Evidence for the decay of the SM Higgs Boson to Fermions

A presentation of Steffen Landgraf

Advised by Prof. Dr. M. Schumacher

University of Freiburg

Talk outline

- Introduction
- The Higgs Boson production and decay modes
- The ATLAS search of the Higgs boson decaying to a pair of bottom quarks
- CMS results on H → b bbar
- The ATLAS search on the Higgs decay to a pair of Tau leptons
- CMS results on H → Tau+Tau-
- Summary

Introduction

Why search for the Fermionic decay of the Higgs boson?

→ already high evidence in γγ or ZZ→4I channels

Introduction

Higgs field interaction Lagrangian with fermions:

$$\mathcal{L}_{\mathrm{Fermion}}(\phi, \psi) = G_{\psi} \overline{\psi} \phi \psi$$

→ Higgs mechanism produces mass

Introduction

Scale factors for couplings:

$$\kappa_V, \kappa_F$$

$$\sigma(ZH)*\mathrm{BR}(H\to b\bar{b}) ~\sim~ \frac{\kappa_Z^2\cdot\kappa_b^2}{\kappa_H^2(\kappa_b,\kappa_t,\kappa_\tau,\kappa_W,\kappa_Z)},$$

→ test of the standard model

SM Higgs Boson production mechanism and decay modes

VBF:

decay to tau leptons

ggF:

decay to bottom quarks:

VB associated:

The ATLAS search: VH production and decay to bb

- Measure the associated vector boson
 - → leptonic decay into: II, lv, vv
 - → use of lepton triggers

Property Higgs boson decay into a pair of b quarks
 → b-jets

Challenges:

- B quark identification and energy measurement
- Identification of the leptonic decay of the vector boson
- Control of the background produced by decays of Vector Bosons

The ATLAS search: VH production and decay to bb: Event display

Example : WH → Iv b b

The ATLAS search: Summay of background processes

The main background sources:

- → W + jets

→ top pair / single top

The ATLAS search: VH production and decay to bb

Table 1: The basic event selection for the three channels.

Object	0-lepton	1-lepton 2-lepton						
Lantons	0 loose leptons	1 tight lepton	1 medium lepton					
Leptons		+ 0 loose leptons	+ 1 loose lepton					
		2 b-tags						
Jets	$p_{\mathrm{T}}^{\mathrm{jet_1}} > 45~\mathrm{GeV}$							
Jets	$p_{\mathrm{T}}^{\mathrm{jet_2}} > 20 \mathrm{GeV}$							
	+ ≤ 1 extra jets							
Missing E_T	$E_{\mathrm{T}}^{\mathrm{miss}} > 120 \mathrm{GeV}$	$E_{\rm T}^{\rm miss} > 25~{ m Gev}$	$E_{\mathrm{T}}^{\mathrm{miss}} < 60~\mathrm{GeV}$					
Wilssing ET	$p_{\rm T}^{\rm miss} > 30~{ m GeV}$	_						
	$\Delta \phi(E_{\mathbf{T}}^{\mathbf{miss}}, p_{\mathbf{T}}^{\mathbf{miss}}) < \pi/2$							
	$\min[\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet})] > 1.5$							
	$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, b\bar{b}) > 2.8$							
Vector Boson	-	$m_{\mathrm{T}}^{W} < 120~\mathrm{GeV}$	$83 < m_{\ell\ell} < 99 \text{ GeV}$					

 $\boldsymbol{Z} \to \boldsymbol{v}\boldsymbol{v}$

 $\boldsymbol{W} \to \boldsymbol{Iv}$

 $\boldsymbol{Z} \to \boldsymbol{II}$

The ATLAS search: VH production and decay to bb

Jet-energy reconstruction validation

The ATLAS search: VH production and decay to bb: background normalization example t t:

- 1) MC generator:
 - • simulation of specific background processes

2) normalization of the simulation in control regions

3) scale factors:

Process	Scale factor				
tī	1.13 ± 0.05				
Wb	0.89 ± 0.15				
Wcl	1.05 ± 0.14				
Zb	1.30 ± 0.07				
Zcl	0.89 ± 0.48				

