## Searches for 3<sup>rd</sup> generation SUSY-partners

#### "Particle Physics at the LHC" Simeon Schrott

08/07/2014

## Outline

#### Motivation

- Considered processes
- 2 Final states with zero leptons
  - Signal regions
  - Background estimation
  - Results

#### 3 Final states with one lepton

- Signal regions
- Background estimation
- Results

## State of the art CMS

## Section 1

Motivation

In several models, the partners of the top and the bottom quarks, the stops and the sbottoms, are predicted to be the lightest squarks for several reasons:

• diagonalizing the mass matrices in the basis of chiral eigenstates  $\{\tilde{t}_L, \tilde{t}_R\}/\{\tilde{b}_L, \tilde{b}_R\}$  leads to 2 mass eigenstates  $\tilde{t}_1$  and  $\tilde{t}_2$ 

$$M_{\tilde{t}}^{2} = \begin{pmatrix} m_{t}^{2} + m_{\tilde{t}_{L},\tilde{b}_{L}}^{2} + \left(\frac{1}{2} - \frac{2}{3}s_{W}^{2}\right)M_{Z}^{2}c_{2\beta} & m_{t}\left(A_{t} - \mu\cot\beta\right) \\ m_{t}\left(A_{t} - \mu\cot\beta\right) & m_{t}^{2} + m_{\tilde{t}_{R}}^{2} + \frac{2}{3}s_{W}^{2}M_{Z}^{2}c_{2\beta} \end{pmatrix}$$
(1)

$$M_{\tilde{b}}^{2} = \begin{pmatrix} m_{b}^{2} + m_{\tilde{t}_{L},\tilde{b}_{L}}^{2} - \left(\frac{1}{2} - \frac{1}{3}s_{W}^{2}\right)M_{Z}^{2}c_{2\beta} & m_{b}\left(A_{b} - \mu\tan\beta\right) \\ m_{b}\left(A_{b} - \mu\tan\beta\right) & m_{b}^{2} + m_{\tilde{b}_{R}}^{2} + \frac{1}{3}s_{W}^{2}M_{Z}^{2}c_{2\beta} \end{pmatrix}$$

$$c_{2\beta} \equiv \cos 2\beta \quad \& \quad s_{W}^{2} \equiv \sin^{2}\theta_{W}$$

$$(2)$$

 by demanding a natural solution of hierarchy problem (natural SUSY models)

Trying to find squarks since using a pp-collider

### Cross sections for SUSY production processes



Cross-sections for SUSY production processes

Simeon Schrott ()

- We only consider stop pair production
- We assume there are only two simplified  $\tilde{t}_1$  decay modes:

$$\begin{array}{l} - ~~ \tilde{t}_1 \rightarrow t ~~ \tilde{\chi}_1^0 \\ - ~~ \tilde{t}_1 \rightarrow b ~~ \tilde{\chi}_1^\pm \rightarrow b ~~ \tilde{\chi}_1^0 ~~ \mathcal{W}^{(*)} \end{array}$$

• Assuming different BR for our analysis

#### Final states

- $\bullet$  Combining two final states of the  $\tilde{t}_1$  decay to get the final states of direct stop pair production
- Final states of the  $\tilde{t}_1$  decay:



• Detector signature: 4+jets (2b-tagged) & large  $E_T^{\text{miss}}$ 

#### Considered processes: Detector signature



• 
$$E_T^{\text{miss}} = 896 \, \text{GeV}$$

• 5 jets

- 2 b-tagged jets (blue)
- 2 reclustered top candidates

## Section 2

#### Final states with zero leptons

- Search for direct stop pair production
- $20.1 \, \text{fb}^{-1}$  of Atlas data used in this analysis
- data was taken at  $\sqrt{s} = 8 \, {\rm TeV}$  with the ATLAS detector at the LHC
- Using all-hadronic final states only

Defining 9 signal regions (SR)

| SR     | main label criteria | sensitive for:                                                          |
|--------|---------------------|-------------------------------------------------------------------------|
| SRA1-4 | $E_T^{miss}$        | $	ilde{t}_1 	o t 	ilde{\chi}^0_1$ & $	ilde{t}_1 	o b 	ilde{\chi}^\pm_1$ |
| SRB1-2 | $\mathcal{A}_{m_t}$ | ${	ilde t_1} 	o b {	ilde \chi_1^\pm}$                                   |
| SRC1-3 | $m_T^{b,\min}$      | ${	ilde t}_1 	o t  {	ilde \chi}_1^0$                                    |

with:  $A_{m_t} = \text{top mass assymetry}$  $m_T^{b,\min} = \text{transverse mass from } E_T^{\text{miss}}$  and closest b-tagged jet

