Term Paper

Higgs boson: Spin + CP

Katharina Schleicher

31.07.2013

Table of contents

Theory

Introduction
How to measure

Analysis $H \rightarrow \gamma \gamma$ with ATLAS

Introduction Structure of Analysis Results Results of CMS

Analysis $H \to ZZ \to 4\ell$ with CMS

Introduction Structure of Analysis Results

Results of ATLAS

Analysis $H \to WW \to e \nu_e \mu \nu_\mu$ with ATLAS Introduction

Combination

Introduction

Discovery of new boson July 2012; Coupling strength compatible with SM ightarrow Investigation of spin- and CP-nature Spin

- ▶ Higgs field is a scalar field \Rightarrow Higgs boson has to be scalar (SM), spin = 0
- ▶ Spin-1 is ruled out because of the Landau Yang theorem $(H \to \gamma \gamma)$
- ▶ Spin-2 particle would not be compatible with a renormalizable theory
- No mixed spin states
- ► Analysis through longitudinal spin-correlations

CP

- If CP-symmetric nothing should be changed if particle is replaced by its antiparticle and simultaneously all space coordinates are mirrored
- ► SM-Higgs boson has CP-eigenvalue +1 (CP-even)
- ▶ If it is CP-violating it would not be eigenstate but a mixture
- ► CP-violation already observed (K-mesons) but is not "large" enough to explain the huge dominance of matter against antimatter
- ► Analysis through transverse spin-correlations

Measurement of spin and CP

The properties spin and CP manifest themselves in different angular distributions.

For example in the channel $H \to \gamma \gamma$ the distribution in $\cos \theta$

Same CP but different spin.

Or the distribution of Φ in the channel $H \to ZZ^* \to 4\ell$

Same spin but different CP.

All the different spin- and CP-hypotheses

$$\begin{array}{lll} 0^{+} & \text{SM scalar Higgs Boson} \\ 0^{-} & \text{pseudo-scalar} \\ 0^{+}_{h} & \text{non-SM scalar with higher-dim. operators} \\ 1^{+} & \text{exotic pseudo-vector} \\ 1^{-} & \text{exotic vector} \\ 2^{+}_{m} & \text{graviton-like tensor with minim. couplings} \\ 2^{+}_{b} & \text{graviton-like tensor with SM in the bulk} \\ 2^{+}_{h} & \text{tensor with higher-dim. operators} \\ 2^{-}_{h} & \text{pseudo-tensor with higher-dim. operators} \end{array}$$

$$A(X_{J=0} \to VV) = v^{-1} \left(g_1 m_V^2 \epsilon_1^* \epsilon_2^* + g_2 f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + g_3 f^{*(1),\mu\nu} f_{\mu\alpha}^{*(2)} \frac{q_\nu q^\alpha}{\Lambda^2} + g_4 f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \right)$$

Introduction

- ▶ $20.7\,\mathrm{fb^{-1}}$ at $\sqrt{s} = 8\,\mathrm{TeV}$
- ► Channel with highest significance
- ► SM 0^+ -hypothesis vs. graviton-like 2_m^+ -hypothesis
- ightarrow Just spin-analysis since photons are stable
- ► No spin-1-hypothesis because of the Landau-Yang theorem

Signal and background

Signal:

mainly via ggF

Main background (irreducible):

► Reducible backgrounds: $\gamma + jet$, jet + jet, ...

via ggF or $q\bar{q}$ (different fractions of each will be analysed)

Sensitive observable

Information about the spin is extracted from the distribution of $|\cos \theta^*|$.

