_\gamma - 1$

and not the absolute values are denoted.

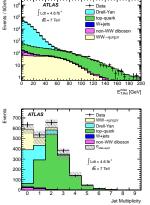
Limits on anomalous charged TGC from $W^+W^$ production in *pp* collisions

CERN-PH-EP-2012-242

Analysis strategy:

- Select W^+W^- events by " $II' + E_T^{miss}$ ".
- Measure differential cross section $\frac{d\sigma_{WW}}{dp_T}$ in selection phase space region.
- Extract limits on couplings from differential cross section.

Selection criteria


- two opposite charged leptons (at least one matched to trigger reconstructed lepton) $(\rightarrow$ 3 channels: *ee*, *eµ*, *µµ*)
- cut on invariant lepton mass $m_{II'}$ and $E_{T,Rel}^{miss}$, where

$$E_{T,Rel}^{miss} = \begin{cases} E_T^{miss} \times \sin(\Delta \phi) & \text{if } \Delta \phi^a < \pi/2\\ E_T^{miss} & \text{if } \Delta \phi \ge \pi/2 \end{cases}$$

(to remove Drell-Yan background)

- jet veto
- $p_T(II') > 30 \, \text{GeV}$

 ${}^{a}\Delta\phi$ = azimutal angle difference between E_{τ}^{miss} and nearest lepton or jet

ATLAS

. Idt = 4.6 fb

+ Data

Drell-Yan

"Coupling-scenarios" investigated

equal coupling scenario

$$\Delta \kappa_Z = \Delta \kappa_\gamma$$
, $\lambda_Z = \lambda_\gamma$ and $g_1^Z = 1$

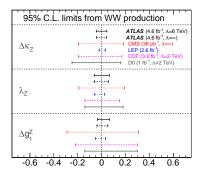
LEP scenario

$$\Delta \kappa_{\gamma} = \frac{\cos^2 \theta_W}{\sin^2 \theta_W} \left(\Delta g_1^Z - \Delta \kappa_Z \right) \text{ and } \lambda_Z = \lambda_{\gamma}$$

HISZ scenario

$$\Delta g_1^Z = \frac{1}{\cos^2 \theta_W - \sin^2 \theta_W} \Delta \kappa_Z,$$

$$\Delta \kappa_\gamma = 2\Delta \kappa_Z \frac{\cos^2 \theta_W}{\cos^2 \theta_W - \sin^2 \theta_W} \text{ and } \lambda_Z = \lambda_\gamma$$


Obtaining limits on cTGC

Similar to the $pp \rightarrow ZZ$ analysis (form factor approach, reweighting method, dependency of $p_T(l_1)$ on couplings).

Limits are obtained by the maximum likelihood principle. (Point in parameter space is discarded if the negative log-likelihood function increases by more that 1.92 units above the minimum.)

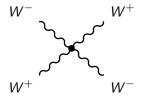
Limits on cTGC

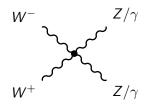
:		Expected	Observed	Expected	Observed
Scenario	Parameter	$(\Lambda = 6 \text{ TeV})$	$(\Lambda = 6 \text{ TeV})$	$(\Lambda = \infty)$	$(\Lambda = \infty)$
	$\Delta \kappa_Z$	[-0.043, 0.040]	[-0.045, 0.044]	[-0.039, 0.039]	[-0.043, 0.043]
LEP	$\lambda_Z = \lambda_\gamma$	[-0.060, 0.062]	[-0.062, 0.065]	[-0.060, 0.056]	[-0.062, 0.059]
	Δg_1^Z	[-0.034, 0.062]	[-0.036, 0.066]	[-0.038, 0.047]	[-0.039, 0.052]
	$\Delta \kappa_Z$	[-0.040, 0.054]	[-0.039, 0.057]	[-0.037, 0.054]	[-0.036, 0.057]
HISZ	$\lambda_Z = \lambda_\gamma$	[-0.064, 0.062]	[-0.066, 0.065]	[-0.061, 0.060]	[-0.063, 0.063]
	$\Delta \kappa_Z$	[-0.058, 0.089]	[-0.061, 0.093]	[-0.057, 0.080]	[-0.061, 0.083]
Equal Couplings	$\lambda_Z = \lambda_\gamma$	[-0.060, 0.062]	[-0.062, 0.065]	[-0.060, 0.056]	[-0.062, 0.059]

