Particle Physics II

Markus Schumacher

Exercise sheet IX

Martin Flechl and Stan Lai

Jan 20, 2012

In-class exercises

Exercise 50 Measurement of the forward-background asymmetry at PETRA

The Positron-Electron Tandem Ring Accelerator PETRA was a particle accelerator at DESY in Hamburg, studying electron-positron collisons from 1978-1986 at center-of-mass energies of up to 46 GeV. It allowed the measurement of the forward-background asymmetry A_{FB} in $e^+e^- \rightarrow \mu\mu$ events.

From the lectures, the total cross section for the process $e^+e^- \rightarrow f\bar{f}$ is known as

$$\sigma_{\text{tot}}(s) = \frac{N_C \pi}{s} \frac{4}{3} \left[\alpha^2 Q_f^2 - 8\alpha Q_f \Re(\chi) c_{v_e} c_{v_f} + 16 \left| \chi \right|^2 \left(c_{v_e}^2 + c_{a_e}^2 \right) \left(c_{v_f}^2 + c_{a_f}^2 \right) \right]$$

The following relations apply:

$$c_{v_i} = I_{3,i} - 2Q_i \sin^2 \theta_w,$$

$$c_{a_i} = I_{3,i}$$

$$\chi(s) = \frac{G_F m_Z^2}{8\pi\sqrt{2}} \frac{s}{s - m_Z^2 + i\frac{s\Gamma_Z}{m_Z}}$$

Also known is the general expression for A_{FB} for these type of events as

$$A_{\rm FB} = \frac{\sigma_{\rm F} - \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}}.$$

with

$$\sigma_{\rm F} - \sigma_{\rm B} = \frac{N_C \pi}{2s} \left[-8\alpha Q_f \Re(\chi) \cdot 2 \cdot C_{a_e} C_{a_f} + 16 |\chi|^2 \cdot 8C_{v_e} C_{v_f} C_{a_e} C_{a_f} \right].$$

Show that the forward-background symmetry for the case $f = \mu$ is approximately

$$A_{\rm FB} = -\frac{3G_F}{\sqrt{2}e^2}C_A^2s.$$

and interpret the result (Fig. 1).

Hint: Do the following step-by-step (using $\sqrt{s} \ll M_Z$):

- (i) Simplify $\operatorname{Re}(\chi)$ for $\sqrt{s} \ll M_Z$.
- (ii) Show that for $\sigma_{\rm F} \sigma_{\rm B}$, the $\gamma^* Z$ interference term dominates and the rest can be neglected.
- (iii) Show that the γ^* term dominates for the total cross section.
- (iv) Combine the results of these steps to express A_{FB} .
- (v) Fill in Q_F of the muon, α , and use $C_{Ae} = C_{A\mu}$.

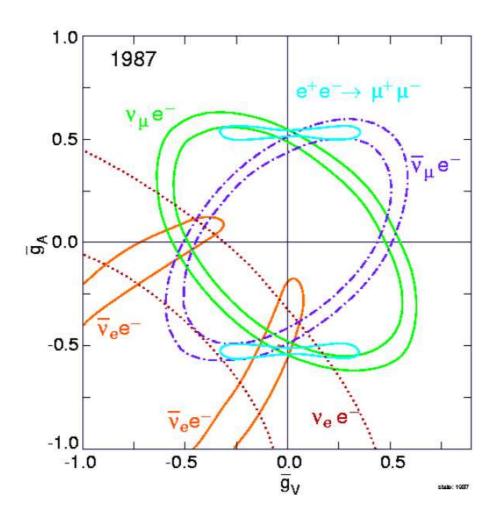


Figure 1: Different measurements of the couplings of leptons to Z bosons, $g_V = C_V$ and $g_A = C_A$.

