The Higgs Particle Mass, Width and Couplings Seminar 'Particle Physics at the LHC'

Freiburg, 22.07.2014

Albert-Ludwigs-Universität Freiburg

Michael Schubert

Contents

Introduction

Mass

 $\begin{array}{l} \mathsf{H} \rightarrow \gamma \gamma \\ \mathsf{H} \rightarrow \mathsf{Z} \mathsf{Z}^* \rightarrow \mathsf{4} \ell \end{array}$

Width

Couplings Coupling Strength Custodial Symmetry Loop Content

Conclusion

UN FREIBURG

> Introduction Mass $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Couplings Strength Custodial Symmetry Loop Content

introduction

We found a Higgs boson! So... What now?

Introduction

Mass $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings

Strength

Custodial

Symmetry

Loop Content

what we can measure

- mass
- spin
- CP
- width
- couplings

Introduction

Mass

 $H \rightarrow \gamma \gamma$

 $H{\rightarrow}ZZ^* \rightarrow 4\ell$

Width

Couplings

Coupling

Strength

Custodial

Symmetry

Loop Content

introduction

a short reminder about Higgs boson interactios

Introduction

BURG

Mass $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Coupling Strength Custodial Symmetry Loop Content

introduction

Introduction

Mass

BURG

6/54

significant channels

Introduction

Mass

- $H \rightarrow \gamma \gamma$
- $H \rightarrow ZZ^* \rightarrow 4\ell$
- Width
- Couplings
- Strength
- Symmetry
- Loop Content

Which Channels are suitable for the mass measurement?

- $H \rightarrow \gamma \gamma$ $H \rightarrow Z \rightarrow 4\ell$

But why?

very good knowlegde of detector (e & γ)

- energy calibration (global & cell specific)
- behaviour of different layers
- material in front of the calorimeter

controlled with > 7 million events (Z $\rightarrow e^+e^-$, Z $\rightarrow \ell^+\ell^-\gamma$, $J/\psi \rightarrow e^+e^-$)

similar for μ , controlled with ~15million events $(Z \rightarrow \mu^+ \mu^-, J/\psi \rightarrow \mu^+ \mu^-)$ separate for inner detector & muon spectrometer Introduction Mass $H \rightarrow \gamma\gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Coupling Strength Custodial Symmetry Loop Content Conclusion

$\mathsf{H}{\rightarrow}\gamma\gamma$

Mass $H \rightarrow \gamma\gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Coupling Strength Custodial Symmetry

Introduction

Loop Content

Conclusion

this channel is good because

- very good mass resolution (2γ final state)
- smooth background can be determined from data

many many categories

We separate into 10 categories:

- converted γ vs. unconverted γ
 - different η regions
 - different p_{Tt} regions

note :
$$p_{Tt} = \left| \left(p_T^{\gamma_1} + p_T^{\gamma_2} \right) \times \frac{p_T^{\gamma_1} - p_T^{\gamma_2}}{\left| p_T^{\gamma_1} - p_T^{\gamma_2} \right|} \right|$$

