Statistische Methoden der Datenanalyse Wintersemester 2012/2013

Albert-Ludwigs-Universität Freiburg

Dr. Stan Lai und Prof. Markus Schumacher

Physikalisches Institut Westbau 2 OG Raum 008

Telefonnummer 07621 203 8408 (SL) / 7612 (MS)

E-Mail: Stan.Lai@physik.uni-freiburg.de

Markus.Schumacher@physik.uni-freiburg.de

http://terascale.physik.uni-freiburg.de/lehre/ws_1213/statmethoden_ws1213

Kapitel 4

Rechnererzeugte Zufallszahlen Die Monte-Carlo-Methode

Die Monte-Carlo-(MC)-Methode

MC-Methode ist eine numerische Technik zur Bestimmung von

- Wahrscheinlichkeitsdichtefuntionen
- Transformation von Zufallsvariablen
- Bestimmung von Integralen
- Erwartunsgwerte
- Faltungen

mit Hilfe von Zufallszahlen

- Anwendungen: Generierung von Ereignissen/Messungen gemäß eines theoretischen Modells
 - Simulation des Ansprechverhaltens eines Nachweisapparates/ einer Messapratur
 -

Die Monte-Carlo-(MC)-Methode (2)

Die einzelnen Schritte sind:

- Generiere eine Sequenz von Zufallszahlen
 r₁, r₂, ..., r_m gemäß Gleichverteilung im Intervall [0, 1].
- g(r) $0 \quad 1$
- (2) Verwende diese um eine weitere Sequenz x₁, x₂, ..., x_n zu erzeugen, die gemäß einer vorgegebenen WDF f (x) verteilt sind. (x kann Vektor sein).
- (3) Verwende x_i Werte um Eigenschaften von f (x) zu bestimmen, z.B. Erwartunsgwerte oder Anteil x Werten mit a < x < b ergibt</p>
 - \rightarrow MC-Berechung = Integration (zumindest formal) $\int_a^b f(x) dx$.

MC generierte Werte = "simulierte Daten"

→ oft verwendet um Gültigkeit statistischer Methoden zu testen

Besondern nützlich bei:- vieldimensionalen f(x)
- komplizierten Unterräumen des "x"

Zufallszahlengenerator

Ziel: Erzeugung gleichmäßig verteilter Werte im Intervall [0, 1]. Werfe Münze für z.B. 32 Bitnummer... (too tiring).

- → 'Zufallszahlengenerator'
- = Computeralgorithmus zur Erzeugung von $r_1, r_2, ..., r_n$

Beispiel: Multiplikativer linear kongruenter Generator (MLCG)

```
n_{i+1} = (a n_i) \mod m, wobei
```

n_i = ganze Zahl

a = Multiplikator (ganze Zahl)

m = Modulus (ganze Zahl)

 n_0 = "Seed" = "Saatzahl" (Startwert)

Bemerkung: mod = Modulus z.B. 27 mod 5 = 2. Diese Regel erzeugt eine Sequenz von Zahlen n_0 , n_1 , ...

Zufallszahlengenerator (2)

Die Sequenz ist (unglücklicherweise) periodisch!

Beispiel: (siehe Brandt Kapitel 4): a = 3, m = 7, $n_0 = 1$

$$n_1 = (3 \cdot 1) \mod 7 = 3$$

 $n_2 = (3 \cdot 3) \mod 7 = 2$
 $n_3 = (3 \cdot 2) \mod 7 = 6$
 $n_4 = (3 \cdot 6) \mod 7 = 4$
 $n_5 = (3 \cdot 4) \mod 7 = 5$
 $n_6 = (3 \cdot 5) \mod 7 = 1 \leftarrow \text{Folge wiederholt sich}$

Wähle *a*, *m* so, dass eine lang Periode (Maximum = *m* - 1) erreicht wird; *m* normalerweise nahe an der größten "Integer"-Zahl, die auf dem Computer repräsentiert werden kann.

Verwende nur ein Untermenge der einzelnen Periode der Sequenz.