	Expected	Observed	
Parameter	$(\Lambda = \infty)$	$(\Lambda = \infty)$	
$\Delta \kappa_Z$	[-0.077, 0.086]	[-0.078, 0.092]	
λ_Z	[-0.071, 0.069]	[-0.074, 0.073]	
λ_{γ}	[-0.144, 0.135]	[-0.152, 0.146]	
Δg_1^Z	[-0.449, 0.546]	[-0.373, 0.562]	
$\Delta \kappa_{\gamma}$	[-0.128, 0.176]	[-0.135, 0.190]	

Limits on anomalous quartic gauge couplings

Quartic gauge couplings (QGC)


In SM realized as *WWWW*, *WWZZ*, *WW* γ *Z* and *WW* $\gamma\gamma$. Further contributions from physics BSM in EFT approach possible.


Construct Lagrangian from following constraints:

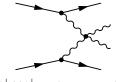
- Consider couplings to logitudinal polarization degree of gauge bosons only.
- Custodial symmetry

$$\rho = \left(\frac{M_W}{M_Z \cos \theta_W}\right)^2 = 1$$

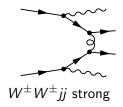
should be respected.

Quartic gauge couplings (QGC)

 \rightarrow Two effective anomalous vector boson scattering (VBS) Lagrangian terms:

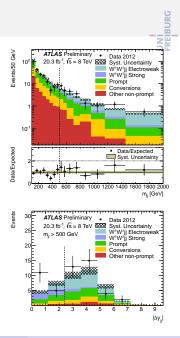

$$\mathcal{L}_{4} = \frac{\alpha_{4}}{16\pi^{2}} \operatorname{Tr}(V_{\mu}V_{\nu}) \operatorname{Tr}(V^{\mu}V^{\nu})$$
$$\mathcal{L}_{5} = \frac{\alpha_{5}}{16\pi^{2}} \operatorname{Tr}(V_{\mu}V^{\mu}) \operatorname{Tr}(V_{\nu}V^{\nu})$$

with $V_{\mu}=-igW_{
u}+ig'B_{\mu}$ (in unitary gauge)

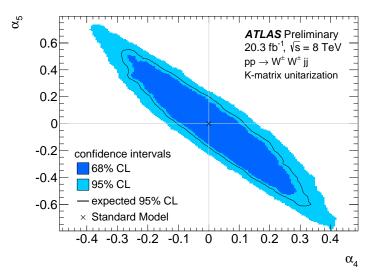

Limits on aQGC from $W^{\pm}W^{\pm}jj$ production in pp collisions

"Evidence of the electroweak production of $W^{\pm}W^{\pm}jj$ in *pp* collisions at $\sqrt{s} = 8 \text{ TeV}$ with the ATLAS detector" (ATLAS-CONF-2014-013)

- Published in March 2014.
- First analysis being able to give direct constraints on QGC from VBS.
- Limits on aQGC determined from measured cross section in signal region phase space.



 $W^{\pm}W^{\pm}jj$ electroweak



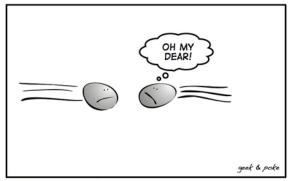
Signal region definition

- 2 same electric charge leptons
- 2 jets with $p_T > 30 \, {
 m GeV}$ & $|\eta| < 4.5$
- additional loose lepton veto
- $m_{II} > 20 \, {
 m GeV}$
- $|m_{ee} M_Z| > 10 \, {
 m GeV}$
- $E_T^{miss} > 40 \, \text{GeV}$
- b-jet veto
- *m_{jj}* > 500 GeV
- $|\Delta y_{jj}| > 2.4$

Limits on aQGC

Summary & Outlook

UNI FREIBURG


Summary

- Effective field theory approach yields possibility to probe physics BSM in model independent way.
- LHC experiments could improve the limits on anomalous nTGC from LEP and reach a similar precision on limits on cTGC.
- New analysis (03/2014) gives first direct constraints on aQGC from $pp \rightarrow W^{\pm}W^{\pm}jj$.
- No physics BSM observed! (But higher precision may show contributions!)

Outlook

- Run 2 of LHC will probably increase sensitivity.
- Triboson production analysis (yielding limits on aQGC) may be realizable for new phase.

The END

LATELY INSIDE THE LHC: 2 PROTONS 0.000000000000000000 SEC BEFORE THE COLLISION