= projection orthogonal to thrust axis

the categories

Category	$n_{\rm sig}$	FWHM [GeV]	$\sigma_{\rm eff} [GeV]$	$b \ln \pm \sigma_{\rm eff90}$	s/b [%]	s/\sqrt{b}	
$\sqrt{s}=8$ TeV							
Inclusive	402.	3.69	1.67	10670	3.39	3.50	
Unconv. central low p_{Tt}	59.3	3.13	1.35	801	6.66	1.88	
Unconv. central high p_{Tt}	7.1	2.81	1.21	26.0	24.6	1.26	
Unconv. rest low p_{Tt}	96.2	3.49	1.53	2624	3.30	1.69	
Unconv. rest high p_{Tt}	10.4	3.11	1.36	93.9	9.95	0.96	
Unconv. transition	26.0	4.24	1.86	910	2.57	0.78	
Conv. central low p_{Tt}	37.2	3.47	1.52	589	5.69	1.38	
Conv. central high p_{Tt}	4.5	3.07	1.35	20.9	19.4	0.88	
Conv. rest low p_{Tt}	107.2	4.23	1.88	3834	2.52	1.56	
Conv. rest high p_{Tt}	11.9	3.71	1.64	144.2	7.44	0.89	
Conv. transition	42.1	5.31	2.41	1977	1.92	0.85	
		$\sqrt{s}=7$ T	eV				
Inclusive	73.9	3.38	1.54	1752	3.80	1.59	
Unconv. central low p_{Tt}	10.8	2.89	1.24	128	7.55	0.85	
Unconv. central high p_{Tt}	1.2	2.59	1.11	3.7	30.0	0.58	
Unconv. rest low p_{Tt}	16.5	3.09	1.35	363	4.08	0.78	
Unconv. rest high p_{Tt}	1.8	2.78	1.21	13.6	11.6	0.43	
Unconv. transition	4.5	3.65	1.61	125	3.21	0.36	
Conv. central low p_{Tt}	7.1	3.28	1.44	105	6.06	0.62	
Conv. central high p_{Tt}	0.8	2.87	1.25	3.5	21.6	0.40	
Conv. rest low p_{Tt}	21.0	3.93	1.75	695	2.72	0.72	
Conv. rest high p_{Tt}	2.2	3.43	1.51	24.7	7.98	0.40	
Conv. transition	8.1	4.81	2.23	365	2.00	0.38	

Mass $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Coupling Strength Custodial Symmetry Loop Content Conclusion

results

for illustration each channel is weighted with its signal to background ratio

systematics

of course we have systematics to account for

	Unconverted					Converted					
	Ce	ntral	Rest		Trans.	Central		Rest		Trans.	
Class	low p_{Tt}	high p _{Tt}	low p_{Tt}	high p _{Tt}		low p_{Tt}	high p_{Tt}	low p_{Tt}	high p _{Tt}		
$Z \rightarrow e^+e^-$ calibration	0.02	0.03	0.04	0.04	0.11	0.02	0.02	0.05	0.05	0.11	
LAr cell non-linearity	0.12	0.19	0.09	0.16	0.39	0.09	0.19	0.06	0.14	0.29	
Layer calibration	0.13	0.16	0.11	0.13	0.13	0.07	0.10	0.05	0.07	0.07	
ID material	0.06	0.06	0.08	0.08	0.10	0.05	0.05	0.06	0.06	0.06	
Other material	0.07	0.08	0.14	0.15	0.35	0.04	0.04	0.07	0.08	0.20	
Conversion reconstruction	0.02	0.02	0.03	0.03	0.05	0.03	0.02	0.05	0.04	0.06	
Lateral shower shape	0.04	0.04	0.07	0.07	0.06	0.09	0.09	0.18	0.19	0.16	
Background modeling	0.10	0.06	0.05	0.11	0.16	0.13	0.06	0.14	0.18	0.20	
Vertex measurement	0.03										
Total	0.23	0.28	0.24	0.30	0.59	0.21	0.25	0.27	0.33	0.47	

relative uncertainties in %

Introduction Mass

ilabo

 $H \rightarrow \gamma \gamma$

 $H{\rightarrow}ZZ^* \rightarrow 4\ell$

Width

Couplings

Coupling

Strength

Custodial

Symmetry

Loop Content

Conclusion

13/54

relults, again

Introduction Mass $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Coupling Strength Custodial Symmetry Loop Content Conclusion

the ATLAS collaboration measures

$$m_H = 125.98 \pm 0.42(\text{stat}) \pm 0.28(\text{syst})\text{GeV}$$

and a signal strength = cross section normalized to SM expectation

$$\mu = 1.29 \pm 0.30$$

- good signal to background ratio
- ▶ clean final state → good mass resolution

Introduction Mass $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Coupling Strength Custodial Symmetry

Loop Content

the categories

here the analysis is split into different final states

► 4µ

- ► 2e2µ
- ► 2µ2e
 - ► 4e

Width Couplings

Introduction Mass $H \rightarrow \gamma \gamma$

 $H \rightarrow ZZ^* \rightarrow 4\ell$

Coupling

Strength

Custodial

Symmetry

Loop Content

results

BDT for better signal/background separation BDT input variables: p_T , η , $D_{ZZ^{(*)}} = \log \frac{|\mathcal{M}_{sig}|^2}{|\mathcal{M}_{TZ}|^2}$