Zufallszahlengenerator (3)

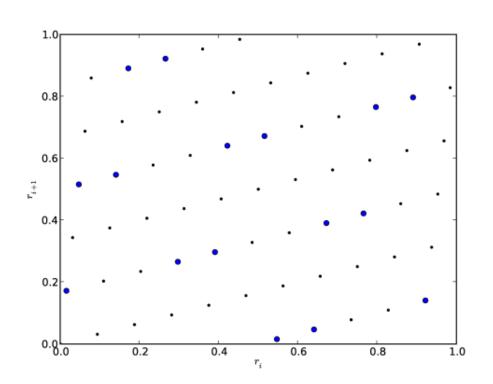
$$r_i = n_i/m$$
 sind [0, 1] aber sind sie "zufällig"?

$$x_{i+1} = (ax_i + b) \mod m$$

Schlechtes Beispiel

$$a = 11$$

b = 0
 $m = 64$



Liefert 2 Sequenzen der Periodenlänge 16

Für gerade Startwerte sind Perioden noch kürzer.

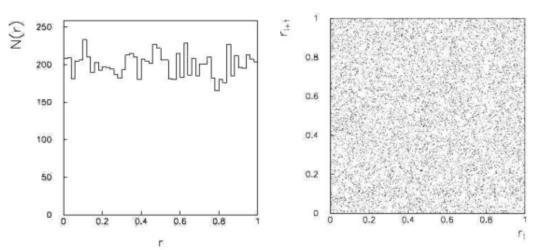
Zufallszahlengenerator (3)

 $r_i = n_i/m$ sind in [0, 1] aber sind sie "zufällig"?

Wähle a, m so, dass die r_i eine Reihe von Tests für Zufälligkeit erfüllen: gleichförmig verteilt in [0, 1], alle Werte unabhängig (keine Korrelationen zwischen Paaren), z.B. L'Ecuyer, Commun. ACM **31** (1988) 742 schlägt

$$a = 40692$$

 $m = 2147483399$



Es gibt weit bessere Generatoren, z.B. **TRandom3**, basierend auf "Mersenne twister"-Algorithmus, Periode = 2¹⁹⁹³⁷ - 1.

Siehe F. James, Comp. Phys. Comm. 60 (1990) 111; Brandt Ch. 4

Die Transformationsmethode

Anwendung der Transformationsmethode für Zufallsvariablen

```
bisher: f(x) a(x) \rightarrow g(a)
WDF für x Funktion WDF für a
gegeben gegeben gesucht

jetzt: g(r) x(r) \rightarrow f(x)
Gleichverteilung Transformation WDF für x
in r gegeben gesucht gegeben
```

Ziel: gegeben Sequenz r_1 , r_2 ,..., r_n gleichförmig in [0, 1], erzeuge x_1 , x_2 ,..., x_n die f(x) folgen durch Auffinden einer geigneten Transformation x(r).

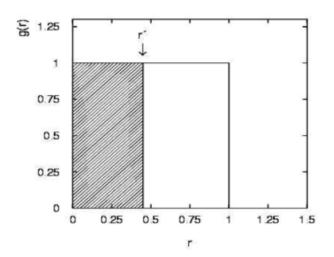
Die Transformationsmethode (2)

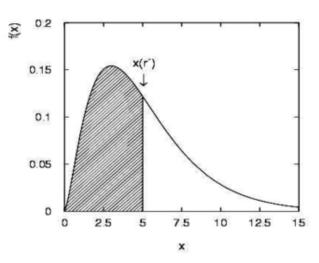
Verlange: Wkt, dass r in
$$[r,r+dr] = g(r)dr = dr$$

= Wkt., dass x in $[x(r), x(r)+dx(r)] = f(x) dx$

Oder äquivalent:
$$P(r \le r') = P(x \le x(r'))$$

$$\int_{-\infty}^{r'} g(r) dr = r' = \int_{-\infty}^{x(r')} f(x') dx' = F(x(r'))$$