#### SRA the fully resolved topology needs at least 6 jets.

|  | Trigger                                                                                                                            | $E_{\mathrm{T}}^{\mathrm{miss}}$ |  |                                                                                  |            |                          |                  |        |
|--|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|----------------------------------------------------------------------------------|------------|--------------------------|------------------|--------|
|  | N <sub>lep</sub>                                                                                                                   | 0                                |  |                                                                                  | SRA1       | SRA2                     | SRA3             | SR     |
|  | <i>b</i> -tagged jets                                                                                                              | $\geq 2$                         |  | anti- $k_t R = 0.4$ jets                                                         | $\geq 0$   | 5, $p_{\rm T} > 80, 80,$ | 35, 35, 35, 35 ( | JeV    |
|  | Emiss                                                                                                                              | > 150 GeV                        |  | $m_{bjj}^0$                                                                      | < 22:      | 5 GeV                    | [50,25           | 0] GeV |
|  |                                                                                                                                    | $>\pi/5$                         |  | $m_{bjj}^1$                                                                      | < 250 GeV  |                          | [50,400] GeV     |        |
|  | $ \Delta\phi(\text{jet},\mathbf{p}_{\text{T}}^{\text{mass}}) $                                                                     |                                  |  | $\min[m_{\mathrm{T}}(\mathrm{jet}^{i},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})]$ | -          |                          | > 50 GeV         |        |
|  | $\left \Delta\phi\left(\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss},\mathrm{track}} ight) ight $ | < = /2                           |  | $\tau$ veto                                                                      |            | y                        | es               |        |
|  |                                                                                                                                    | $<\pi/3$                         |  | $E_{\mathrm{T}}^{\mathrm{miss}}$                                                 | > 150  GeV | > 250 GeV                | > 300  GeV       | > 35   |
|  | $m_{\mathrm{T}}^{b,\mathrm{min}}$                                                                                                  | > 175 GeV                        |  |                                                                                  |            |                          |                  |        |

Selection criteria for all SR

Selection criteria for SRA

SRA4

> 350 GeV

## Zero leptons: $m_T^{\rm b,min}$ distribution



 $m_T^{\rm b,min}$  distribution for events with at least 4 jets and all selection criteria applied except  $m_T^{\rm b,min}$ 

Simeon Schrott ()

#### Zero leptons: Event selection requirement

SRB and SRC are only partially resolved, SRB needing 4-5 jets and SRC exactly 5 jets.

|                                                                   | SRB1                                           | SRB2                                                |
|-------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------|
| anti- $k_t R = 0.4$ jets                                          | 4 or 5, $p_{\rm T} > 80, 80, 35, 35, (35)$ GeV | 5, <i>p</i> <sub>T</sub> > 100, 100, 35, 35, 35 GeV |
| $\mathcal{A}_{m_t}$                                               | < 0.5                                          | > 0.5                                               |
| $p_{T,jet,R=1.2}^{0}$                                             | -                                              | > 350 GeV                                           |
| $m_{jet,R=1.2}^{0}$                                               | > 80 GeV                                       | [140,500] GeV                                       |
| $m_{\text{jet},R=1.2}^1$                                          | [60,200] GeV                                   | _                                                   |
| $m_{\text{jet},R=0.8}^0$                                          | > 50 GeV                                       | [70,300] GeV                                        |
| m <sub>T</sub> <sup>min</sup>                                     | > 175 GeV                                      | > 125 GeV                                           |
| $m_{\rm T}$ (jet <sup>3</sup> , $\mathbf{p}_{\rm T}^{\rm miss}$ ) | > 280 GeV for 4-jet case                       | -                                                   |
| $E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}}$            | -                                              | $> 17\sqrt{\text{GeV}}$                             |
| $E_{\rm T}^{\rm miss}$                                            | > 325 GeV                                      | >400  GeV                                           |

|                                         | SRC1                                    | SRC2       | SRC3       |  |  |
|-----------------------------------------|-----------------------------------------|------------|------------|--|--|
| anti- $k_t R = 0.4$ jets                | 5, $p_{\rm T} > 80, 80, 35, 35, 35$ GeV |            |            |  |  |
| $\left \Delta\phi\left(b,b ight) ight $ | $> 0.2\pi$                              |            |            |  |  |
| $m_{\rm T}^{b,{\rm min}}$               | > 185 GeV                               | > 200  GeV | > 200  GeV |  |  |
| $m_{\mathrm{T}}^{b,\max}$               | > 205  GeV                              | > 290  GeV | > 325 GeV  |  |  |
| au veto                                 | yes                                     |            |            |  |  |
| $E_{\mathrm{T}}^{\mathrm{miss}}$        | > 160 GeV                               | > 160 GeV  | > 215 GeV  |  |  |

Simeon Schrott ()

## Zero leptons: Background estimation



Example of final state we want to detect

Main BG from  $t\bar{t}$  production

BG from Z+jet (top) and W+jet (bottom) production

- All possible SM processes are background processes
- BG simulated with Monte-Carlo (MC) simulations except for all-hadronic  $t\bar{t}$ -production and multijet events, those were computed from data in control regions (CR) alone
- CR used to adjust normalization to SR
- Validation regions (VR) used to verify the normalization
- CR and VR again chosen to be orthogonal to SR