- 0+ Isotropic decay in rest frame
 - Distribution expected to be uniform before any cuts
- 2^+ Distribution follows $1+6\cos^2\theta^*+\cos^4\theta^*$ for production via gluon-fusion and $1-\cos^4\theta^*$ for production via $q\bar{q}$ -annihilation

Collins-Soper frame

- ▶ The Collins-Soper frame is defined in the Higgs-Boson rest frame
- $m{ heta}^*$ is the polar angle of the photons with respect to the z-axis of the Collins-Soper frame

$$|\cos\theta^*| = \frac{|\sinh(\Delta\eta^{\gamma\gamma})|}{\sqrt{1+\left(p_T^{\gamma\gamma}/m_{\gamma\gamma}\right)^2}} \frac{2p_T^{\gamma1}p_T^{\gamma2}}{m_{\gamma\gamma}^2}$$

Advantage:

Less sensitive to initial state radiation of incoming quarks.

Diphoton trigger with $E_{T,\gamma 1} > 35 \,\mathrm{GeV}$ and $E_{T,\gamma 2} > 25 \,\mathrm{GeV}$

$$0 < |\eta| < 1.37$$
 and $1.56 < |\eta| < 2.37$

▶
$$105 \,\text{GeV} < m_{\gamma\gamma} < 160 \,\text{GeV}$$

$$p_{T,\gamma 1}/m_{\gamma\gamma} > 0.35 \text{ and } p_{T,\gamma 2}/m_{\gamma\gamma} > 0.25$$

$$\leftarrow |\cos \theta^*| = \frac{|\sinh(\Delta \eta^{\gamma\gamma})|}{\sqrt{1 + (p_T^{\gamma\gamma}/m_{\gamma\gamma})^2}} \frac{2p_T^{\gamma1}p_T^{\gamma2}}{m_{\gamma\gamma}^2}$$

A mass signal region (SR) and side band regions (SBR) are defined for background estimation and separation between signal and bkg.

SR:
$$122 - 130 \,\text{GeV}$$

SBR:
$$105 \,\mathrm{GeV} < m_{\gamma\gamma} < 122 \,\mathrm{GeV}$$
 and $130 \,\mathrm{GeV} < m_{\gamma\gamma} < 160 \,\mathrm{GeV}$

Distribution of sensitive observable

Sensitive observable in SR:

The expected background is very large compared to the expected signal.

- ⇒ Good estimation of background is important
- \rightarrow Shape (f_B) and yield (n_B) are needed

Obtaining the pdf of $m_{\gamma\gamma}$

- Natural width of invariant mass distribution is smaller than experimental resolution
 - \Rightarrow The pdf $f_S(m_{\gamma\gamma})$ is the same for the spin-0 and the spin-2 hypothesis
- $f_S(m_{\gamma\gamma})$ is determined from a fit to the MC simulated distribution
- $f_B\left(m_{\gamma\gamma}\right)$ is determined from a fifth-degree polynomial fit to the data

Obtaining the pdf of $|\cos \theta^*|$

- ▶ $f_S(|\cos \theta^*|)$ is determined from MC for both hypothesis
- ▶ f_B $(|\cos \theta^*|)$ is determined from the data distribution in $|\cos \theta^*|$ while just considering the events that are in the mass SBR (just possible because of de-correlation between $m_{\gamma\gamma}$ and $|\cos \theta^*|$)

Testing the de-correlation

Now everything is done to perform a likelihood-fit (for each hypothesis) and hence to obtain the signal and background estimations.

The likelihood function for this analysis (de-correlation of $m_{\gamma\gamma}$ and $\cos\theta^*$) is:

$$\ln \mathcal{L} = \\ -(n_S + n_B) + \sum_{\text{events}} \ln \left[n_S \cdot f_S \left(|\cos \theta^*| \right) \cdot f_S \left(m_{\gamma\gamma} \right) + n_B \cdot f_B \left(|\cos \theta^*| \right) \cdot f_B \left(m_{\gamma\gamma} \right) \right]$$

The distributions of the background-subtracted data in the SR only.

The value for the test-statistic $q = \ln \mathcal{L}_0(\hat{\theta}_0) - \ln \mathcal{L}_2(\hat{\theta}_2)$ of the data can be evaluated (black).