Mass $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Coupling Strength Custodial Symmetry Loop Content Conclusion

more results

number of events, theory and measurement

Introduction	hamber of events, meory and medeurement							
Mass	Observed	Expected	s/b	$Z + jets, t\bar{t}$	ZZ*	Signal	Signal	Final state
							full mass range	
$H \rightarrow \gamma \gamma$				4.5fb ⁻¹	$\sqrt{s} = 7 \text{ TeV}$			
□ .77*	2	1.47 ± 0.10	1.7	0.10 ± 0.04	0.46 ± 0.02	0.91 ± 0.09	1.00 ± 0.10	4μ
11-722 -	2	0.99 ± 0.07	1.5	0.09 ± 0.03	0.32 ± 0.02	0.58 ± 0.06	0.66 ± 0.06	$2e2\mu$
Width	1	1.01 ± 0.09	0.8	0.36 ± 0.08	0.21 ± 0.01	0.44 ± 0.04	0.50 ± 0.05	$2\mu 2e$
	1	0.98 ± 0.10	0.7	0.40 ± 0.09	0.19 ± 0.01	0.39 ± 0.04	0.46 ± 0.05	4e
Couplings	6	4.45 ± 0.30	1.1	0.96 ± 0.18	1.17 ± 0.06	2.32 ± 0.23	2.62 ± 0.26	Total
Coupling				20.3fb^{-1}	$\sqrt{s} = 8 \text{ TeV}$			
Strength	12	8.33 ± 0.6	1.7	0.69 ± 0.13	2.36 ± 0.12	5.28 ± 0.52	5.80 ± 0.57	4μ
	7	5.72 ± 0.37	1.5	0.60 ± 0.10	1.67 ± 0.08	3.45 ± 0.34	3.92 ± 0.39	$2e2\mu$
Custodia	5	4.23 ± 0.30	1.8	0.36 ± 0.08	1.17 ± 0.07	2.71 ± 0.28	3.06 ± 0.31	$2\mu 2e$
Symmetr	7	3.77 ± 0.27	1.7	0.35 ± 0.07	1.03 ± 0.07	2.38 ± 0.25	2.79 ± 0.29	4e
Loop Cou	31	22.1 ± 1.5	1.7	2.00 ± 0.28	6.24 ± 0.34	13.8 ± 1.4	15.6 ± 1.6	Total
2000 001				= 8 TeV	7 TeV and \sqrt{s}	$\sqrt{s} =$		
Conclusio	14	9.81 ± 0.64	1.7	0.79 ± 0.13	2.82 ± 0.14	6.20 ± 0.61	6.80 ± 0.67	4μ
	9	6.72 ± 0.42	1.5	0.69 ± 0.11	1.99 ± 0.10	4.04 ± 0.40	4.58 ± 0.45	$2e2\mu$
	6	5.24 ± 0.35	1.5	0.72 ± 0.12	1.38 ± 0.08	3.15 ± 0.32	3.56 ± 0.36	$2\mu 2e$
	8	4.75 ± 0.32	1.4	0.76 ± 0.11	1.22 ± 0.08	2.77 ± 0.29	3.25 ± 0.34	4e
	37	26.5 ± 1.7	1.6	2.95 ± 0.33	7.41 ± 0.40	16.2 ± 1.6	18.2 ± 1.8	Total

likelihood ratios

Mass $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Strength Symmetry Loop Content

BURG

$H \rightarrow ZZ^* \rightarrow 4\ell$ result

Introduction Mass $H \rightarrow \gamma\gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Coupling Strength Custodial Symmetry

Loop Content

Conclusion

the ATLAS collaboration measures

 $m_H = 124.51 \pm 0.52(\text{stat}) \pm 0.06(\text{syst})\text{GeV}$

and a signal strength

$$\mu = 1.66^{+0.45}_{-0.38}$$

combination

Introduction Mass $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Strength Symmetry Loop Content

Can these be combined?