# Zero leptons: Selection criteria for the CR corresponding to SRA

|                                                                                                                      | tī CR           | Z + jets CR     | Multijet CR |
|----------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-------------|
| Trigger                                                                                                              | electron (muon) | electron (muon) | same        |
| N <sub>lep</sub>                                                                                                     | 1               | 2               | same        |
| $p_{T}^{\ell}$                                                                                                       | > 35(35) GeV    | > 25(25) GeV    | -           |
| $p_T^{\ell_2}$                                                                                                       | same            | > 10(10)  GeV   | same        |
| $m_{\ell\ell}$                                                                                                       | -               | [86,96] GeV     | -           |
| E <sub>T</sub> miss,track                                                                                            | -               | -               | same        |
| $\Delta \phi \left( \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss, track}} \right)$ | -               | -               | -           |
| $\left \Delta\phi\left(\text{jet},\mathbf{p}_{\text{T}}^{\text{miss}}\right)\right $                                 | $> \pi/10$      | -               | < 0.1       |
| $m_{\rm T}^{b,\rm min}$                                                                                              | > 125 GeV       | -               | -           |
| $m_{\rm T} \left( \ell, \mathbf{p}_{\rm T}^{\rm miss} \right)$                                                       | [40, 120] GeV   | -               | -           |
| $\min[m_T(jet^i, \mathbf{p}_T^{miss})]$                                                                              | -               | -               | -           |
| $m_{bjj}^0$ or $m_{bjj}^1$                                                                                           | < 600 GeV       | -               | -           |
| ET                                                                                                                   | > 150 GeV       | < 50  GeV       | > 150  GeV  |
| $(E_T^{miss})'$                                                                                                      | -               | > 70 GeV        | -           |

Selection criteria for the CR of the SRA signal region

For the VR of SRA the same event selection criteria are applied except the  $\tau$ -veto is inverted and requirements on the top mass and  $m_T^{\text{b,min}}$  are changed

# Zero leptons: Normalized MC predictions and data in Z+jets CR $% \left( {\frac{{{Z_{\rm{B}}}}{{{Z_{\rm{B}}}}}} \right)$



 $E_T^{\text{miss}}$ -distribution in the Z+jets CR

#### Zero leptons: BG compared to data

#### Observed data and normalized BG in all CR

|                              | CRs for SRA   |                |              |                 | CRs for SRB   |              |               |               | CRs for SRC  |               |  |
|------------------------------|---------------|----------------|--------------|-----------------|---------------|--------------|---------------|---------------|--------------|---------------|--|
|                              | tī            | Z + jets       | Multijets    | tī              | W + jets      | Z + jets     | Multijets     | tī            | Z + jets     | Multijets     |  |
| Observed events              |               |                |              |                 |               |              |               |               |              |               |  |
|                              | 247           | 101            | 592          | 950             | 440           | 499          | 2082          | 313           | 499          | 1017          |  |
| Fitted backs                 | ground events | s              |              |                 |               |              |               |               |              |               |  |
| Total SM                     | $247 \pm 16$  | $101 \pm 10$   | $593 \pm 27$ | $950 \pm 40$    | $440 \pm 27$  | $499 \pm 22$ | $2082 \pm 48$ | $313 \pm 18$  | $499 \pm 22$ | $1018 \pm 34$ |  |
| tī                           | $197 \pm 21$  | $12.6 \pm 3.0$ | $109 \pm 23$ | $800 \pm 50$    | $189 \pm 25$  | $46 \pm 7$   | $140 \pm 14$  | $239 \pm 24$  | $49 \pm 12$  | $115 \pm 23$  |  |
| Z + jets                     | $0.28\pm0.19$ | $73 \pm 11$    | $2.5\pm0.6$  | $0.59 \pm 0.16$ | $1.40\pm0.25$ | $423\pm25$   | $11.7\pm1.6$  | $0.18\pm0.07$ | $420\pm26$   | $6.7 \pm 0.9$ |  |
| W + jets                     | $20 \pm 9$    | -              | $4.5\pm2.2$  | $54 \pm 20$     | $190 \pm 40$  | -            | $18\pm7$      | $28 \pm 12$   | -            | $9\pm4$       |  |
| Multijets                    | -             | -              | $460\pm40$   | -               | -             | -            | $1890\pm50$   | -             | -            | $870\pm40$    |  |
| Others                       | $29 \pm 4$    | $15\pm4$       | $11.8\pm1.6$ | $93 \pm 13$     | $61\pm8$      | $30 \pm 10$  | $22.7\pm3.0$  | $45\pm7$      | $30\pm7$     | $12.6\pm1.6$  |  |
| Expected events (before fit) |               |                |              |                 |               |              |               |               |              |               |  |
| tī                           | 159           | 10.2           | 88           | 800             | 190           | 46           | 140           | 224           | 46           | 108           |  |
| Z + jets                     | 0.31          | 78             | 2.7          | 0.55            | 1.30          | 394          | 10.9          | 0.17          | 394          | 6.3           |  |
| W + jets                     | 20            | -              | 4.5          | 52              | 180           | -            | 17            | 28            | -            | 9             |  |
| Multijets                    | -             | -              | 460          | -               | -             | -            | 2090          | -             | -            | 870           |  |
| Others                       | 29            | 15             | 11.7         | 93              | 61            | 30           | 22.7          | 45            | 30           | 12.6          |  |