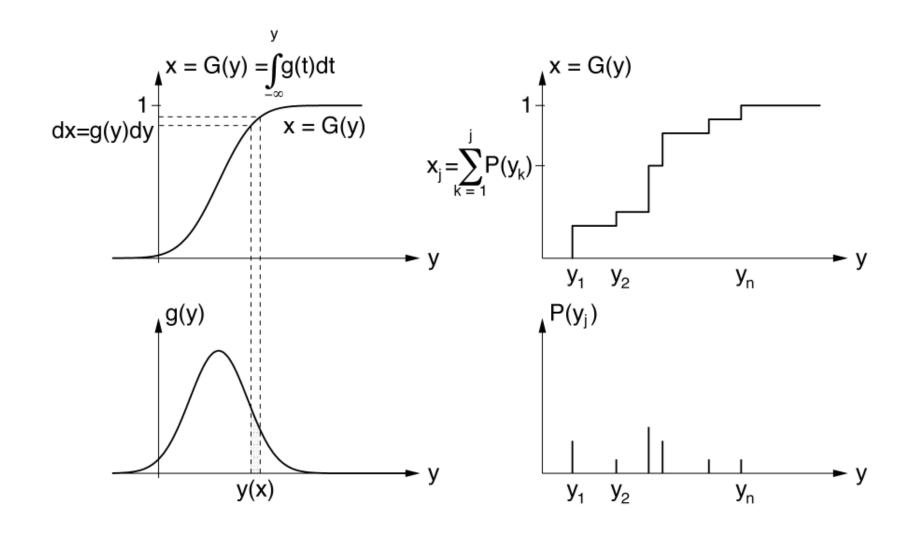




Da g(r)=1 gilt:
$$F(x)= r d.h. x = F^{-1}(r)$$

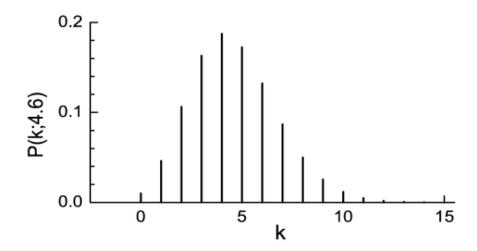
Benötigt: Kumulativfunktion analytisch bestimmbar und invertierbar.

Trafomethode für kontinuierliche u. diskrete ZV



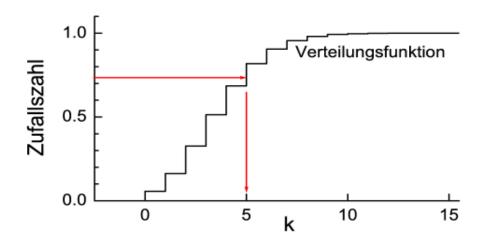
Transformatsmethode für Histogramme

Ordne r die Zahl n zu, die dem kleinsten S(k) entspricht, welches S>r erfüllt. S(k) ist Kumulativverteilung für diskrete Zufallsvariable.



Kann für empirische Verteilung in Form eines Histogrammes angewendet werden.

Rest r-S(j-1) wird für lineare Interpolation verwendet.



Die Transformationsmethode (3)

Aus r gleichförmig in [0,1] erzeuge x, die WDF f(x) folgt, gemäß:

$$f(x)\mathrm{d}x = u(r)\mathrm{d}r,$$

$$\int_{-\infty}^{x} f(x')\mathrm{d}x' = \int_{0}^{r(x)} u(r')\mathrm{d}r' = r(x)$$

$$F(x) = r,$$

$$x(r) = F^{-1}(r)$$

$$\int_{-\infty}^{x} f(x')\mathrm{d}x' = \int_{0}^{r(x)} u(r')\mathrm{d}r' = r(x)$$

$$\int_{0.0}^{x} \int_{0.0}^{1.0} \int_{0.0}^{1$$

Voraussetzung: Kumulativverteilung analytisch integrierbar u. invertierbar

Effizienz des Verfahrens 100% (jedes r erzeugt ein x)

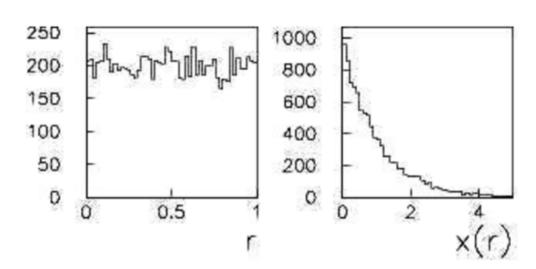
Beispiel für die Transformationsmethode

Exponential-WDF:
$$f(x;\xi) = \frac{1}{\xi}e^{-x/\xi}$$
 $(x \ge 0)$

Setze
$$\int_0^x \frac{1}{\xi} e^{-x'/\xi} dx' = r \quad \text{und löse nach } x (r) \text{ auf.}$$

$$-e^{(-x/\xi)} + 1 = r$$

$$\rightarrow x(r) = -\xi \ln(1-r)$$
 $(x(r) = -\xi \ln r \text{ geht auch})$



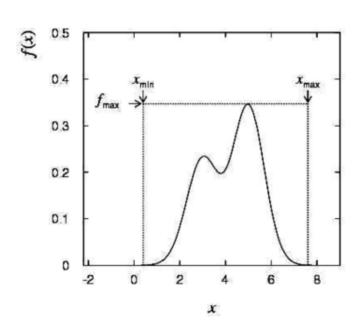
Vorteil: 100% Effizienz, d.h. aus jedem r_i wird ein x_i erzeugt.

