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In-class exercises

Exercise 17 Non-relativistic Limit of the Dirac Equation

(a) Show that the Dirac equation can also be written in this form:(
m ~σ · ~P
~σ · ~P −m

)
ψ = i∂tψ,

where ψA and ψB are two-component spinors, and ~P is the momentum operator.
Hint: Use the Dirac representation of the γ-matrices.

(b) In classical mechanics, it can be shown that a charged particle with charge e in the presence of
a Lorentz force satisfies the following relations for the scalar and vector potentials A0 = U(~x, t)
and ~A(~x, t):

~p = m
d~x

dt
+ e ~A(~x, t) and H =

1
2m

[
~p− e ~A(~x, t)

]2
+ eU(~x, t)

for the mechanical momentum and the Hamiltonian, respectively. In Einstein notation, The scalar
and vector potentials are written as a 4-component vector object: Aµ = (U, ~A). Thus, the dy-
namics of a spin-1/2 charged particle interacting with a classical vector field can be expressed by
the Dirac equation in part (a), with the substitutions:

~P → ~P + e ~A and E → E + eA0.

Using the time evolution of the two-component spinors (Ekin being the kinetic energy of the
electron):

ψ =
(
ψA
ψB

)
= e−i(Ekin+m)t

(
φ
χ

)
,

show that ψB can be written in terms of ψA as:

ψB '
~σ · (~P + e ~A)

2m
ψA.

Note you can make use of the non-relativistic approximations that |eA0| � m and Ekin � m.
(c) Substituting this expression for ψB, show that one arrives finally at the Pauli equation:

(
1

2m
(~P + e ~A)2 +

e

2m
~σ · ~B − eA0)ψA = EkinψA,

where the four-vector potential satisfies ~B = ~∇× ~A and ~Eelectric = −∂t ~A− ~∇A0.
Hint: You can make use of the following:
� (~σ · ~a)(~σ ·~b) = ~a ·~b+ i~σ · (~a×~b), in the case that [~a, ~σ] = [~b, ~σ] = 0
�
~P = −i~∇

�
~∇× ( ~Aψ) + ~A× (~∇ψ) = (~∇× ~A)ψ.



Homework

Exercise 18 Target Scattering Energy Threshold 3 Points
If a particle A, with energy E hits a particle B at rest, and produces n particles C1, C2, ..., Cn with
masses m1,m2, ...,mn, what is the energy threshold (minimum incident energy Emin) for this process
to occur (in terms of mA,mB,m1, ...,mn)?

Exercise 19 Adjoint Dirac Equation 3 Points
Given the Dirac Equation

iγµ∂µψ −mψ = 0,

show that the adjoint spinor ψ̄ ≡ ψ†γ0 satisfies the adjoint Dirac Equation

i∂µψ̄γ
µ +mψ̄ = 0.

Exercise 20 Transformations of Bilinear Covariants 6 Points

Recall from the lectures that the transformation matrix for spinors for a Lorentz-Boost in the z-
direction is represented by:

SLor = 14 cosh
ω

2
− γ0γ3 sinh

ω

2
and

S−1
Lor = 14 cosh

ω

2
+ γ0γ3 sinh

ω

2
,

where coshω = γ = E
m , sinhω = βγ = |~p|

m . The analagous transformation matrix for spinors for a
rotation in space is represented by:

SRot = exp
(
−θ

2
γ1γ2

)
= 14 cos

θ

2
− γ1γ2 sin

θ

2

and

S−1
Rot = exp

(
+
θ

2
γ1γ2

)
= 14 cos

θ

2
+ γ1γ2 sin

θ

2
.

(a) Show the invariance of the pseudoscalar bilinear p = ψ̄γ5ψ under a Lorentz-Boost as well as
under a rotation about an angle θ.

(b) Determine the transformation for the axialvector bilinear kµ = ψ̄γ5γµψ under a Lorentz-Boost
as well as under a rotation about an angle θ.

The following identities might help:

� γ0S†γ0 = S−1

� Λνµγ
µ = S−1γνS for the standard Lorentz transformation matrix Λ.



Exercise 21 Gyromagnetic Ratio of the Electron 3 Points

Using the results from Problem 17(c), derive the gyromagnetic ratio g of the electron. Note that the
magnetic moment of the electron is related to its spin through:

~µ ≡ −g e

2m
~S.

Hint: What is the potential energy produced by an external magnetic field ~B in terms of the magnetic
moment ~µ?

Exercise 22 Helicity and chirality 5 Points

(a) For the solution of the Dirac equation

u(p) =
√
E +m

(
χ

~σ·~p
E+mχ

)
with χ = (1, 0),

show that for the case of a massless particle, applying the helicity operator

1
2
~Σ · p̂ =

1
2

(
~σ · p̂ 0

0 ~σ · p̂

)
is equal to applying the chirality operator

1
2
γ5 =

1
2

(
0 1
1 0

)
.

Note that this result is also a good approximation for a massive particle in the high-energy limit,
E � m→ E ' p.

(b) The chirality projection operators PL = 1
2(1 − γ5) and PR = 1

2(1 + γ5) define the chiral states
uL,R (called “left-handed” and “right-handed” states) as uL ≡ PLu and uR ≡ PRu. Show that

PLuL = uL,

PRuR = uR,

PLuR = PRuL = 0.

(c) Assume that a spinor u can be written as a sum of its left- and right-handed components,
u = uL + uR. Then a similar relation holds for ū. Show that the following equation is valid:

ūγµu = ūRγ
µuR + ūLγ

µuL,

This implies that chirality is conserved in each vertex; and thus also helicity for the case of
massless particles.