# Zero leptons: Compare simulated and normalized BG to data in VR

#### Simulated and normalized BG in the VR

|                          | VRA1           | VRA2        | VRB         | VRC1          | VRC2          |  |  |  |
|--------------------------|----------------|-------------|-------------|---------------|---------------|--|--|--|
| Observed events          |                |             |             |               |               |  |  |  |
|                          | 158            | 51          | 69          | 103           | 24            |  |  |  |
| Fitted background events |                |             |             |               |               |  |  |  |
| Total SM                 | $189\pm26$     | $50\pm 6$   | $70 \pm 19$ | $110\pm12$    | $21.1\pm2.9$  |  |  |  |
| tī                       | $170\pm27$     | $34\pm7$    | $60\pm19$   | $93 \pm 12$   | $17.3\pm2.8$  |  |  |  |
| Z + jets                 | $4.0\pm1.1$    | $1.5\pm0.4$ | $1.5\pm0.5$ | $6.9 \pm 1.5$ | $0.24\pm0.20$ |  |  |  |
| W + jets                 | $2.8\pm1.2$    | $4.8\pm2.2$ | $2.1\pm1.4$ | $3.9 \pm 1.8$ | $1.1\pm0.5$   |  |  |  |
| Others                   | $11.8 \pm 3.1$ | $9.1\pm2.2$ | $7.2\pm2.5$ | $6.7\pm2.0$   | $2.4\pm0.7$   |  |  |  |

## Zero leptons: $E_T^{\text{miss}}$ distributions for SRA



 $E_T^{\text{miss}}$ -distributions for the signal regions SRA

## Zero leptons: $E_T^{\text{miss}}$ distributions for different SR



 $E_T^{\text{miss}}$ -distributions for the signal regions SRB & SRC

Simeon Schrott ()

Searches for 3<sup>rd</sup> generation SUSY-partners

#### Observed data in the SR

|                                    | SRA1                        | SRA2                        | SRA3                        | SRA4                         | SRB                         | SRC1                        | SRC2                                 | SRC3                        |
|------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------|-----------------------------|-----------------------------|--------------------------------------|-----------------------------|
| Observed events                    | 11                          | 4                           | 5                           | 4                            | 2                           | 59                          | 30                                   | 15                          |
| Total SM                           | $15.8 \pm 1.9$              | $4.1\pm0.8$                 | $4.1\pm0.9$                 | $2.4\pm0.7$                  | $2.4\pm0.7$                 | $68\pm7$                    | $34\pm5$                             | $20.3\pm3.0$                |
| tī                                 | $10.6\pm1.9$                | $1.8 \pm 0.5$               | $1.1\pm0.6$                 | $0.49 \pm 0.34$              | 0.10 + 0.14 - 0.10          | $32\pm4$                    | $12.9\pm2.0$                         | $6.7\pm1.2$                 |
| $t\bar{t} + W/Z$                   | $1.8\pm0.6$                 | $0.85 \pm 0.29$             | $0.82 \pm 0.29$             | $0.50\pm0.17$                | $0.47 \pm 0.17$             | $3.2\pm0.8$                 | $1.9\pm0.5$                          | $1.3 \pm 0.4$               |
| Z + jets                           | $1.4\pm0.5$                 | $0.63 \pm 0.22$             | $1.2 \pm 0.4$               | $0.68 \pm 0.27$              | $1.23\pm0.31$               | $15.7\pm3.5$                | $9.0 \pm 1.9$                        | $6.1\pm1.3$                 |
| W + jets                           | $1.0\pm0.5$                 | $0.46 \pm 0.21$             | $0.21\pm0.19$               | $0.06  {}^{+ 0.10}_{- 0.06}$ | $0.49 \pm 0.33$             | $8\pm4$                     | $4.8\pm2.2$                          | $2.8\pm1.2$                 |
| Single top                         | $1.0\pm0.4$                 | $0.30\pm0.17$               | $0.44 \pm 0.14$             | $0.31 \pm 0.16$              | $0.08\pm0.06$               | $7.2\pm2.9$                 | $4.5\pm1.8$                          | $2.9 \pm 1.4$               |
| Diboson                            | < 0.4                       | < 0.13                      | $0.32\pm0.17$               | $0.32\pm0.18$                | $0.02\pm0.01$               | $1.1 \pm 0.8$               | 0.6 + 0.7 - 0.6                      | 0.6 + 0.7 - 0.6             |
| Multijets                          | < 0.001                     | < 0.001                     | < 0.001                     | < 0.001                      | < 0.001                     | $0.24\pm0.24$               | $0.06\pm0.06$                        | $0.01\pm0.01$               |
| $\sigma_{\rm vis}({\rm obs})$ [fb] | 0.33                        | 0.29                        | 0.33                        | 0.32                         | 0.21                        | 0.78                        | 0.62                                 | 0.40                        |
| $\sigma_{\rm vis}(\exp)$ [fb]      | $0.48 {}^{+ 0.21}_{- 0.14}$ | $0.29 {}^{+ 0.13}_{- 0.09}$ | $0.29 {}^{+ 0.14}_{- 0.09}$ | $0.25 {}^{+ 0.13}_{- 0.07}$  | $0.24 {}^{+ 0.13}_{- 0.06}$ | $1.03 {}^{+ 0.42}_{- 0.29}$ | $0.73 {}^{+ 0.31}_{- 0.21}$          | $0.55 {}^{+ 0.24}_{- 0.15}$ |
| N <sup>95</sup> <sub>obs</sub>     | 6.6                         | 5.7                         | 6.7                         | 6.5                          | 4.2                         | 15.7                        | 12.4                                 | 8.0                         |
| N <sup>95</sup> <sub>exp</sub>     | $9.7^{+4.3}_{-3.0}$         | $5.8^{+2.6}_{-1.8}$         | $5.9^{+2.8}_{-1.9}$         | $5.0^{+2.6}_{-1.4}$          | $4.7^{+2.6}_{-1.2}$         | $20.7 ^{+8.4}_{-5.8}$       | $14.7 \substack{+ \ 6.2 \\ - \ 4.2}$ | 11.0 + 4.9 - 3.1            |