Home exercises

Exercise 51 Total cross section $e^+e^- \rightarrow f\bar{f}$

Using the equation from the in-class exercises, and the values of the Z mass, the total width of the Z boson, Γ_Z , the FERMI coupling constant G_F and the weak mixing angle θ_w , determine numerically the total cross section for $e^+e^- \rightarrow q\bar{q}$ processes (q = u, d, s, c, b, t) as well as the fraction $\frac{\sigma_i}{\sigma_{\text{tot}}}$ of the contributions to σ_{tot} : via γ^* exchange, Z- γ^* interference, and Z exchange. Do this for the following center-of-mass energies:

 $\sqrt{s} = 10 \,\text{GeV}, 30 \,\text{GeV}, 60 \,\text{GeV}, m_Z \text{ und } 200 \,\text{GeV}.$

 $m_Z = (91.1875 \pm \text{GeV})$ $\Gamma_Z = 2.4952 \text{ GeV}$ $G_F = 1.166 \times 10^{-5} \text{ GeV}^{-2}$ $\sin^2 \theta_w = 0.234$

Exercise 52 Total Z boson width

The partial Z boson width for each of the neutrino pairs is given by

$$\Gamma(Z \to \nu\nu) = \frac{G_F M_Z^3}{12\pi\sqrt{2}}$$

and measured as $\Gamma(Z \to \nu \nu) = 167$ MeV. For $Z \to ee$, the contributions are given by

$$\Gamma(Z \to e_R^+ e_L^-) = (2C_L)^2 \Gamma(Z \to \nu \nu)$$

and a similar contribution for a pair with a right-handed e^- (remember that left-handed antiparticles normally behave like right-handed particles). This is also approximately valid for other lepton flavor pairs.

The contribution from allowed decays to a quark pair with any given quantum numbers is the same as for leptons.

Which electron helicity states are allowed (i.e., unsuppressed) for $Z \rightarrow ee$ decays and why? What is the total Z boson width? Compare to the literature value $\Gamma_Z = 2.4952$.

Exercise 53 Total W boson width

The partial W boson widths for decays to electron+neutrino is given by

$$\Gamma(W \to e\bar{\nu}_e) = \frac{G_F M_W^3}{6\pi\sqrt{2}}$$

The same relation approximately also holds for other lepton flavours; and similarly for any quark pair with given quantum numbers,

$$\Gamma(W \to qq') = \frac{G_F M_W^3}{6\pi\sqrt{2}} |V_{qq'}|^2,$$

 $\Gamma(W \to \ell \nu)$ has been measured to be 227 MeV. What is the value of the total W boson width, and what is the corresponding branching ratio BR $(W \to \ell \nu)$? You can approximate V as diagonal.

4 Punkte

6 Punkte

6 Punkte

(i) The total decay width of the Z boson is given by:

$$\Gamma_Z = \Gamma_e + \Gamma_\mu + \Gamma_\tau + \Gamma_{\rm had} + \Gamma_{\rm inv}$$

Here, Γ_l with $l = e, \mu, \tau$ are the partial widths of decays to lepton pairs $l\bar{l}$, Γ_{had} the partial width to decays to quark pairs, and Γ_{inv} to invisible particles (like neutrinos).

Show that the ratio of invisible and leptonic decay width is given by

$$R_{\rm inv} = \frac{\Gamma_{\rm inv}}{\Gamma_l} = \left[\frac{12\pi R_l}{\sigma_{\rm peak}^{\rm had} M_Z^2}\right]^{\frac{1}{2}} - R_l - 3$$

Here, $R_l = \frac{\Gamma_{had}}{\Gamma_l}$ and σ_{peak}^{had} is the cross section for $Z \to$ hadrons for $\sqrt{s} = m_Z$. You can assume lepton universality; the peak cross section is given by $\sigma_{peak}^{had} = \frac{12\pi\Gamma_e\Gamma_{had}}{M_Z^2\Gamma_Z^2}$.

(ii) The theoretical prediction for the Standard modell is

$$R_{\rm inv} = N_{\nu} \left(\frac{\Gamma_{\nu}}{\Gamma_l}\right)_{\rm SM}$$

with

$$\left(\frac{\Gamma_{\nu_l}}{\Gamma_l}\right)_{\rm SM} = 1.99125.$$

Show that this implies that the Standard model contains $N_{\nu} = 3$ light neutrino flavors and calculate the uncertainty on this number (using the uncertainties on the LEP measurements given below). The equations above imply that for larger $\sigma_{\text{peak}}^{\text{had}}$, the predicted number of light neutrino flavors becomes smaller (see Fig. 2).

$$m_Z = (91.1875 \pm 0.0021) \text{ GeV}$$

 $R_l = 20.767 \pm 0.025$
 $\sigma_{\text{peak}}^{\text{had}} = (41.540 \pm 0.037) \text{ nb}$