Weitere Beispiele für die Transformationsmethode

Wahrscheinlichkeitsdichte	Wertebereich	Algorithmus
$f(x) = \frac{1}{b-a}$	[a,b[$x = (b - a) \cdot z + a$
f(x) = 2x	[0, 1[$x = \max(z_1, z_2)$ or $x = \sqrt{z}$
$f(x) \sim x^{r-1}$	[a,b[$x = [(b^r - a^r) \cdot z + a^r]^{1/r}$
$f(x) \sim \frac{1}{x}$	[a,b[$a \cdot (b/a)^z$
$f(x) = \frac{1}{x^2}$	$]1,\infty]$	x = 1/z
$f(x) = \frac{1}{k}e^{-x/k}$	$]0,\infty]$	$x = -k \ln z$
$f(x) = xe^{-x}$	$]0,\infty]$	$x = -\ln(z_1 \cdot z_2)$
$f(x) = -\ln x$	[0, 1[$x = z_1 \cdot z_2$
Gauss: $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp^{-\frac{x^2}{2\sigma^2}}$	$[-\infty,\infty]$	$x = \sigma \sqrt{-\ln z_1^2} \cdot \cos(2\pi z_2)$
Breit-Wigner: $f(x) = \frac{\Gamma}{2\pi} \cdot \frac{1}{(x-\mu)^2 + (\Gamma/2)^2}$	$[-\infty,\infty]$	$x = [\tan \pi (z - 0.5)] \cdot \Gamma/2 + \mu$

Die von-Neumannsche-Zurückweisungsmethode

Schliesse WDF in Box ein

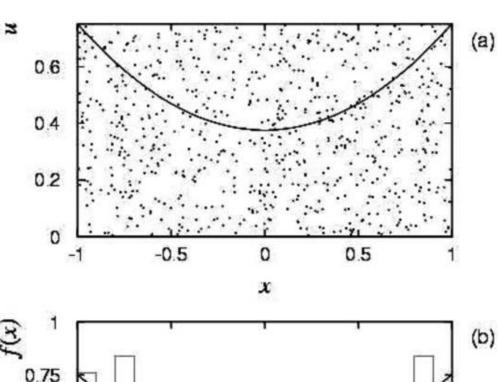


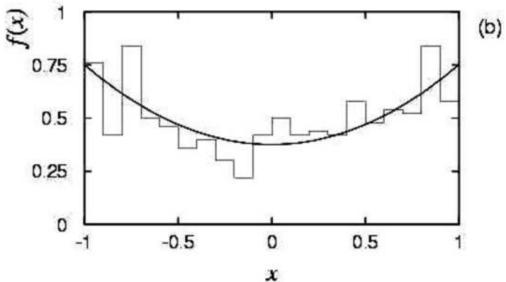
- (1) Generiere Zufallszahl x, gleichförmig in $[x_{\min}, x_{\max}]$, i.e. $x = x_{\min} + r_1(x_{\max} x_{\min})$, r_1 ist gleichverteilt in [0,1].
- (2) Generiere eine 2te unabhängige Zufallszahl u gleichverteilt zwischen 0 und $f_{\rm max}$, i.e. $u=r_2f_{\rm max}$.
- (3) Wenn u < f(x), dann akzeptiere x. Wenn nicht, verwerfe x and versuche es erneut.

Die von-Neumannsche-Zurückweisungsmethode

$$f(x) = \frac{3}{8}(1+x^2)$$
$$(-1 \le x \le 1)$$

Wenn Punkt unterhalb der Kurve, dann behalte ihn und Fülle x-Wert in Histogramm.