Yes they can!

 $\Delta m_H = 1.47 \pm 0.67 (\text{stat}) \pm 0.28 (\text{syst}) \text{GeV}$

 $\Rightarrow m_H = 125.36 \pm 0.37(\text{stat}) \pm 0.18(\text{syst})\text{GeV}$

combination plots

Introduction

Mass

 $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Coupling Strength Custodial Symmetry Loop Content Conclusion

systematics

Systematic	Uncertainty on m_H [MeV]
LAr syst on material before presampler (barrel)	70
LAr syst on material after presampler (barrel)	20
LAr cell non-linearity (layer 2)	60
LAr cell non-linearity (layer 1)	30
LAr layer calibration (barrel)	50
Lateral shower shape (conv)	50
Lateral shower shape (unconv)	40
Presampler energy scale (barrel)	20
ID material model ($ \eta < 1.1$)	50
$H \rightarrow \gamma \gamma$ background model (unconv rest low p_{Tt})	40
$Z \rightarrow ee$ calibration	50
Primary vertex effect on mass scale	20
Muon momentum scale	10
Remaining systematic uncertainties	70
Total	180

UNIFEBURG

Introduction Mass $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Coupling Strength Custodial Symmetry Loop Content

width

 $\sim 4 MeV$

Experimental energy resolution:

~2GeV

but CMS did a thing

Introduction Mass $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Coupling Strength

Custodial

Symmetry

Loop Content

CMS and the Width of the Higgs Boson

Introduction Mass $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Coupling Strength Custodial Symmetry

BURG

Loop Content

What now?

measurement of signal strengths and coupling strengths

Introduction Mass $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Coupling Strength Custodial Symmetry Loop Content

the basics

Introduction Mass $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width

Couplings

Coupling Strength Custodial Symmetry Loop Content

We have to make some basic assumptions:

- everything comes from the same single particle
- this particle is assumed to have zero decay width
- the particle is a CP-even scalar

reminder

Introduction Mass $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$

BURG

Width Couplings

Coupling Strength

Custodial

Symmetry

Loop Content

Conclusion

modified couplings are introduced

one example

Mass $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width

BURG

Couplings

Strength Symmetry Loop Content

SM only

SM contributions only

 $\kappa_V = \kappa_W = \kappa_Z$ $H \rightarrow \gamma \gamma$ $\kappa_F = \kappa_t = \kappa_b = \kappa_\tau = \kappa_g$ $H \rightarrow ZZ^* \rightarrow 4\ell$ $\sigma(gg \rightarrow H) \times BR(H \rightarrow \gamma\gamma) \sim \frac{\kappa_F^2 \kappa_\gamma^2(\kappa_F \kappa_V)}{0.75 \kappa_F^2 + 0.25 \kappa_\gamma^2}$ Width $\sigma(qq' \rightarrow qq'H) \times BR(H \rightarrow \gamma\gamma) \sim \frac{\kappa_V^2 \kappa_\gamma^2(\kappa_F \kappa_V)}{0.75 \kappa_V^2 + 0.25 \kappa_V^2}$ Coupling Strenath $\sigma(gg \rightarrow H) \times BR(H \rightarrow ZZ^{(*)}, H \rightarrow WW^{(*)}) \sim \frac{\kappa_F^2 \kappa_V^2}{0.75 \kappa_T^2 + 0.25 \kappa_V^2}$ $\sigma(qq' \rightarrow qq'H) \times BR(H \rightarrow ZZ^{(*)}, H \rightarrow WW^{(*)}) \sim \frac{\kappa_V^2 \kappa_V^2}{0.75 \kappa_T^2 + 0.25 \kappa_U^2}$ $\sigma(qq' \rightarrow qq'H, VH) \times BR(H \rightarrow \tau\tau, H \rightarrow b\bar{b}) \sim \frac{\kappa_V^2 \kappa_F^2}{0.75 \kappa_*^2 + 0.25 \kappa_*^2}$

SM only results

Introduction Mass $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Coupling Strength Custodial Symmetry Loop Content Conclusion