## Zero leptons: Extracting cross sections



Simplified schematic illustration of obtaining the expected and the visible cross section

- No significant deviation from data to simulated BG
- Expected and observed cross-sections are equal within 2  $\sigma$
- Applying models to redefine exclusion regions for the mass of the observed(?) sparticles



#### Zero leptons: Exclusion contoures



Assumptions:  $\tilde{t}_1 \tilde{t}_1$  production,  $\mathcal{B}\left(\tilde{t}_1 \rightarrow t \, \tilde{\chi}_1^0\right) = 100\%$ 

#### Zero leptons: Exclusion contoures



Assumptions:  $\tilde{t}_1 \tilde{t}_1$  production,  $\mathcal{B}\left(\tilde{t}_1 \rightarrow t \, \tilde{\chi}_1^0\right) = 50\%$ 

## Section 3

#### Final states with one lepton

- Search for direct stop pair production
- $20.7 \, \text{fb}^{-1}$  of data used in this analysis
- Data was taken with  $\sqrt{s}=8\,{\rm TeV}$  with the ATLAS detector at the LHC
- Only using events with exactly one isolated lepton

Defining 6 signal regions (SR), labeled SRbC for  $\tilde{t}_1 \rightarrow b \, \tilde{\chi}_1^{\pm}$ and SRtN for  $\tilde{t}_1 \rightarrow t \, \tilde{\chi}_1^0$  decay modes.

| SR    | sensitive for:                                                                          |
|-------|-----------------------------------------------------------------------------------------|
| SRbC1 | $m_{	ilde{\chi}_1^\pm} = 100 - 300  { m GeV}  \&  m_{	ilde{t}_1} = 200 - 400  { m GeV}$ |
| SRbC2 | $m_{{	ilde t}_1}=310-500{ m GeV}$                                                       |
| SRbC3 | $\left( m_{	ilde{t}_1} - m_{	ilde{\chi}_1^\pm}  ight) \gtrsim$ 150 GeV                  |
| SRtN1 | $m_{	ilde{t}_1}\gtrsim m_t+m_{	ilde{\chi}_1^0}$                                         |
| SRtN2 | large $m_{\widetilde{\chi}_1^0}$                                                        |
| SRtN3 | large $m_{\tilde{t}_1}$                                                                 |