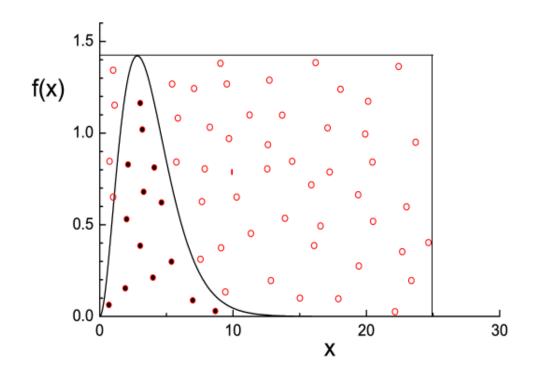




Effiizienzerhöhung für Zurückweisungmethode

Einfaches Beispiel: Plankspektrum

$$f(x) = c \frac{x^3}{e^x - 1}$$



Effizienz: hier ca. 10%

Weiteres Problem: Wertebereich x geht bis unendlich

Box wird nur bis x_{max} gewürfelt.

Majorantenmethode (importance sampling)

Suche geignete Funktion (Majorante) $m \geq f \; ext{für alle} \; x_i$

Mit invertierbarer Stammfuktion M(x) $M(x) = \int_{-\infty}^{x} m(x') dx'$

Zufallszahlen gemäß m(x) werden über $x = M^{-1}(r)$ erzeugt

Erzeuge zweite Zufallszahl in Abhängigkeit von x im Bereich: $\operatorname{null} \operatorname{und} m(x)$

Behalte (verwerfe) diese wenn sie \leq (>) f(x) ist

Bruchteil [m(x) - f(x)]/f(x)

der zweiten Zufallszahlen wird lokal verworfen

Besonders gut, wenn Majorante m(x) nahe an $f(x) \rightarrow große$ Effizienz Vorteil: Generierung von Verteilungen die bis "unendlich gehen"

Majorantenmethode: Beispiel

Zielfunktion:
$$f(x) = c(e^{-0.2x} \sin^2 x)$$
 für $0 < x < \infty$

Geeignete Majorante:
$$m(x) = c e^{-0.2x}$$
.

Bedingung für Kumulativfkt.:
$$r = \int_0^x \frac{1}{0.2} e^{-0.2x'} dx'$$

= $1 - e^{-0.2x}$.

Transformation von gleichverteilten
$$x = -\frac{1}{0.2} \ln(1 - r_1)$$
 $x = -\frac{1}{0.2} \ln(1 - r_1)$

Würfele zweite Zufallszahl r_2 und bilde Produkt: $r_2 m(x)$

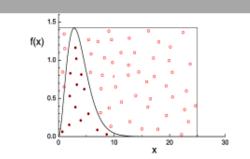
Majorantenmethode: Beispiel 2

Zielfunktion:

$$f(x) = c \frac{x^3}{e^x - 1}$$

Stückweise Majorante: $x < x_1$ $m_1(x) = 6c$

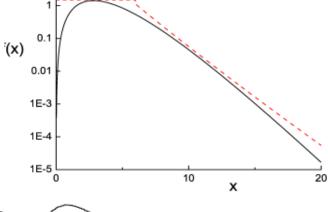
$$m_1(x) = 6 e$$



X^{-0.1} ermöglicht analytische Integration

$$m_2(x) = 200 \, c \, x^{-0.1} e^{-x^{0.9}}$$

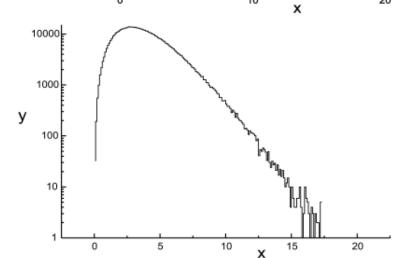
 $x > x_1$



Für $x > x_1$:

$$M_2(x) = \int_{x_1}^x m_2(x') dx',$$

= $\frac{200c}{0.9} \left[e^{-x_1^{0.9}} - e^{-x^{0.9}} \right]$



Behandlung additiver WDFs

Oft ist WDF Summe von mehreren Termen: $f(x) = f_1(x) + f_2(x)$

mit
$$S_1 = \int_{-\infty}^{\infty} f_1(x) dx$$
, $S_2 = \int_{-\infty}^{\infty} f_2(x) dx$ $S_1 + S_2 = 1$

Wähle mit Wkt S_1 bzw S_2 ein Zufallszahl die nach $f_1(x)$ bzw. $f_2(x)$ verteilt ist.