And hence a p-value as well as a Spin-2 exclusion limit (1-CL $_{\rm S}(2^+)$) can be obtained.

$$p(0^+) = 58.8\,\%$$
 and $p(2^+) = 0.3\,\%$. $p_{\rm exp}(0^+) = 1.2\,\%$ and $p_{\rm exp}(2^+) = 0.5\,\%$.

$$1 - \mathsf{CL}_{\mathsf{S}}(2^+) = 1 - \frac{p(2^+)}{1 - p(2^+)} = 99.3\%$$

Different fractions of $q\bar{q}$.

$$p(0^+) = 90.2\,\% \text{ and } 1 - \mathrm{CL_S} = 66.3\,\%.$$

Results of CMS

- ▶ $19.6 \, {\rm fb^{-1}}$ at $\sqrt{s} = 8 \, {\rm TeV}$
- ▶ Used same sensitive variable $|\cos \theta^*|$

Production only via ggF

$$1 - \mathsf{CL}_{\mathsf{S}}(2_m^+) = 39.1 \%$$

Production only via $q\bar{q}$

$$1 - \mathsf{CL}_{\mathsf{S}}(2_m^+) = 83.1\,\%$$

Introduction

- ▶ $5.1\,\mathrm{fb^{-1}}$ at $\sqrt{s}=7\,\mathrm{TeV}$ and $19.7\,\mathrm{fb^{-1}}$ at $\sqrt{s}=8\,\mathrm{TeV}$
- ▶ Branching fraction is very low, $\mathcal{O}(10^{-4})$
- ► All decay products visible
- ► The SM 0⁺-hypothesis (pure scalar) is compared to 8 alternative hypotheses

▶ Signal process $H \to ZZ^* \to 4\ell$:

All decay products are visible!

Main background (irreducible): Direct ZZ-production via $q\bar{q}$ annihilation and gluon fusion (estimated from MC)

Subleading background (reducible): Z + jets, $t\bar{t}$, and WZ + jets(estimated from signal-free control regions in data)

Event Selection

- ► Two pairs of leptons
- The leptons in a pair must be opposite charged and of same flavour
- $p_T^e > 7 \, \mathrm{GeV}$ and $|\eta|^e < 2.5$
- ho $p_T^{\mu} > 5\,\mathrm{GeV}$ and $|\eta|^{\mu} < 2.4$
- $40 < m_{Z1} < 120 \,\mathrm{GeV}$
- ▶ 12 < m_{Z2} < 120 GeV

For the following study just events in the mass range $106 < m_{4\ell} < 141 \, {\rm GeV}$ are used.

Sensitive variables

- ▶ Decay of $H \to ZZ \to 4\ell$ sensitive to spin and parity of H
- ▶ To distinguish between the different hypothesis five angles in the 4ℓ -rest frame are used
- ▶ Together with the two masses m_{Z1} and m_{Z2} these five angles fully describe the kinematic configuration of the 4ℓ -system in its rest frame

Distributions of sensitive variables

Kinematic Discriminants

- ▶ Want to construct a discriminant for separation of signal and bkg, \mathcal{D}_{bkg} and one for separation between different hypotheses, \mathcal{D}_{I^P}
- ▶ They shall base on matrix-elements
- ► Therefore pdfs $\mathcal{P}^{\text{kin}}\left(m_{Z1},m_{Z2},\vec{\Omega}|m_{4\ell}\right)$ are used which are computed from LO matrix-elements squared
- ▶ The following *D* are obtained:

$$\begin{split} \mathcal{D}_{\text{bkg}} &= \left[1 + \frac{\mathcal{P}_{\text{bkg}}^{\text{kin}}\left(m_{Z1}, m_{Z2}, \vec{\Omega} | m_{4\ell}\right) \cdot \mathcal{P}_{\text{bkg}}^{\text{mass}}\left(m_{4\ell}\right)}{\mathcal{P}_{0+}^{\text{kin}}\left(m_{Z1}, m_{Z2}, \vec{\Omega} | m_{4\ell}\right) \cdot \mathcal{P}_{0+}^{\text{mass}}\left(m_{4\ell} | m_{0+}\right)}\right]^{-1} \\ \mathcal{D}_{JP} &= \left[1 + \frac{\mathcal{P}_{JP}^{\text{kin}}\left(m_{Z1}, m_{Z2}, \vec{\Omega} | m_{4\ell}\right)}{\mathcal{P}_{0+}^{\text{kin}}\left(m_{Z1}, m_{Z2}, \vec{\Omega} | m_{4\ell}\right)}\right]^{-1} \end{split}$$

▶ All sensitive observables are combined in one discriminant

Kinematic Discriminants

Two example-plots for the \mathcal{D} -discriminants are shown.