| Requirement                                                                    | SRtN1_shape       | SRtN2 | SRtN3 | SRbC1 | SRbC2 | SRbC3 |
|--------------------------------------------------------------------------------|-------------------|-------|-------|-------|-------|-------|
| $\Delta \varphi(\text{jet}_1, \vec{p}_T^{\text{miss}}) >$                      | 0.8               | -     | 0.8   | 0.8   | 0.8   | 0.8   |
| $\Delta \varphi(\text{jet}_2, \vec{p}_T^{\text{miss}}) >$                      | 0.8               | 0.8   | 0.8   | 0.8   | 0.8   | 0.8   |
| $E_{\rm T}^{\rm miss}$ [GeV] >                                                 | $100^{(\star)}$   | 200   | 275   | 150   | 160   | 160   |
| $E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}}  [\mathrm{GeV}^{1/2}] >$ | 5                 | 13    | 11    | 7     | 8     | 8     |
| $m_{\rm T}  [{\rm GeV}] >$                                                     | 60 <sup>(*)</sup> | 140   | 200   | 120   | 120   | 120   |
| $m_{\rm eff} [GeV] >$                                                          | -                 | -     | -     | -     | 550   | 700   |
| $am_{T2}$ [GeV] >                                                              | -                 | 170   | 175   | -     | 175   | 200   |
| $m_{T2}^{\tau} [\text{GeV}] >$                                                 | -                 | -     | 80    | -     | -     | -     |
| m <sub>jjj</sub>                                                               | Yes               | Yes   | Yes   | -     | -     | -     |
| $N^{\text{iso-trk}} = 0$                                                       | -                 | -     | -     | Yes   | Yes   | Yes   |
| Number of $b$ -jets $\geq$                                                     | 1                 | 1     | 1     | 1     | 2     | 2     |
| $p_{\rm T}$ (leading <i>b</i> -jet) [GeV] >                                    | 25                | 25    | 25    | 25    | 100   | 120   |
| $p_{\rm T}$ (second <i>b</i> -jet) [GeV] >                                     | -                 | -     | -     | -     | 50    | 90    |

#### Selection criteria defining the six SR

#### One lepton: Background estimation



Final states we want to detect

Main BG from  $t\bar{t}$  production

BG from Z+jet (top) and W+jet (bottom) production

- Again all possible SM processes are background
- Background simulated with MC Simulations
- Using CR to normalize background to SR
- Using VR to check normalization for  $t\bar{t}$ -BG
- CR and VR defined non overlapping with SR

## One lepton: Characteristic distributions for different SRtN



#### One lepton: Observed events in SRbC

| Regions                | WCR-SRbC1             | TCR-SRbC1             | TVR-SRbC1           | SRbC1               |
|------------------------|-----------------------|-----------------------|---------------------|---------------------|
| Observed events        | 2358                  | 2944                  | 785                 | 456                 |
| Total background (fit) | $2358 \pm 151$        | $2944 \pm 119$        | 806 ± 123           | $482 \pm 76$        |
| tt                     | $440 \pm 180 (440)$   | $2160 \pm 210$ (2170) | $630 \pm 100$ (630) | 400 ± 90 (400)      |
| $t\bar{t} + V$         | $2.8 \pm 1.6$         | $14 \pm 8$            | $5.9 \pm 3.4$       | $14 \pm 7$          |
| W+jets                 | $1780 \pm 240$ (2080) | $540 \pm 170$ (630)   | $120 \pm 40 (140)$  | $45 \pm 17(52)$     |
| Z+jets, VV, multijet   | $100 \pm 80$          | $37 \pm 28$           | $5 \pm 5$           | $5 \pm 4$           |
| Single top             | 39 ± 25               | $190 \pm 90$          | $46 \pm 31$         | $19 \pm 10$         |
| Regions                | WCR-SRbC2             | TCR-SRbC2             | TVR-SRbC2           | SRbC2               |
| Observed events        | 1139                  | 264                   | 76                  | 25                  |
| Total background (fit) | $1139 \pm 45$         | $264 \pm 19$          | $75 \pm 26$         | 18 ± 5              |
| tt                     | $130 \pm 80 (150)$    | 204 ± 29 (240)        | 61 ± 25 (71)        | $9 \pm 5(11)$       |
| $t\bar{t} + V$         | $1.3 \pm 0.9$         | $2.5 \pm 1.5$         | $1.0 \pm 0.7$       | $2.4 \pm 1.3$       |
| W+jets                 | $940 \pm 100 (1000)$  | $26 \pm 12$ (28)      | $5.8 \pm 2.7 (6.2)$ | $3.3 \pm 2.0 (3.4)$ |
| Z+jets, VV, multijet   | $50 \pm 40$           | $1.3 \pm 1.2$         | $0 \pm 0$           | $0 \pm 0$           |
| Single top             | 16 ± 13               | $30 \pm 14$           | 7 ± 5               | 3.4 ± 1.5           |
| Regions                | WCR-SRbC3             | TCR-SRbC3             | TVR-SRbC3           | SRbC3               |
| Observed events        | 665                   | 144                   | 39                  | 6                   |
| Total background       | $665 \pm 33$          | $144 \pm 17$          | 42 ± 9              | 7 ± 3               |
| tt                     | $60 \pm 40$ (80)      | 106 ± 23 (141)        | 31 ± 8 (42)         | $2.4 \pm 1.5 (3.1)$ |
| $t\bar{t} + V$         | $0.8 \pm 0.6$         | $1.8 \pm 1.1$         | $0.6 \pm 0.5$       | $0.8 \pm 0.6$       |
| W+jets                 | $560 \pm 60 (610)$    | $17 \pm 8 (19)$       | $4.7 \pm 2.0 (5.2)$ | $1.7 \pm 1.7 (1.9)$ |
| Z+jets, VV, multijet   | $33 \pm 26$           | $0.5^{+1.2}_{-0.5}$   | $0 \pm 0$           | $0 \pm 0$           |
| Single top             | $10 \pm 7$            | $18 \pm 9$            | $6 \pm 4$           | $2.0 \pm 1.0$       |