Falls Stammfunktionen
$$F_1(x) = \int_{-\infty}^x f_1(x') dx'$$
 $F_2(x) = \int_{-\infty}^x f_2(x') dx'$ invertierbar

Dann generiere x aus gleichverteilten r gemäß

$$x = F_1^{-1}(r)$$
 für $r < S_1$ $x = F_2^{-1}(r - S_1)$ für $r > S_1$

Behandlung additiver WDFs: Beispiel

Ziel-WDF:
$$f(x) = \varepsilon \frac{\lambda e^{-\lambda x}}{1 - e^{-\lambda a}} + (1 - \varepsilon) \frac{1}{a} \quad \text{für} \quad 0 < x < a$$

Bestimme Stammfunktion und deren Inverse für beide Summanden.

Transformiere gleichverteilte Zufallszahl r gemäß:

$$r < \varepsilon$$

$$x = \frac{-1}{\lambda} \ln \left(1 - \frac{1 - e^{-\lambda a}}{\varepsilon} r \right)$$

$$r > \varepsilon$$

$$x = a \frac{r - \varepsilon}{1 - \varepsilon}$$

Methode liefert 100% Effizienz.

Ohne Separation wäre Inverse hier nicht analytisch berechenbar gewesen.

Seperation auch meist sinnvoll, wenn Terme nicht analytisch invertierbar.

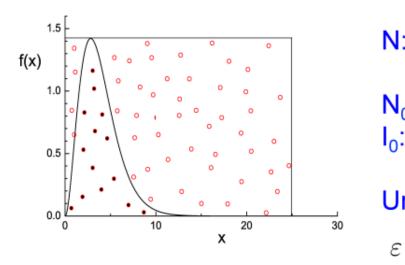
MC-Integration

Integrale bei der Integrand das Vorzeichen wechselt werden in Bereiche zwischen Nullstellen zerlegt. Dann gilt o.B.d.A:

$$I = \int_{x_a}^{x_b} y(x) \, \mathrm{d}x \quad \text{mit} \quad y > 0$$

Methode 1: Primitive Zurückweisungsmethode

$$\widehat{I} = I_0 \frac{N}{N_0}$$



N: Anzahl der Erfolge (akzeptierten Zufallszahlen)

N₀: Anzahl aller Zufallszahlen

I₀: Integral der constanten = Fläche der Box

Unsicherheit aus Binomialverteilung

$$\varepsilon = N/N_0 \qquad \delta N = \sqrt{N_0 \varepsilon (1 - \varepsilon)} ,$$

$$\frac{\delta I}{I} = \frac{\delta N}{N} = \sqrt{\frac{1 - \varepsilon}{N}}$$

Simulation von Messungen

Betrachte naturwissenschaftliches Gesetz

$$y = at + b$$

Messungen werden Stützstellen durchgefühert

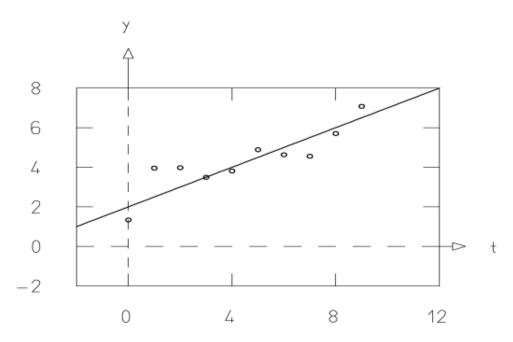
 t_0 , $t_1 = t_0 + \Delta t$, $t_2 = t_0 + 2\Delta t$,

Perfekte Messgenauigkeit liefert

$$y_i = at_i + b$$
, $i = 0, 1, ..., n-1$

Messung fehlerbehaftet aus Gauss-WDF

$$y_i' = y_i + \varepsilon_i$$



Simulation von Messungen

Zerfallszeiten eines radiaktven Präparats

$$f(x) = \frac{1}{\tau} \exp(-x/\tau), \quad x > 0$$

Endliche Zeitauflösung der Messapparatur

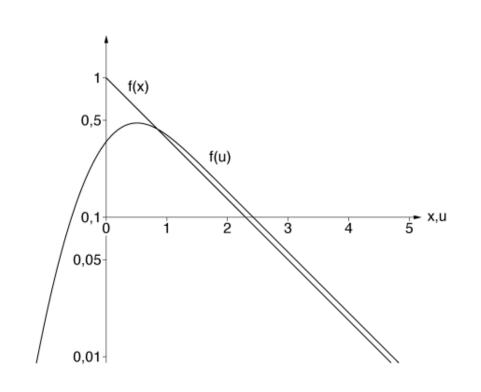
$$f(x) = \frac{1}{\tau} \exp(-x/\tau), x > 0,$$