 $\kappa_F{=}1.15{\pm}0.08$

 $\kappa_V = 0.99^{+0.17}_{-0.15}$

free total width variable

Introduction Mass $H \rightarrow \gamma \gamma$

 $H \rightarrow ZZ^* \rightarrow 4\ell$

Width

Couplings

Coupling Strength

Custodial

Symmetry

Loop Content

Conclusion

no assumption on total width hide total width in ratios as free parameter

$$\kappa_{VV} = \kappa_V \kappa_V / \kappa_H$$
$$\lambda_{FV} = \kappa_F / \kappa_V$$

 \Rightarrow only ratios measurable

free total width functionalities

Introduction
Mass
$$H \rightarrow \gamma \gamma$$

 $H \rightarrow ZZ^* \rightarrow 4\ell$
Width
Couplings
Couplings
Strength
Custodial
Symmetry
Loop Content
Conclusion

$$\begin{aligned} \sigma(gg \rightarrow H) \times BR(H \rightarrow \gamma \gamma) \sim \lambda_{FV}^2 \kappa_{VV}^2 \kappa_{\gamma}^2 (\lambda_{FV}, 1) \\ \sigma(qq' \rightarrow qq'H) \times BR(H \rightarrow \gamma \gamma) \sim \kappa_{VV}^2 \kappa_{\gamma}^2 (\lambda_{FV}, 1) \\ \sigma(gg \rightarrow H) \times BR(H \rightarrow ZZ^{(*)}, H \rightarrow WW^{(*)}) \sim \lambda_{FV}^2 \kappa_{VV}^2 \\ \sigma(qq' \rightarrow qq'H) \times BR(H \rightarrow ZZ^{(*)}, H \rightarrow WW^{(*)}) \sim \kappa_{VV}^2 \\ \sigma(qq' \rightarrow qq'H, VH) \times BR(H \rightarrow \tau \tau, H \rightarrow b\bar{b}) \sim \kappa_{VV}^2 \lambda_{FV}^2 \end{aligned}$$

free total width relults

Introduction Mass $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Coupling Strength Custodial Symmetry Loop Content

BURG

ř

custodial symmetry

theory predicts same coupling scale factors for $W \& Z \Rightarrow$ we test it (again no assumption on total width):

 $\kappa_{77} = \kappa_7 \kappa_7 / \kappa_1$ $H \rightarrow \gamma \gamma$ $\lambda_{W7} = \kappa_W / \kappa_7$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width $\lambda_{F7} = \kappa_F / \kappa_7$ $\sigma(gg \rightarrow H) \times BR(H \rightarrow \gamma \gamma) \sim \lambda_{FZ}^2 \kappa_{7Z}^2 \kappa_{\gamma}^2 (\lambda_{FZ}, 1)$ $\sigma(qq' \rightarrow qq'H) \times BR(H \rightarrow \gamma\gamma) \sim \kappa_{VBF}^2(\lambda_{WZ}, 1) \kappa_{ZZ}^2 \kappa_{\gamma}^2(\lambda_{FZ}, 1)$ Custodial $\sigma(gg \rightarrow H) \times BR(H \rightarrow ZZ^{(*)}) \sim \lambda_{FT}^2 \kappa_{TT}^2$ Symmetry $\sigma(qq' \rightarrow qq'H) \times BR(H \rightarrow ZZ^{(*)}) \sim \kappa_{VDE}^2 (\lambda_{WZ}, 1) \kappa_{ZZ}^2$ $\sigma(gg \rightarrow H) \times BR(H \rightarrow WW^{(*)}) \sim \lambda_{FZ}^2 \kappa_{ZZ}^2 \lambda_{WZ}^2$ $\sigma(qq' \rightarrow qq'H) \times BR(H \rightarrow WW^{(*)}) \sim \kappa_{VBF}^2 (\lambda_{WZ}, 1) \kappa_{ZZ}^2 \lambda_{WZ}^2$ $\sigma(qq' \rightarrow qq'H, VH) \times BR(H \rightarrow \tau \tau, H \rightarrow b\bar{b}) \sim \kappa_{VPF}^2(\lambda_{WZ}, 1) \kappa_{TZ}^2 \lambda_{FZ}^2$