#### Table of events measured in the CR,VR and SR (for SRbC)

| Regions                | WCR-SRtN2           | TCR-SRtN2          | TVR-SRtN2           | SRtN2                  |
|------------------------|---------------------|--------------------|---------------------|------------------------|
| Observed events        | 165                 | 204                | 23                  | 14                     |
| Total background (III) | 165 ± 15            | $204 \pm 16$       | 29 ± 10             | 15 ± 5                 |
| tt                     | 31 ± 18 (30)        | $139 \pm 26 (138)$ | 22 ± 8 (22)         | $7.5 \pm 2.9 (7.5)$    |
| $t\bar{t} + V$         | $0.4 \pm 0.3$       | $1.4 \pm 0.8$      | $0.4 \pm 0.3$       | $2.2 \pm 1.2$          |
| W+jets                 | 122 ± 28 (157)      | $44 \pm 19(57)$    | $4.6 \pm 2.6 (5.9)$ | $1.5 \pm 0.8 (1.9)$    |
| Z+jets, VV, multijet   | $11 \pm 9$          | $5 \pm 4$          | $0.1^{+0.3}_{-0.1}$ | $0.4 \pm 0.3$          |
| Single top             | $1.3^{+2.4}_{-1.3}$ | $14 \pm 10$        | $2.1 \pm 1.9$       | $1.1 \pm 0.5$          |
| Regions                | WCR-SRtN3           | TCR-SRtN3          | TVR-SRtN3           | SRtN3                  |
| Observed events        | 149                 | 175                | 22                  | 7                      |
| Total background (fit) | $149 \pm 25$        | $175 \pm 19$       | $28 \pm 14$         | 5 ± 2                  |
| tt                     | $20 \pm 15(24)$     | 96 ± 33 (118)      | 19 ± 12 (24)        | $1.8 \pm 1.0 (2.2)$    |
| $t\overline{t} + V$    | $0.3 \pm 0.3$       | $1.5 \pm 0.9$      | $0.48 \pm 0.35$     | $1.0 \pm 0.7$          |
| W+jets                 | $117 \pm 29(131)$   | $55 \pm 25(61)$    | $5.3 \pm 2.6 (5.9)$ | $1.5 \pm 1.3 (1.6)$    |
| Z+jets, VV, multijet   | $10 \pm 8$          | $3.8 \pm 3.5$      | $0.1^{+0.6}_{-0.1}$ | $0.14^{+0.19}_{-0.14}$ |
| Single top             | $1.6^{+1.8}_{-1.6}$ | $19 \pm 11$        | $2.6 \pm 1.9$       | $0.53 \pm 0.24$        |

