Particle Physics II

Markus Schumacher, Anna Kopp, Stan Lai

Problem Set I

28 October 2014

Please use $c = 3.00 \times 10^8 \,\mathrm{m/s}$ and $\hbar c = 1.97 \times 10^{-7} \,\mathrm{eV} \cdot \mathrm{m}$ for all numerical computations.

In-class exercises

Exercise 1 Scattering Kinematics

(a) Consider a scattering process of two particles with centre-of-mass energy $E_{CM} = \sqrt{s}$. Show that the incident momentum \bar{p}_i^* of any of the two particles in the centre-of-mass frame satisfies

$$|\bar{p}_i^*|^2 = \frac{1}{4s} \left[s - (m_1 + m_2)^2 \right] \left[s - (m_1 - m_2)^2 \right],$$

for particle masses m_1 and m_2 . Start by writing $\sqrt{s} - E_1 = E_2$, and square both sides, and then substitute for the energy terms, using the relativistic relation $E^2 = |\vec{p}|^2 + m^2$.

- (b) How can you tell that this expression of $|\bar{p}_i^*|$ is Lorentz invariant?
- (c) In some cases you can neglect the masses of a particle or particles, if they are much smaller than the collision energy. In the case of electron-proton collisions, one often neglects the mass of the electron. In this particular case, show that the expression for \vec{p}_i^* simplifies to:

$$|\bar{p}_i^*|^2 = \frac{E_e^2 m_p^2}{s}$$

whereby s is the Mandelstam variable which can be written $s = (p_1 + p_2)^2$ for incident particles 1 and 2, and E_e is the energy of the electron in the proton rest frame.

Exercise 2 Mandelstam Variables

Consider the $2 \to 2$ scattering process $1 + 2 \to 3 + 4$.

(a) For the case of identical mass $(m_1 = m_2 = m_3 = m_4 \equiv m)$ in the center-of-mass system, show that

$$s = 4 \left(\left| \vec{p} \right|^2 + m^2 \right), \qquad t = -2 \left| \vec{p} \right|^2 \left(1 - \cos \theta \right), \qquad u = -2 \left| \vec{p} \right|^2 \left(1 + \cos \theta \right),$$

where $|\vec{p}| = |\vec{p}_i| = |\vec{p}_f|$ is the modulus of the 3-momentum of the incoming and outgoing particles, and $\theta = \angle (\vec{p}_1, \vec{p}_3)$ is the scattering angle.

(b) For which scattering angle do t and u reach their minima / maxima?

Exercise 3 Fun with Natural Units

- (a) Determine the value of the gravitational constant $G_N \approx 6.7 \times 10^{-11} \, \frac{\text{m}^3}{\text{kg s}^2}$ in natural units of particle physics. (in terms of eV)
- (b) Express the Planck mass $M_P = \sqrt{1/G_N}$ in natural units of particle physics.
- (c) In SI units, the electron mass is given by 9.11×10^{-31} kg. Express this in units of MeV.

Homework

Exercise 4 More Fun with Natural Units

3 Points

- (a) In 2012, a Higgs boson was found at the LHC experiments with a mass of around 125 GeV. Express this mass in SI units.
- (b) The muon lifetime is measured quite precisely and is $\tau_{\mu} = 2.2 \ \mu s$. Express this in terms of units in eV.

Exercise 5 Electron-Proton Elastic Scattering

8 Points

Consider elastic electron-proton scattering, where the incoming electron (1) has incident energy E_1 , and the proton (2) is initially at rest with $\vec{p}_2 = 0$. Label the outgoing electron and proton with (3) and (4), respectively, with the angle between the momentum of the outgoing electron and the original incoming momentum denoted by θ . Assume for this problem that the electron mass is negligible $(m_e \simeq 0)$.

- (a) Draw a sketch of the scattering process in the laboratory frame.
- (b) Write down the 4-vectors of the incoming and outgoing particles in terms of energies, masses, and the angle θ .
- (c) Express the quantity E_3 in terms of E_1 , m_p , and θ , where m_p is the proton mass.
- (d) What is the expression of the differential cross-section $\frac{d\sigma}{d\Omega}$ for this process? Use the fact that

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{dt} \left| \frac{dt}{d\Omega} \right|$$

for the Mandelstam variable $t = (p_1 - p_3)^2 = (p_2 - p_4)^2$, and the Lorentz invariant form of the scattering cross-section for $2 \to 2$ processes (with distinct particles)

$$\frac{d\sigma}{dt} = \frac{|\mathcal{M}_{fi}|^2}{64\pi s|\bar{p}_i^*|^2},$$

whereby \vec{p}_i^* is the momentum of the incident electron (see Problem 1) in the centre-of-mass frame and s is the Mandelstam variable equivalent to the square of the centre-of-mass energy.

Exercise 6 Lorentz Invariant Flux Factor

4 Points

From the lectures, the cross-section for the scattering process $A + B \rightarrow 1 + 2$ can be expressed as

$$\sigma = \frac{1}{(2\pi)^2 F} \int |\mathcal{M}_{fi}|^2 \delta(E_A + E_B - E_1 - E_2) \delta^3(\vec{p}_A + \vec{p}_B - \vec{p}_1 - \vec{p}_2) \frac{d^3 \vec{p}_1}{(2\pi)^3 2E_1} \frac{d^3 \vec{p}_1}{(2\pi)^3 2E_1},$$

where the momenta of the incoming particles A and B are anti-parallel with respect to each other (i.e. $\vec{v}_A \cdot \vec{v}_B = -|\vec{v}_A||\vec{v}_B|$). Here, the Lorentz invariant flux factor is given by $F = 4E_AE_B|\vec{v}_A - \vec{v}_B|$ for incoming particle velocities \vec{v}_A and \vec{v}_B . Show that the flux factor F is indeed Lorentz invariant.

Hint: Show that F can be written as $4\sqrt{(p_A \cdot p_B)^2 - m_A^2 m_B^2}$ for 4-vectors p_A and p_B .

Consider the decay $A \to BC$ in the rest frame of particle A.

(a) Show that the following equation describes the energies of the outgoing particles as a function of the masses involved:

$$E_B = \frac{m_A^2 + m_B^2 - m_C^2}{2m_A} \qquad E_C = \frac{m_A^2 - m_B^2 + m_C^2}{2m_A}$$

(b) Using this result, show that the momentum of the outgoing particles $|\vec{p}_f| = |\vec{p}_B| = |\vec{p}_C|$ is given by:

$$|\vec{p_f}| = \frac{1}{2m_A} \sqrt{m_A^4 + m_B^4 + m_C^4 - 2m_A^2 m_B^2 - 2m_A^2 m_C^2 - 2m_B^2 m_C^2}$$

(c) What is the energy of a μ^- produced in the decay $\pi^- \to \mu^- \bar{\nu}$ in the pion rest frame? You can use $m_{\pi} = 140$ MeV, $m_{\mu} = 106$ MeV, and $m_{\nu} = 0$.