BURG

Z

custodial symmetry results

UNI FREIBURG

> Introduction Mass $H \rightarrow \gamma\gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Coupling Strength Custodial Symmetry Loop Content

 $\lambda_{WZ} = 0.94^{+0.14}_{-0.29}$ $\lambda_{FZ} \in [-0.91, -0.63] \cup [0.65, 1.00]$ $\kappa_{ZZ} = 1.41^{+0.49}_{-0.34}$

SM loop contents

set everything to SM values \Rightarrow effective couplings at loops (for $\gamma \& g$): $H \rightarrow \gamma \gamma$ $\sigma(gg \to H) \times BR(H \to \gamma\gamma) \sim \frac{\kappa_g^2 \kappa_\gamma^2}{0.085 \kappa_g^2 + 0.0023 \kappa_\gamma^2 + 0.91}$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width $\sigma(qq' \rightarrow qq'H) \times BR(H \rightarrow \gamma\gamma) \sim \frac{\kappa_{\gamma}^2}{0.085\kappa_q^2 + 0.0023\kappa_{\gamma}^2 + 0.91}$ $\sigma(gg \rightarrow H) \times BR(H \rightarrow ZZ^{(*)}, H \rightarrow WW^{(*)}) \sim \frac{\kappa_g^2}{0.085\kappa_{\pi}^2 + 0.0023\kappa_{\pi}^2 + 0.91}$ $\sigma(qq' \rightarrow qq'H) \times BR(H \rightarrow ZZ^{(*)}, H \rightarrow WW^{(*)}) \sim \frac{1}{0.085\kappa_{\sigma}^2 + 0.0023\kappa_{\gamma}^2 + 0.91}$ Loop Content $\sigma(qq' \rightarrow qq'H, VH) \times BR(H \rightarrow \tau\tau, H \rightarrow b\bar{b}) \sim \frac{1}{0.085\kappa_{p}^{2} + 0.0023\kappa_{\gamma}^{2} + 0.91}$

BURG

SM loop contents results

Introduction Mass $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Coupling Strength Custodial Symmetry Loop Content

BURG

ΠĨ.

$$\kappa_g = 1.08^{+0.15}_{-0.13}$$

 $\kappa_\gamma = 1.19^{+0.15}_{-0.12}$

BSM loop contents

 $\Gamma_H = \frac{\kappa_H^2(\kappa_i)}{1 - RR} \Gamma_H^{\text{SM}}$ $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ $\sigma(gg \rightarrow H) \times BR(H \rightarrow \gamma\gamma) \sim \frac{\kappa_g^2 \kappa_\gamma^2}{0.085 \kappa_a^2 + 0.0023 \kappa_a^2 + 0.91} (1 - BR_{\rm inv,undet})$ Width $\sigma(qq' \rightarrow qq'H) \times BR(H \rightarrow \gamma\gamma) \sim \frac{\kappa_{\gamma}^2}{0.085\kappa_{\pi}^2 + 0.0023\kappa_{\pi}^2 + 0.91} (1 - BR_{\text{inv,undet}})$ $\sigma(gg \rightarrow H) \times BR(H \rightarrow ZZ^{(*)}, H \rightarrow WW^{(*)}) \sim \frac{\kappa_g^2}{0.085\kappa_\pi^2 + 0.0023\kappa_\infty^2 + 0.91} (1 - BR_{\text{inv,undet}})$ Loop Content $\sigma(qq' \rightarrow qq'H) \times BR(H \rightarrow ZZ^{(*)}, H \rightarrow WW^{(*)}) \sim \frac{1}{0.085 \kappa_{\pi}^2 + 0.023 \kappa_{\infty}^2 + 0.91} (1 - BR_{\text{inv,undet}})$ $\sigma(qq' \rightarrow qq'H, VH) \times BR(H \rightarrow \tau\tau, H \rightarrow b\bar{b}) \sim \frac{1}{0.085\kappa_p^2 + 0.0023\kappa_\gamma^2 + 0.91} (1 - BR_{\text{inv,undet}})$

 $H \rightarrow invis \Rightarrow possible BSM decays$

BSM loop contents results

BURG

Conclusion

In the end...