#### Table of events measured in the CR,VR and SR (for SRtN2-3)

## One lepton: Observed events in SRtN1\_shape

|                                                        | = 0 <i>b</i> -jet              | $\geq 1b$ -jet                   |                                 |                                  |                             |
|--------------------------------------------------------|--------------------------------|----------------------------------|---------------------------------|----------------------------------|-----------------------------|
| $100 < E_{\rm T}^{\rm miss} < 125{\rm GeV}$            | $60 < m_{\rm T} < 90{\rm GeV}$ | $60 < m_{\rm T} < 90~{\rm GeV}$  | $90 < m_{\rm T} < 120{\rm GeV}$ | $120 < m_{\rm T} < 140{\rm GeV}$ | $m_{\rm T} > 140~{ m GeV}$  |
| Observed events                                        | 1289                           | 3122                             | 1521                            | 268                              | 253                         |
| Total background (fit)                                 | $1289 \pm 85$                  | $3122 \pm 116$                   | $1535 \pm 260$                  | $291 \pm 61$                     | $250 \pm 57$                |
| tt                                                     | 480 ± 140 (430)                | 2720 ± 170 (2410)                | 1350 ± 249 (1200)               | $260 \pm 60 (230)$               | 230 ± 50 (200)              |
| $t\bar{t} + V$                                         | $2.0 \pm 1.0$                  | 9 ± 4                            | $5.6 \pm 2.8$                   | $1.9 \pm 0.9$                    | $2.8 \pm 1.3$               |
| W+jets                                                 | $730 \pm 170$ (880)            | $230 \pm 120(270)$               | $110 \pm 50 (130)$              | $22 \pm 11$ (26)                 | $12 \pm 10 (14)$            |
| Z+jets, VV, multijet                                   | $39 \pm 35$                    | $35 \pm 35$                      | 7 ± 6                           | $1.4^{+2.3}_{-1.4}$              | $0.6^{+0.9}_{-0.6}$         |
| Single top                                             | $31 \pm 18$                    | $130 \pm 70$                     | $60 \pm 40$                     | 8 ± 6                            | 6 ± 4                       |
| $\overline{125 < E_{\rm T}^{\rm miss} < 150{\rm GeV}}$ | $60 < m_{\rm T} < 90{\rm GeV}$ | $60 < m_{\rm T} < 90~{\rm GeV}$  | $90 < m_{\rm T} < 120{\rm GeV}$ | $120 < m_{\rm T} < 140{\rm GeV}$ | $m_{\rm T} > 140~{\rm GeV}$ |
| Observed events                                        | 825                            | 1962                             | 721                             | 119                              | 165                         |
| Total background (fit)                                 | $825 \pm 56$                   | $1962 \pm 60$                    | $755 \pm 119$                   | $145 \pm 23$                     | $174 \pm 28$                |
| tt                                                     | 330 ± 120 (290)                | 1740 ± 100 (1510)                | 670 ± 110 (590)                 | $135 \pm 21 (118)$               | $162 \pm 27 (141)$          |
| $t\bar{t} + V$                                         | $1.4 \pm 0.9$                  | $7.0 \pm 3.5$                    | $3.9 \pm 2.2$                   | $1.3 \pm 0.7$                    | $2.9 \pm 1.3$               |
| W+jets                                                 | $450 \pm 130 (640)$            | $130 \pm 60 (180)$               | 47 ± 25 (68)                    | $5 \pm 5(7)$                     | $3^{+5}_{-3}(5)$            |
| Z+jets, VV, multijet                                   | $30 \pm 24$                    | $16^{+27}_{-16}$                 | $3.4 \pm 3.4$                   | $0.4 \pm 0.4$                    | $0.8^{+1.0}_{-0.8}$         |
| Single top                                             | $19 \pm 12$                    | 78 ± 35                          | $27 \pm 19$                     | $3.4^{+3.5}_{-3.4}$              | $5.7 \pm 1.9$               |
| $E_{\rm T}^{\rm miss} > 150{ m GeV}$                   | $60 < m_{\rm T} < 90{\rm GeV}$ | $60 < m_{\rm T} < 90  {\rm GeV}$ | $90 < m_{\rm T} < 120{\rm GeV}$ | $120 < m_{\rm T} < 140 { m GeV}$ | $m_{\rm T} > 140~{ m GeV}$  |
| Observed events                                        | 1441                           | 2591                             | 663                             | 113                              | 235                         |
| Total background (fit)                                 | $1441 \pm 103$                 | $2591 \pm 104$                   | $695 \pm 151$                   | $101 \pm 26$                     | $262 \pm 34$                |
| tt                                                     | 430 ± 180 (420)                | 2100 ± 180 (2030)                | 590 ± 120 (570)                 | 88 ± 23 (85)                     | 220 ± 40 (210)              |
| $t\bar{t} + V$                                         | $2.7 \pm 1.7$                  | $14 \pm 8$                       | $5.7 \pm 3.5$                   | $2.2 \pm 1.2$                    | $10 \pm 5$                  |
| W+jets                                                 | $920 \pm 210 (1110)$           | $310 \pm 120(380)$               | 59 ± 28 (72)                    | $6.0 \pm 3.5 (7.3)$              | $24 \pm 14$ (29)            |
| Z+jets, VV, multijet                                   | $60 \pm 60$                    | $24 \pm 22$                      | 2+5                             | $0.4^{+0.6}_{-0.4}$              | $2.1 \pm 1.8$               |
| Single top                                             | $27 \pm 20$                    | $140 \pm 80$                     | $37 \pm 26$                     | $4 \pm 4$                        | 7 ± 5                       |

#### Table of events measured in the CR,VR and SR (for SRtN1)

Simeon Schrott ()

- No significant deviation of simulated BG to data
   ⇒ No evidence to physics beyond SM
- Calculating expected and observed visible cross-sections
- Applying certain models, one can calculate exclusion limits for the considered sparticle masses

#### One lepton: Excluded regions



Assumptions:  $\tilde{t}_1 \tilde{t}_1$  production,  $\mathcal{B} \left( \tilde{t}_1 \rightarrow t \, \tilde{\chi}_1^0 
ight) = 100\%$ 

#### One lepton: Excluded regions



Assumptions:  $\tilde{t}_1 \tilde{t}_1$  production,  $\mathcal{B}\left(\tilde{t}_1 \rightarrow b \, \tilde{\chi}_1^{\pm}\right) = 100\%$ , left:  $m_{\tilde{\chi}_1^{\pm}} = 150 \text{ GeV}$ , right:  $m_{\tilde{\chi}_1^{\pm}} = 2 \cdot m_{\tilde{\chi}_1^0}$ 

### Section 4

State of the art

## State of the art of the ATLAS Experiment



## Comparing Achievements with results from CMS



Exclusion limits observed by CMS are similar to those measured by ATLAS

Simeon Schrott ()

- Observed events agree with SM predictions
- No evidence for physics beyond the SM
- Mass exclusion regions could be extended