Distribution nearly independent of hypothesis

With these discriminants a 2-dim. likelihood-fct. is constructed for each hypothesis and fitted to the data.

$$\mathcal{L}_{2D}^{J^P} = \mathcal{L}_{2D}^{J^P}(\mathcal{D}_{\mathsf{bkg}}, \mathcal{D}_{J^P})$$

And a test-statistic q is evaluated:

$$\Rightarrow q = -2 \ln(\mathcal{L}_{JP}/\mathcal{L}_{0+})$$

The summary plot for the q-values of all tested hypotheses.

$$1 - \mathsf{CL}_{\mathsf{S}}(0^-, 0_h^+) \ge 95.5\%$$
 $1 - \mathsf{CL}_{\mathsf{S}}(1) \ge 99.98\%$ $1 - \mathsf{CL}_{\mathsf{S}}(2) \ge 97.7\%$

Results of ATLAS

- ▶ Considered four alternative hypothesis $(J^P = 0^-, 1^+, 1^-, 2^+)$
- ▶ Used same angles and the $Z_{1,2}$ -masses as CMS
- ▶ Another mass-window: $115 < m_{4\ell} < 130 \, \mathrm{GeV}$ (smaller)
- ▶ The five angles and two masses are combined by using a BDT

$$\begin{array}{l} 1 - \mathsf{CL_S}(0^-) = 97.8\,\% \\ 1 - \mathsf{CL_S}(1^+) = 99.8\,\% \\ 1 - \mathsf{CL_S}(1^-) = 94.0\,\% \\ 1 - \mathsf{CL_S}(2^+) = 96.4\,\% \end{array}$$

- ▶ $20.7\,{\rm fb^{-1}}$ at $\sqrt{s} = 8\,{\rm TeV}$
- ightharpoonup Better separation from bkg if e and μ
- ▶ The SM 0^+ -hypothesis is compared to the 1^+ -, 1^- and 2_m^+ -hypothesis
- ► Analysis very similar to ZZ-Analysis
- $ightharpoonup E_T^{\mathsf{miss}}$ in final state
- ⇒ Not all the five angles can be reconstructed

Sensitive variables

Another variable

For background discrimination.

These three variables plus m_T are used in a BDT again. And a test-statistic q is evaluated.

$$1 - \mathsf{CL}_{\mathsf{S}}(2^+) = 98.0\,\%$$

$$1 - \mathsf{CL}_{\mathsf{S}}(1^{-}) = 98.3\%$$

$$1 - \mathsf{CL}_{\mathsf{S}}(1^+) = 92\,\%$$

Combination

For ATLAS the three channels are combined:

	$\gamma\gamma$	ZZ^*	WW^*
0-		Х	
$1^{+}/1^{-}$		X	Х
2^+	Х	Х	Х

$$\begin{split} &1 - \mathsf{CL_S}(0^-) = 97.8\,\% \\ &1 - \mathsf{CL_S}(1^+) = 99.97\,\% \\ &1 - \mathsf{CL_S}(1^-) = 99.73\,\% \\ &1 - \mathsf{CL_S}(2^+) \ge 99.95\,\% \end{split}$$

⇒ All tested alternative hypotheses can be rejected

Combination

${\sf Conclusion}$

- ► All considered alternative hypotheses can be excluded
- \implies The standard model hypothesis 0^+ is favoured
 - ▶ Now important: Investigation of CP-mixture states