Couplings

Coupling Strength

Custodial

Symmetry

Loop Content

summary

Introduction Mass $H \rightarrow \gamma\gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Coupling Strength Custodial Symmetry Loop Content

Conclusion

- mass: $m_H = 125.36 \pm 0.41 \text{GeV}$
- signal strength: $\mu = 1.30 \pm 0.20$
- all those couplings

 \Rightarrow SM validated within 2σ

The End

Introduction Mass $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings

Coupling

Strength

Custodial

Symmetry

Loop Content

Conclusion

The End?

no end jet

Introduction Mass $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Coupling Strength Custodial Symmetry Loop Content

Conclusion

But wait there's more!

CMS has results, too

 $m_H = 125.03^{+0.26}_{-0.27}(\text{stat})^{+0.13}_{-0.15}(\text{syst})$

CMS coupling

Introduction Mass $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Coupling Strength Custodial Symmetry Loop Content **Conclusion**

references I

- [1] ATLAS Collaboration, Measurement of the Higgs boson mass from the H→ γγ and H→ZZ^(*)4ℓ channels with the ATLAS detector using 25 fb⁻¹ of pp collision data, arXiv:1406.3827v1, 15. Jun 2014
- [2] ATLAS Collaboration, Combined coupling measurement of the Higgs-like boson with the ATLAS detector using up to 25 fb⁻¹ of proton-proton collision data, ATLAS-CONF-2013-034, 13. Mar 2013
- [3] ATLAS Collaboration, Updated coupling measurement of the Higgs-like boson with the ATLAS detector using up to 25 fb⁻¹ of proton-proton collision data, ATLAS-CONF-2014-009, 20. Mar 2014

Introduction Mass $H \rightarrow \gamma\gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Coupling Strength Custodial Symmetry Loop Content Conclusion

references II

- [4] ATLAS Collaboration, Measurement of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, Physics Letters B 726 (2013) 88-119, Aug 2013
- [5] CMS Collaboration, Measurement of the properties of the new boson with a mass near 125 GeV, CMS PAS HIG-13-005, 17. Apr 2013
- [6] CMS Collaboration, Constraints on the Higgs boson width from off-shell production and decay of Z-boson pairs, arXiv:1405.3455v1, 14. May 2014

Thanks for your attention!

Questions? Remarks?

Introduction Mass $H \rightarrow \gamma\gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Coupling Strength Custodial Symmetry Loop Content

- Introduction Mass $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Coupling
- Strength
- Custodial
- Symmetry
- Loop Content
- Conclusion

backup

differences

free loop content

Mass $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Coupling Strenath

allow BSM loop contents \Rightarrow loose the sign information and get

$$\lambda_{FV} = \kappa_F / \kappa_V$$

$$\lambda_{\gamma V} = \kappa_{\gamma} / \kappa_{V}$$

$$\kappa_{VV} = \kappa_V \kappa_V / \kappa_H$$

 $\sigma(gg \rightarrow H) \times BR(H \rightarrow \gamma\gamma) \sim \lambda_{FV}^2 \kappa_{VV}^2 \lambda_{\gamma V}^2$ $\sigma(qq' \rightarrow qq'H) \times BR(H \rightarrow \gamma\gamma) \sim \kappa_{VV}^2 \lambda_{\gamma V}^2$ $\sigma(gg \rightarrow H) \times BR(H \rightarrow ZZ^{(*)}, H \rightarrow WW^{(*)}) \sim \lambda_{FV}^2 \kappa_{VV}^2$ $\sigma(qq' \rightarrow qq'H) \times BR(H \rightarrow ZZ^{(*)}, H \rightarrow WW^{(*)}) \sim \kappa_{VV}^2$

 $\sigma(qq' \rightarrow qq'H, VH) \times BR(H \rightarrow \tau\tau, H \rightarrow b\bar{b}) \sim \kappa_{VV}^2 \lambda_{FV}^2$

free loop contents result

$$\lambda_{FV} = 0.85^{+0.23}_{-0.13}$$
$$\lambda_{\gamma V} = 1.22^{+0.18}_{-0.14}$$
$$\kappa_{VV} = 1.15 \pm 0.21$$