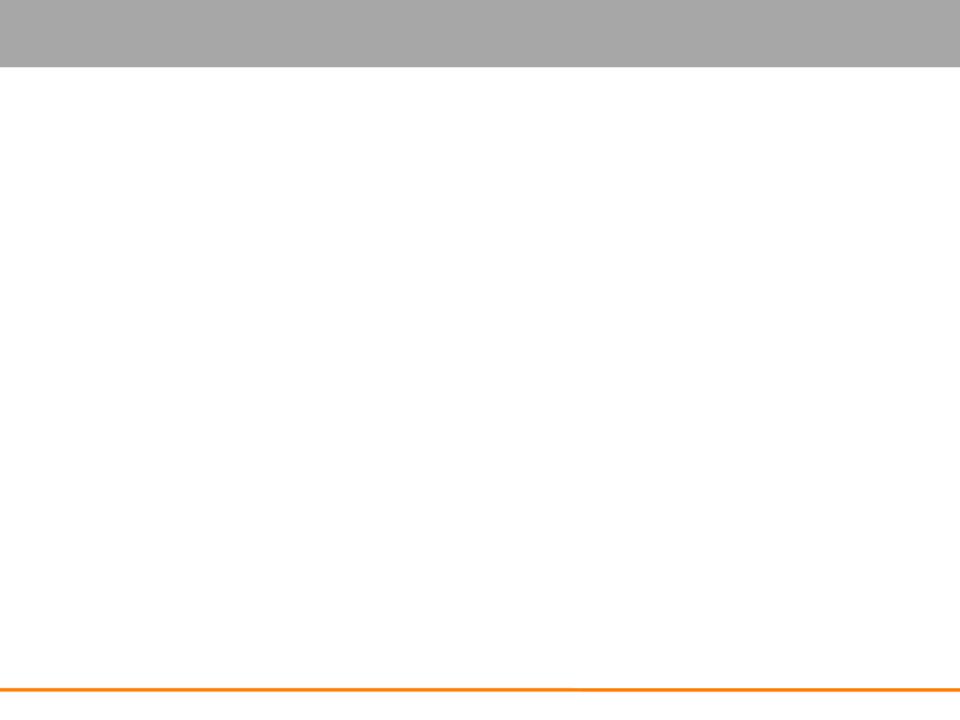
$$f(y) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-y^2/2\sigma^2)$$

Analytische Faltung kompliziert

$$f(u) = \frac{1}{\sqrt{2\pi}\sigma\tau} \exp\left\{\frac{\sigma^2}{2\tau^2} - \frac{u}{\tau}\right\} \int_{-\infty}^{u-\sigma^2/\tau} \exp\left(\frac{-v^2}{2\sigma^2}\right) dv$$

- 1) Erzeuge Ereignisse gemäß **Exponential-WDF**
- 2) Addiere, subtrahiere Messfehler gemäß Gauss-WDF für jede simulierte Lebendsauer
- → WDF für Experiment = numerische Durchführung der Faltung

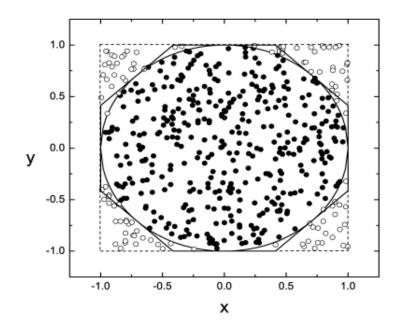




Verbesserte Zurückweisungsmethode

Verkleinerung des Referenzbereichs durch einführen einer Majorante

Beispiel: Bestimmung von "pi"



Referenzbereich = Quadrat:
$$\langle N \rangle = \frac{\pi}{4} N_0$$
 $\widehat{\pi} = \frac{4N}{N_0}$ $\frac{\delta \widehat{\pi}}{\pi} = \frac{\sqrt{1-\pi/4}}{\sqrt{N_0\pi/4}} \approx 0.52 \frac{1}{\sqrt{N_0}}$