The ATLAS search: VH production and decay to bb Observed events

2-jet, 2-tag sample													
	0	-lepton		1-lepton			2-lepton						
Process	$E_{\mathrm{T}}^{\mathrm{m}}$	iss [GeV]	$p_{\tau}^{W}[\text{GeV}]$				$p_{\tau}^{Z}[\text{GeV}]$						
	120-160	160-200	>200	0-90	90-120	120-160	160-200	> 200	0-90	90-120	120-160	160-200	>200
$Z \rightarrow \nu \nu$	1.6	0.9	1.0	<0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1
$Z \rightarrow \ell \ell$	< 0.1	< 0.1	< 0.1	0.2	< 0.1	< 0.1	< 0.1	< 0.1	2.1	0.5	0.4	0.2	0.2
$W \rightarrow \ell \nu$	0.4	0.2	0.2	7.6	1.7	1.2	1.0	1.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1
VH total	2.0	1.1	1.1	7.8	1.8	1.2	1.1	1.1	2.1	0.5	0.4	0.2	0.2
VH expected	11	5.8	6.1	42	9.5	6.6	5.6	6.1	11	2.7	2.2	1.1	1.2
Top	159	33	8	2763	729	359	113	40	166	32	8.0	0.5	<0.1
W+c, light	21	5.3	2.7	616	65	27	12	7.8	<0.1	< 0.1	< 0.1	< 0.1	<0.1
W+b	30	10	6.1	909	106	49	25	19	<0.1	< 0.1	< 0.1	< 0.1	<0.1
Z+c, light	23	8.1	5.2	22	2.1	0.5	0.3	0.1	91	12	5.6	1.6	1.0
Z+b	226	71	39	97	13	3.9	1.8	0.5	938	146	64	14	8.3
ww	0.5	0.1	0.1	11	1.0	0.7	0.3	0.2	<0.1	< 0.1	< 0.1	< 0.1	<0.1
VZ	26	11	10	145	20	12	7.6	6.5	60	8.6	4.5	2.2	2.1
Multijet	4.8	1.1	0.7	1306	45.6	8.7	4.8	0.4	<0.1	< 0.1	< 0.1	< 0.1	<0.1
Total Bkg.	491	141	72	5869	981	460	165	74	1255	199	82	18	11.4
	± 10	± 3	± 2	± 64	± 16	± 9	± 4	± 3	± 24	± 4	± 2	± 1	± 0.5
Data	502	143	90	5916	990	458	162	79	1282	204	70	22	6
S/B	0.004	0.008	0.02	0.001	0.002	0.003	0.006	0.02	0.002	0.003	0.005	0.01	0.02

The ATLAS search: VH production and decay to bb Observed events

The ATLAS search: VH production and decay to bb Results for SM expectations

→ No significance for the 125 GeV Higgs decay to a pair of bottom quarks

The ATLAS search: VH production and decay to bb Results for SM expectations

For m(H) = 125 GeV: → No significance

95% C.L. Upper limit for SM expectation:

→ expected: 1.3 (for absence of signal)

→ measured: 1.4

 \rightarrow signal strength: $\mu = 0.2 \pm 0.5$ (stat.) ± 0.4 (syst.)

The CMS search for H → bb: Results

95% C.L for CSxBR (for m(H) = 125 GeV)

- → expected 0.95
- → observed: 1.89

Signal significance over background

- \rightarrow expected: 2.1
- → measured: 2.1 (high sensitivity of search)
- \rightarrow signal strength: $\mu = 1.0 \pm 0.5$

Results from all channels summed up

The CMS search for $H \rightarrow b\overline{b}$: Results

Comparison with standard model signal strengths

The ATLAS search of the decay of the Higgs Boson to the Tau+ Tau- final state:

The ATLAS search for the decay of the Higgs Boson to the Tau+ Tau- final state: Analysis categories

- 2 exclusive production categorys:
 - VBF:
- 2 jets
- Large Δη separation
- background: gg-fusion and VH production
- Boosted:
 - gg-fusion → large pT(H)
 - Reason: IS gluon readiation
 - Fail in VBF category required
 - background: VBF and VH processes

Н

The ATLAS search of the decay of the Higgs Boson to the Tau+ Tau- final state: Selection criteria for the categories