Introduction Mass $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Couplings Coupling Strength Custodial Symmetry

BURG

Loop Content

custodial symmetry BSM

testing custodial symmetry again, with free loop content:

 $\kappa_{77} = \kappa_7 \kappa_7 / \kappa_H$ $\lambda_{WZ} = \kappa_W / \kappa_Z$ $\lambda_{\gamma Z} = \kappa_{\gamma} / \kappa_{Z}$ $\lambda_{F7} = \kappa_F / \kappa_7$ $\sigma(gg \rightarrow H) \times BR(H \rightarrow \gamma \gamma) \sim \lambda_{FZ}^2 \kappa_{TZ}^2 \lambda_{\gamma Z}^2$ $\sigma(qq' \rightarrow qq'H) \times BR(H \rightarrow \gamma \gamma) \sim \kappa_{VBF}^2 (\lambda_{WZ}, 1) \kappa_{ZZ}^2 \lambda_{\gamma ZZ}^2$ $\sigma(gg \rightarrow H) \times BR(H \rightarrow ZZ^{(*)}) \sim \lambda_{FZ}^2 \kappa_{ZZ}^2$ $\sigma(qq' \rightarrow qq'H) \times BR(H \rightarrow ZZ^{(*)}) \sim \kappa_{VDE}^2 (\lambda_{WZ}, 1) \kappa_{TZ}^2$ $\sigma(gg \rightarrow H) \times BR(H \rightarrow WW^{(*)}) \sim \lambda_{FZ}^2 \kappa_{ZZ}^2 \lambda_{WZ}^2$ $\sigma(qq' \rightarrow qq'H) \times BR(H \rightarrow WW^{(*)}) \sim \kappa_{VBF}^2 (\lambda_{WZ}, 1) \kappa_{ZZ}^2 \lambda_{WZ}^2$ $\sigma(qq' \rightarrow qq'H, VH) \times BR(H \rightarrow \tau\tau, H \rightarrow b\bar{b}) \sim \kappa_{VPF}^2(\lambda_{WZ}, 1) \kappa_{ZZ}^2 \lambda_{FZ}^2$

 $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Custodial Symmetry

BURG

-2 In A(A_{WZ}) -2 In A(A_{FZ}) ATLAS Preliminary ATLAS Preliminary $[\lambda_{WZ}, \lambda_{FZ}, \lambda_{VZ}, \kappa_{ZZ}]$ $[\lambda_{W7},\lambda_{F7},\lambda_{V7},\kappa_{Z2}]$ is = 7 TeV. Ldt = 4.6-4.8 fb1 is = 7 TeV. Ldt = 4.6-4.8 fb - Observed - Observed s = 8 TeV, Ldt = 13-20.7 fb1 is = 8 TeV, Ldt = 13-20.7 fb⁻¹ -- SM expected -- SM expected 04 ٩w; 2 In A(K_22) 2 In A(A,) ATLAS Preliminary $[\lambda_{WZ}, \lambda_{FZ}, \lambda_{\gamma Z}, \kappa_{ZZ}]$ ATLAS Preliminary $[\lambda_{w7}\lambda_{r7}\lambda_{r7}\lambda_{r7}]$ (s = 7 TeV, Ldt = 4.6-4.8 fb is = 7 TeV, Ldt = 4.6-4.8 fb1 - Observed - Observed vs = 8 TeV. Ldt = 13-20.7 fb1 s = 8 TeV. Ldt = 13-20.7 fb⁻¹ -- SM expected -- SM expected

0.5

 $= 1.5^{+0.5}_{-0.4}$

 $\lambda_{FZ} = 0.74^{+0.21}_{-0.17}$ $\lambda_{WZ} = 0.80 \pm 0.15$ ĸzz $\lambda_{\gamma Z} = 1.10 \pm 0.18$

1.4 1.6 1.8 $\lambda_{\sqrt{2}}$

0.6 0.8 Mass $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ Width Custodial Symmetry

BURG

Loop Content

×77

54/54

custodial symmetry BSM results