Referenzbereich = Achteck → Reduzierung des Fehlers um Faktor ~2 bei gleicher Anzahl Versuche

Verbesserte Zurückweisungsmethode

Zu bestimmen: Integral über y(x) $I = \int_{x_a}^{x_b} y(x) dx$

Majorante m(x) für y(x) mit invertierbarer Stammfunktion $M(x) = \int_{x_a}^x m(x') dx'$

Generiere Zufallszahlen x_i gemäß m(x) durch Transformationsmethode

Erzeuge weitere gleichverteilte Zufallszahl y_i im Bereich $0 < y < m(x_i)$

Zähle Anzahl der Erfolge N, definiert über $y_i \le y(x_i)$

Integral ist dann gegeben durch:
$$I=M(x_b)\frac{N}{N_0} \qquad \qquad \delta N=\sqrt{N_0\varepsilon(1-\varepsilon)} \ , \\ \frac{\delta I}{I}=\frac{\delta N}{N}=\sqrt{\frac{1-\varepsilon}{N}}$$

Fehler reduziert sich mit "Anschmiegen" der Majorante m(x) an y(x).

Wichtungsmethode

Zu bestimmen: Integral über y(x) $I = \int_{x}^{x_b} y(x) dx$

Würfele gleichverteilte Zufallszahlen im Intervall $x_a < x < x_b$

Bestimmte Mittelwert der Stichprobe für y(x): $\overline{y} = \sum_{i=1}^{N} y(x_i)/N$

Schätzwert für Integral gegeben durch: $\widehat{I} = (x_b - x_a)\overline{y}$

Entspricht numerischer Integration, aber Stützstellen zufällig.

Unsicherheit aus Varianz von y(x): $(\delta \bar{y})^2 = \frac{1}{N} \int_{x_a}^{x_b} \left(y(x) - \langle y \rangle\right)^2 y(x) \mathrm{d}x / \int_{x_a}^{x_b} y(x) \mathrm{d}x$

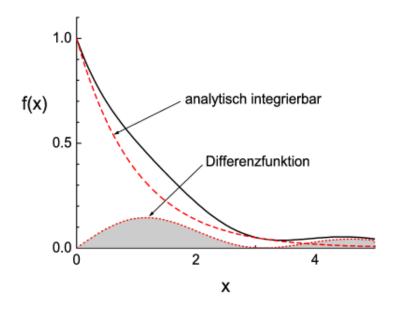
Bei MC-Integration abgeschätzt über:

$$(\delta \bar{y})^2 \approx \frac{1}{N(N-1)} \sum_i (y(x_i) - \bar{y})^2 \qquad \frac{\delta \hat{I}}{\hat{I}} = \frac{\delta \bar{y}}{\bar{y}}$$

Subtraktionsmethode

Wenn wir Funktion $\widetilde{y}(x)$ kenne, die analytisch integrierbar ist und nur wenig von y(x) abweicht, lässt sich Integral umschreiben auf:

$$\int_{x_a}^{x_b} y(x) dx = \int_{x_a}^{x_b} \widetilde{y}(x) dx + \int_{x_a}^{x_b} (y(x) - \widetilde{y}(x)) dx$$



Es muss nur noch die Differenzfunktion (schattierte Fläche) mit der Gewichtungsmethode integriert werden.

Rückführung auf Erwartungswerte

Oft Faktorisierung des Integranden sinnvoll: $y(x) = f(x)y_1(x)$

f(x) WDF, nach der einfach Zufallszahlen erzeugt werden können

Integral ergibt sich als Erwartungswert in der Form:

$$\int_{x_a}^{x_b} y(x) dx = \int_{x_a}^{x_b} f(x) y_1(x) dx$$
$$= \langle y_1 \rangle.$$

Geschätzt wird der Wert durch den Stichprobenmittelwert:

$$\widehat{I} = \frac{\sum_{i} y_1(x_i)}{N}$$
 mit x_i gemäß $f(x)$ erzeugt.

Fehler ergibt sich wiederum über: $(\delta \bar{y})^2 \approx \frac{1}{N(N-1)} \sum_i (y(x_i) - \bar{y})^2 \qquad \frac{\delta \hat{I}}{\hat{I}} = \frac{\delta \bar{y}}{\bar{y}}$