Category	Selection	$ au_{\mathrm{lep}} au_{\mathrm{lep}}$	$ au_{\mathrm{lep}} au_{\mathrm{had}}$	$ au_{ m had} au_{ m had}$
	$p_{\mathrm{T}}(j_1)$ (GeV)	40	50	50
VBF	$p_{\mathrm{T}}(j_2)$ (GeV)	30	30	30/35
	$\Delta\eta(j_1,j_2)$	2.2	3.0	2.0
	b -jet veto for jet p_T (GeV)	25	30	-
	$p_{\mathrm{T}}^{H}\left(\mathrm{GeV}\right)$	-	-	40
Boosted	$p_{\mathrm{T}}(j_1)$ (GeV)	40	-	-
	$p_{\mathrm{T}}^{H}\left(\mathrm{GeV}\right)$	100	100	100
	b -jet veto for jet p_T (GeV)	25	30	-

The ATLAS search of the decay of the Higgs Boson to the Tau+ Tau- final state:

BDT

- Boosting: overlap different DT's
- BDT output:
 - Range between -1 and 1
 - → 1 : signal-like
 - $\rightarrow -1$: background-like
- BDT training
 - VBF : VBF samples
 - Boosted : gg-fusion, VBF, VH samples

The ATLAS search of the decay of the Higgs Boson to the Tau+ Tau- final state: MMC: invariant mass reconstruction

- Problem: Neutrino energy lost in Tau decay
- ▼ →MMC: Missing Mass Calculator

The ATLAS search of the decay of the Higgs Boson to the Tau+ Tau- final state: Background estimation

- ▼ Z → Tau+Tau- (main)background: "embedding"-method
- \rightarrow take Z $\rightarrow \mu\mu$ data, replace μ by simulated Tau decay

The ATLAS search of the decay of the Higgs Boson to the Tau+ Tau- final state: Background estimation

- Example: single top quark and top-pair production
- Control region: inverted b-tag veto (>0 tags)

The ATLAS search for the decay of the Higgs Boson to the Tau+ Tau- final state: validation of simulations in the control regions

 Example:T(lep)T(lep): Z→II enriched control region inverted cut on m(TT,vis): 80 GeV < m(TT,vis) < 100 GeV)

The ATLAS search of the decay of the Higgs Boson to the Tau+ Tau- final state: signal analysis

Example: T(had)T(had) signal region

The ATLAS measurement of the Tau+ Tau-final state: signal analysis

T(lep)T(had): signal region

The results of the ATLAS search of the decay of the Higgs Boson to the Tau+ Tau- final state:

signals from all BDT channels combined

- signal significance:
 - \rightarrow expected: 3.2 σ
 - \rightarrow observed: 4.1 σ
- \rightarrow evidence for decay: H \rightarrow T+ T-
- signal strength: µ=1.0(+0.5/-0.4)
- Result compatible with SM

The results of the ATLAS search of the decay of the Higgs Boson to the Tau+ Tau- final state:

log(1+S/B) weighted signal

→ comparison of different mass hypotheses

The results of the ATLAS search of the decay of the Higgs Boson to the Tau+ Tau- final state: Results

The CMS results of the search on the decay of the Higgs Boson to a pair of Tau

leptons

For m(H) = 125 GeV:

→ local significance over background only hypothesis:

→ expected: 3.7

 \rightarrow observed: 3.2

→ signal strength: $\mu = 0.78 \pm 0.2$

→ evidence for Higgs Boson coupling to tau leptons

The CMS results of the search on the decay of the Higgs Boson to a pair of Tau leptons

 \rightarrow measured m(H): m(H) = 122 ± 7 GeV → compatible with the standard model expectation

Summary: Higgs Boson decay to fermions

For m(H) = 125 GeV:

- bb decay of the 125 GeV Higgs Boson
 - \rightarrow **ATLAS**: no significance $\mu = 0.2 \pm 0.5 (\text{stat.}) \pm 0.4 (\text{syst.})$
 - \rightarrow **CMS** : observed significance for signal 2.1 μ = 1.0 ± 0.5
- 🔊 т+т- decay of the 125 GeV Higgs Boson
 - \rightarrow **ATLAS**: significance for signal 4.1 $\mu = 1.0(+0.5/-0.4)$
 - → **CMS**: significance for signal 3.2

 $\mu = 0.78 \pm 0.2$

measured: $m(H) = 122 \pm 7 \text{ GeV}$

Summary: CMS combined results for the Higgs Boson decay to fermions

Thank you for your attention

